Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:34:59.191Z Has data issue: false hasContentIssue false

4 - Differentiation Under Highly Reducing Conditions: New Insights from Enstatite Meteorites and Mercury

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 71 - 91
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. D., Columbo, G., Esposito, P. B., Lau, P. B., and Trager, G. B. 1987. The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337349.CrossRefGoogle Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. III, Schubert, G., 1996. Shape and orientation of Mercury from radar ranging data. Icarus, 124, 690697.CrossRefGoogle Scholar
Bannister, F. A. 1941. Osbornite, meteoritic titanium nitride. Mineralogical Magazine, 26, 3644.CrossRefGoogle Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W., 1988. Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.CrossRefGoogle Scholar
Berthet, S., Malavergne, V., and Righter, K. 2009. Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochimica et Cosmochimica Acta, 73, 64026420.CrossRefGoogle Scholar
Blewett, D. T., Lucey, P. G., Hawke, B. R., et al. 1997. A comparison of Mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.CrossRefGoogle Scholar
Blewett, D. T., Hawke, B. R., Lucey, P. G., 2002. Lunar pure anorthosite as a spectral analog for Mercury. Meteoritics & Planetary Science, 37, 12451254.CrossRefGoogle Scholar
Brett, R. and Keil, K. 1986. Enstatite chondrites and enstatite achondrites (aubrites) were not derived from the same parent body. Earth and Planetary Science Letters, 81, 16.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al., 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.CrossRefGoogle Scholar
Cameron, A. G. W., Fegley, B. Jr., Benz, W. et al., 1988. The strange density of Mercury: Theoretical considerations. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: Univ. of Arizona Press, pp. 692708.Google Scholar
Casanova, I. 1990. Geochemistry of metal segregation in aubrites and the origin of their metallic phases. Ph.D. dissertation, University of New Mexico.Google Scholar
Casanova, I., Keil, K., and Newsom, H. E. 1993. Composition of metal in aubrites: Constraints on core formation. Geochimica et Cosmochimica Acta, 57, 675682.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., and Rubin, A. E., 1984. Oxygen-isotopic composition of enstatite chondrites and aubrites. Lunar and Planetary Science Conference, 15, C245C249.Google Scholar
Essene, E. J. and Fisher, D. C. 1986. Lightning strike fusion: Extreme reduction and metal–silicate liquid immiscibility. Science, 234, 189193.CrossRefGoogle ScholarPubMed
Evans, L. G., Peplowski, P. N., Rhodes, E., et al. 2012. Major-element abundances on the surface of Mercury: Results from the MESSENGER gamma-ray spectrometer. Journal of Geophysical Research, 117, E00L07.CrossRefGoogle Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., et al. 2015. Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.CrossRefGoogle Scholar
Floss, C., Fogel, R. A., Lin, Y. T., et al. 2003. Diopside-bearing EL6 EET 90102: Insights from rare earth element distributions. Geochimica et Cosmochimica Acta, 67, 543555.CrossRefGoogle Scholar
Fogel, R. A. 1997a. The enstatite chondrite–achondrite link reforged: Solution of the titanium in troilite problem (abstract). Meteoritics & Planetary Science, Supplement, A43.Google Scholar
Fogel, R. A. 1997b. On the significance of diopside and oldhamite in enstatite chondrites and aubrites. Meteoritics & Planetary Science, 32, 577591.CrossRefGoogle Scholar
Fogel, R. A. 2001. The role of roedderite in the formation of aubrites (abstract). Lunar and Planetary Science Conference, 32, 2177.Google Scholar
Fogel, R. A. 2005. Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochimica et Cosmochimica Acta, 69, 16331648.CrossRefGoogle Scholar
Fogel, R. A., Hess, P. C., and Rutherford, M. J. 1988. The enstatite chondrite–achondrite link (abstract). Lunar and Planetary Science Conference, 19, 342343.Google Scholar
Fuchs, L. H. 1966. Djerfisherite, alkali copper–iron sulfide: A new mineral from enstatite chondrites. Science, 153, 166167.CrossRefGoogle ScholarPubMed
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., et al. 2013. The curious case of Merucry’s internal structure. Journal of Geophysical Research – Planets, 118, 12041220.CrossRefGoogle Scholar
