Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T06:44:25.386Z Has data issue: false hasContentIssue false

4 - The Role of Botanic Gardens in In Situ Conservation

Published online by Cambridge University Press:  30 August 2017

Stephen Blackmore
Affiliation:
Botanic Gardens Conservation International (BGCI)
Sara Oldfield
Affiliation:
International Union for Conservation of Nature (IUCN)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Plant Conservation Science and Practice
The Role of Botanic Gardens
, pp. 73 - 101
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, S. N. and Bemmels, J. B. (2015). Time to get moving: assisted gene flow of forest trees. Evolutionary Application, 9: 271290.CrossRefGoogle ScholarPubMed
Ali, N. S. and Trivedi, C. (2011). Botanic gardens and climate change: a review of scientific activities at the Royal Botanic Gardens, Kew. Biodiversity and Conservation, 20: 295307.CrossRefGoogle Scholar
Baldock, K. C. R., Goddard, M. A., Hicks, D. M. et al. (2015). Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 282 (1803): 20142849.CrossRefGoogle ScholarPubMed
Bernstein, M. J., Wiek, A., Brundiers, K., Pearson, K., Minowitz, A., Kay, B. and Golub, A. (2016). Mitigating urban sprawl effects: A collaborative tree and shade intervention in Phoenix, Arizona, USA. Local Environment, 21: 414431.CrossRefGoogle Scholar
Blackmore, S., Gibby, M. and Rae, D. (2011). Strengthening the scientific contribution of botanic gardens to the second phase of the global strategy for plant conservation. Botanical Journal of the Linnaean Society, 166: 267281.CrossRefGoogle Scholar
Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J. et al. (2015). Green plants in the red: a baseline global assessment for the IUCN Sampled Red List Index for Plants. PloS ONE, 10(8), e0135152.CrossRefGoogle Scholar
Butchart, S. H. M., Walpole, M., Collen, B. et al. (2010). Global biodiversity: indicators of recent declines. Science, 328(5982): 11641168.CrossRefGoogle ScholarPubMed
Chen, J., Cannon, C. H. and Hu, H. B. (2009). Tropical botanic gardens: at the in situ ecosystem management frontier. Trends in Plant Science, 14: 584589.CrossRefGoogle ScholarPubMed
Christmas, M. J., Breed, M. F. and Lowe, A. J. (2016). Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 17: 305320.CrossRefGoogle Scholar
Convention on Biological Diversity (CBD). (2010). Consolidated update of the global strategy for plant conservation 2011–2020. Available online at www.cbd.int/gspc/strategy.shtml [accessed March 2017].Google Scholar
Corlett, R. T. (2015). The anthropocene concept in ecology and conservation. Trends in Ecology and Evolution, 30: 3641.CrossRefGoogle ScholarPubMed
Corlett, R. T. (2016a). Restoration, reintroduction, and rewilding in a changing world. Trends in Ecology and Evolution, 31: 453462.CrossRefGoogle Scholar
Corlett, R. T. (2016b). Plant diversity in a changing world: status, trends, and conservation needs. Plant Diversity, 1: 1118.Google Scholar
Corlett, R. T. (2016c). A bigger toolbox: biotechnology in biodiversity conservation. Trends in Biotechnology, 35(1): 5565.CrossRefGoogle ScholarPubMed
Corlett, R. T. and Westcott, D. A. (2013) Will plant movements keep up with climate change? Trends in Ecology and Evolution, 28: 482488.CrossRefGoogle ScholarPubMed
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B. and Collen, B. (2014). Defaunation in the Anthropocene. Science, 345: 401406.CrossRefGoogle ScholarPubMed
Elliott, S., Blakesley, D. and Hardwick, K. (2014). Restoring Tropical Forests: A Practical Guide. Royal Botanic Gardens, Kew, UK: Kew Publishing.Google Scholar
Folke, C., Holling, C. S. and Perrings, C. (1996). Biological diversity, ecosystems, and the human scale. Ecological Applications, 6: 10181024.CrossRefGoogle Scholar
Fotinos, T. D., Namoff, S., Lewis, C., Maschinski, J., Griffith, M. P. and von Bettberg, E. J. B. (2015). Genetic evaluation of a reintroduction of Sargent’s cherry palm. Journal of the Torrey Botanical Society, 142: 5162.CrossRefGoogle Scholar
Grady, K. C., Kolb, T. E., Ikeda, D. H. and Whitham, T. G. (2015). A bridge too far: cold and pathogen constraints to assisted migration of riparian forests. Restoration Ecology, 23: 811820.CrossRefGoogle Scholar
