Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- Acknowledgements
- Metabolic interactions between organelles in photosynthetic tissue: a mitochondrial overview
- Metabolite transport in plant cells
- Metabolic interactions during photosynthetic and respiratory nitrogen assimilation in a green alga
- Carbon and nitrogen cycling between organdies during photorespiration
- Metabolic interactions between organelles in C4 plants
- Metabolic interactions in leaves of C3–C4 intermediate plants
- Metabolite compartmentation and transport in CAM plants
- Transport of H+, K+ and Ca2+ at the vacuolar membrane of plants
- Regulation of mitochondrial respiratory activity in photosynthetic systems
- Biosynthesis and assembly of the enzymes involved in lipid metabolism in plants
- The role of carnitine in plant cell metabolism
- Metabolic interactions of organelles in guard cells
- Transport of proteins into chloroplasts
- Metabolic interactions of organelles during leaf development
- Index
Metabolic interactions of organelles during leaf development
Published online by Cambridge University Press: 05 December 2011
- Frontmatter
- Contents
- List of Contributors
- Preface
- Acknowledgements
- Metabolic interactions between organelles in photosynthetic tissue: a mitochondrial overview
- Metabolite transport in plant cells
- Metabolic interactions during photosynthetic and respiratory nitrogen assimilation in a green alga
- Carbon and nitrogen cycling between organdies during photorespiration
- Metabolic interactions between organelles in C4 plants
- Metabolic interactions in leaves of C3–C4 intermediate plants
- Metabolite compartmentation and transport in CAM plants
- Transport of H+, K+ and Ca2+ at the vacuolar membrane of plants
- Regulation of mitochondrial respiratory activity in photosynthetic systems
- Biosynthesis and assembly of the enzymes involved in lipid metabolism in plants
- The role of carnitine in plant cell metabolism
- Metabolic interactions of organelles in guard cells
- Transport of proteins into chloroplasts
- Metabolic interactions of organelles during leaf development
- Index
Summary
In any discussion of plant cell metabolism it is essential to recognise the heterogeneity that exists within an organ such as the leaf. This encompasses the variety of cell types, such as the mesophyll, vascular, epidermal, etc., and also the range of cell ages within a leaf. The metabolic role of the organelles may therefore be quite different depending on the cell in which they are localised and also on the developmental stage of that cell. In this chapter we discuss the changes which occur in the size, frequency and metabolic activity of organelles during leaf cell development and differentiation.
Patterns of leaf cell development
Leaf cell development is most readily studied in grasses, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). This is because all of the cells of the leaf originate from a single meristematic region at the leaf base (intercalary meristem). Thus a developmental gradient is generated whereby the youngest cells are always at the leaf base and there is a measurable range of increasing cell age towards the tip of the leaf. Because of its simplicity, the developing light-grown wheat leaf has been a popular tool with which to study chloroplast and photosynthetic development (see, for example, reviews by Leech (1985) and Baker (1985) in this series). In contrast, dicotyledon leaf development is far more complex as there are several growing regions across the lamina (Maksymowych, 1973). The resulting heterogeneity makes it difficult to separate out areas where cell division, expansion and development are occurring within a dicotyledonous leaf.
- Type
- Chapter
- Information
- Plant OrganellesCompartmentation of Metabolism in Photosynthetic Tissue, pp. 293 - 324Publisher: Cambridge University PressPrint publication year: 1992
- 8
- Cited by