Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T03:47:26.114Z Has data issue: false hasContentIssue false

7 - Decision diagrams for verification

Published online by Cambridge University Press:  05 August 2012

Dhiraj K. Pradhan
Affiliation:
University of Bristol
Ian G. Harris
Affiliation:
University of California, Irvine
Get access

Summary

Introduction

Having matured over the years, formal design verification methods, such as theorem proving, property and model checking, and equivalence checking, have found increasing application in industry. Canonical graph-based representations, such as binary decision diagrams (BDDs), [1] binary moment diagrams (BMDs), [2] and their variants, play an important role in the development of software tools for verification. While these techniques are quite mature at the structural level, the high-level verification models are only now being developed. The main difficulty is that such verification must span several levels of design abstraction. Verification of arithmetic designs is particularly difficult because of the disparity in the representations on the different design levels and the complexity of logic involved.

This chapter addresses verification based on canonical data structures. It presents several canonical, graph-based representations that are used in formal verification, and, in particular, in equivalence checking of combinational designs specified at different levels of abstraction. These representations are commonly known as decision diagrams, even though not all of them are actually decision-based forms. They are graph based structures whose nodes represent the variables and whose directed edges represent the result of the decomposition of the function with respect to the individual variables. Particular attention is given to arithmetic and word-level representations.

An important common feature of all these representations is canonicity, which is essential in combinational equivalence checking. A form is canonical if the representation of a function in that form is unique. Canonical graph-based representations make it possible to check whether two combinational functions are equivalent by checking whether their graph-based representations are isomorphic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×