Haddad, N. M, Brudvig, L. A., Clobert, J. et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1: e1500052.CrossRefGoogle ScholarPubMed
Hǎllfors, M. H., Aikio, S., Fronzek, S., Hellmann, J. J., Ryttǎri, T. and Heikkinen, R. K. (2016). Assessing the need and potential of assisted migration using species distribution models. Biological Conservation, 196: 6068.CrossRefGoogle Scholar
Harrison, R. D., Tan, S., Plotkin, J. B., Slik, J. W. F., Detto, M., Brenes, T., Itoh, A. and Davies, S. J. (2013). Consequences of defaunation for a tropical tree community. Ecology Letters, 16: 687694.CrossRefGoogle ScholarPubMed
Heywood, V. H. (2011). The role of botanic gardens as resource and introduction centres in the face of global change. Biodiversity and Conservation 20: 221239.CrossRefGoogle Scholar
Hipp, A. L., Larkin, D. J., Barak, R. S., Bowles, M. L.,Cadotte, M. W., Jacobi, S. K., Lonsdorf, E., Scharenbroch, B. C., Williams, E. and Weiher, E. (2015). Phylogeny in the service of ecological restoration. American Journal of Botany, 102: 647648.CrossRefGoogle ScholarPubMed
Holtgrieve, G. W., Schindler, D. E., Hobbs, W. O. et al. (2011). A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science, 334: 15451548.CrossRefGoogle ScholarPubMed
Koralewski, T. E., Wang, H.-H., Grant, W. E. and Byram, T. D. (2015). Plants on the move: assisted migration of forest trees in the face of climate change. Forest Ecology and Management, 344: 3037.CrossRefGoogle Scholar
Kramer, A. T., Barbara, Z.-A. and Havens, K. (2013). Botanical capacity assessment project to achieve 2020 global strategy for plant conservation targets. Annals of the Missouri Botanic Garden, 99: 172179.CrossRefGoogle Scholar
Krupnick, G. A. (2013). Conservation of tropical plant biodiversity: what have we done, where are we going? Biotropica, 45: 693708.CrossRefGoogle Scholar
Laurance, W. F. et al. (2012). Averting biodiversity collapse in tropical forest protected area. Nature, 489: 290294.CrossRefGoogle Scholar
Le Saout, S., Hoffmann, M., Shi, Y. et al. (2013). Protected areas and effective biodiversity conservation. Science, 342: 803805.CrossRefGoogle ScholarPubMed
Leverington, F., Costa, K. L, Pavese, H., Lisle, A. and Hockings, M. (2010). A global analysis of protected area management effectiveness. Environmental Management, 46(5): 685698.CrossRefGoogle ScholarPubMed
Liu, Q., Chen, J., Corlett, R. T., Fan, X. L., Yu, D. L., Yang, H. P. and Gao, J. Y. (2015). Orchid conservation in the biodiversity hotspot of southwestern China. Conservation Biology, 29(6): 15631572, doi: 10.1111/cobi.12584.CrossRefGoogle ScholarPubMed
MacGregor-Fors, I., Escobar, F., Rueda-Hernández, R. et al. (2016). City ‘green’ contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests, Trees and Livelihoods, 7: 146.Google Scholar
Mammides, C., Goodale, U. M., Corlett, R. T. et al. (2016). Increase geographic diversity in the international conservation literature: a stalled process? Biological Conservation, 198: 7883.CrossRefGoogle Scholar
Margules, C. R. and Pressey, R. L. (2000). Systematic conservation planning. Science, 405: 243253.Google ScholarPubMed
Marignani, M. and Blasi, C. (2012). Looking for important plant areas: selection based on criteria, complementarity, or both? Biodiversity and Conservation, 21: 18531864.CrossRefGoogle Scholar
Marvin, D. C., Koh, L. P., Lynam, A. J., Wich, S., Davies, A. B., Krishnamurthy, R., Stokes, E., Starkey, R. and Asner, G. P. (2016). Integrating technologies for scalable ecology and conservation. Global Ecology and Conservation, 7: 262275.CrossRefGoogle Scholar
Pimm, S. L. and Joppa, L. N. (2015). How many plant species are there, where are they, and at what rate are they going extinct? Annals of the Missouri Botanic Garden, 100: 170176.CrossRefGoogle Scholar
Pinto, M., Almeida, C., Pereira, A. M. and Silva, M. (2016). Urban Forest Governance: FUTURE – The 100,000 Trees Project in the Porto Metropolitan Area. In: Castro, P., Azeiteiro, U. M., Bacelar-Nicolau, P., Filho, W. L. and Azul, A. M. (Eds), Biodiversity and Education for Sustainable Development. Switzerland: Springer International Publishing, pp. 187202.CrossRefGoogle Scholar
Primack, R. B. and Miller-Rushing, A. J. (2009). The role of botanic gardens in climate change research. New Phytologist, 182: 303313.CrossRefGoogle ScholarPubMed
Qiu, J. (2009). Where the rubber meets the garden. Nature, 457: 246247.CrossRefGoogle ScholarPubMed
RBG Kew (2016). The State of the World’s Plants Report 2016. Royal Botanic Gardens, Kew, available online at https://stateoftheworldsplants.com/areas-important-for-plants [accessed February 2017].Google Scholar
Ren, G. P., Young, S. S., Wang, L., Wang, W., Long, Y. C., Wu, R. D., Li, J. S., Zhu, J. G. and Yu, D. W. (2015). Effectiveness of China’s National Forest Protection Program and nature reserves. Conservation Biology, 29: 13681377.CrossRefGoogle ScholarPubMed
SCBD (2010). COP 10 Decision X/2: Strategic Plan for Biodiversity 2011–2020., Nagoya, Japan: Secretariat of the Convention on Biological Diversity.Google Scholar
Secretariat of the Convention on Biological Diversity (CBD) (2008). Protected Areas in Today’s world: Their Values and Benefits for the Welfare of the Planet. Montreal, CBD Technical Series No. 36, i–vii + 96 pp.Google Scholar
Sharrock, S., Oldfield, S. and Wilson, O. (2014). Plant Conservation Report 2014: A Review of Progress in Implementation of the Global Strategy for Plant Conservation 2011–2020. Richmond, UK: Secretariat of the Convention on Biological Diversity and Botanic Gardens Conservation International.Google Scholar
Silvestro, D., Cascales-Miñana, B., Bacon, C. D. and Antonelli, A. (2015). Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. The New Phytologist, 207(2): 425436.CrossRefGoogle ScholarPubMed
Soulsbury, C. D. and White, P. C. L. (2016). Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildlife Research, 42: 541553.CrossRefGoogle Scholar
Steffen, W., Grinevald, J., Crutzen, P. and McNeill, J. (2011). The Anthropocene: conceptual and historical perspectives. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1938): 842867.Google ScholarPubMed
ter Steege, H., Pitman, N. C. A., Killeen, T. J. et al. (2015). Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 1(10): e1500936.CrossRefGoogle ScholarPubMed
Tittensor, D. P. et al. (2014). A mid-term analysis of progress toward international biodiversity targets. Science, 346: 241244.CrossRefGoogle ScholarPubMed
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348: 571573.CrossRefGoogle ScholarPubMed
Van der Burgt, X. M. et al. (2015). The Gilbertiodendron ogoouense species complex (Leguminosae: Caesalpinioideae), Central Africa. Kew Bulletin, 70: 29.CrossRefGoogle Scholar
Vovides, A. P., Iglesias, C., Luna, V. and Balcazar, T. (2013). Botanic gardens and the biodiversity crisis. Botanical Sciences, 91: 239250.CrossRefGoogle Scholar
Wang, C. J., Wan, J. Z., Zhang, G. M., Zhang, Z. X. and Zhang, J. (2016). Protected areas may not effectively support conservation of endangered forest plants under climate change. Environmental Earth Sciences, 75: 466, doi: 10.1007/s12665-016-5364-4.CrossRefGoogle Scholar
Williams, M., Zalasiewicz, J.,Waters, C. N. et al. (2016). The Anthropocene: a conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere. Earth’s Future, 4: 3453.CrossRefGoogle Scholar
Williams, S. J., Jones, J. P. G., Clubbe, C., Sharrock, S. and Gibbons, J. M. (2012). Why are some biodiversity policies implemented and others ignored? Lessons from the uptake of the global strategy for plant conservation by botanic gardens. Biodiversity and Conservation, 21: 175187.CrossRefGoogle Scholar
Wyse Jackson, P. S. and Kennedy, K. (2009). The global strategy for plant conservation: a challenge and opportunity for the international community. Trends in Plant Science, 14: 578580.CrossRefGoogle ScholarPubMed
Zhang, M. G., Zhou, Z. K., Chen, W. Y., Cannon, C. H., Raes, N. and Slik, J. W. F. (2014). Major declines of woody plant species ranges under climate change in Yunnan, China. Diversity and Distributions, 20: 405415.CrossRefGoogle Scholar
Zhang, Y. B., Wang, Y. Z., Zhang, M. J. and Ma, K. P. (2014). Climate change threats to protected plants of China: an evaluation based on species distribution modelling. Chinese Sciences Bulletin, 59: 46524659.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×