Hiesinger, H., Helbert, J. and MERTIS Co-I Team, 2010. The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planetary and Space Science, 58, 144165.CrossRefGoogle Scholar
Hsu, W. 1998. Geochemical and petrographic studies of oldhamite, diopside, and roedderite in enstatite meteorites. Meteoritics & Planetary Science, 33, 291301.CrossRefGoogle Scholar
Keil, K. 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 69456976.CrossRefGoogle Scholar
Keil, K. 1969. Titanium distribution in enstatite chondrites and achondrites and its bearing on their origin. Earth and Planetary Science Letters, 7, 243248.CrossRefGoogle Scholar
Keil, K., 2007. Occurrence and origin of keilite, (Fe>0.5,Mg<0.5)S, in enstatite chondrite impact-melt rocks and impact-melt breccias. Chemie der Erde, 67, 3754.CrossRefGoogle Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroid parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, K., McCoy, T.J., Wilson, L., et al. 2011. A composite Fe,Ni–FeS and enstatite–forsterite–glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism. Meteoritics & Planetary Science, 46, 17191741.CrossRefGoogle Scholar
Killen, R., Cremonese, G., Lammer, H., et al. 2007. Processes that promote and deplete the exosphere of Mercury. Space Science Reviews, 132, 433509.CrossRefGoogle Scholar
Kurat, G., Zinner, E., and Brandstätter, F. 1992. An ion microprobe study of an unique oldhamite–pyroxenite fragment from the Bustee aubrite (abstract). Meteoritics, 27, 246247.Google Scholar
Lewis, J. S. 1972. Metal/silicate fractionation in the solar system. Earth and Planetary Science Letters, 15, 286290.CrossRefGoogle Scholar
Lewis, J. S. 1974. Chemistry of the planets. Annual Review of Physical Chemistry, 24, 339351.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. 1998. The Planetary Scientists’s Companion. Oxford: Oxford University Press.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., et al. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710714.CrossRefGoogle ScholarPubMed
McCoy, T. J. 1998. A pyroxene–oldhamite clast in Bustee: Igneous aubritic oldhamite and a mechanism for the Ti enrichment in aubritic troilite. Antarctic Meteorite Research, 11, 3248.Google Scholar
McCoy, T. J. and Nittler, L. R. 2014. Mercury. In Planets, Asteroids, Comets and the Solar System, ed. Davis, A. M.. Oxford: Elsevier-Pergamon, pp. 119126.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.CrossRefGoogle Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E., et al. 2012. Is Mercury a volatile-rich planet? Geophysical Research Letters, 39, L09202.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. 1980. Chemical composition of Earth, Venus, and Mercury. In Proceedings of the National Academy of Sciences, 77, 69736977.CrossRefGoogle ScholarPubMed
Nittler, L. R., Starr, R. D., Weider, S. Z., et al. 2011. The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.CrossRefGoogle ScholarPubMed
Okada, A., Keil, K., Taylor, G. J., et al. 1988. Igenous history of the aubrite parent asteroid: Evidence from the Norton County enstatite achondrite. Meteoritics, 23, 5974.CrossRefGoogle Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, et al. 2011. Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., et al. 2014. Enhanced sodium abundance in Mercury’s north polar regions revealed by the MESSENGER gamma-ray spectrometer. Icarus, 228, 8695.CrossRefGoogle Scholar
Potter, A. and Morgan, T. H. 1985. Discovery of sodium in the atmosphere of Mercury. Science, 229, 651653.CrossRefGoogle ScholarPubMed
Potter, A. and Morgan, T. H. 1986. Potassium in the atmosphere of Mercury. Icarus, 67, 336340.CrossRefGoogle Scholar
Roedder, E. W. 1951. The system K2O–MgO–SiO2. American Journal of Science, 249, 81130.CrossRefGoogle Scholar
Rosenshein, E. B., Ivanova, M. A., Dickinson, T. L., et al. 2006. Oxide-bearing and FeO-rich clasts in aubrites. Meteoritics & Planetary Science, 41, 495503.CrossRefGoogle Scholar
Sack, R. O. and Ebel, D. S. 2006. Thermochemistry of sulfide mineral solutions. Reviews in Mineralogy and Geochemistry, 61, 265364.CrossRefGoogle Scholar
Sears, D. W., Kallemeyn, G. W., and Wasson, J. T. 1982. The compositional classification of chondrites: II. The enstatite chondrite groups. Geochimica et Cosmochimica Acta, 46, 597608.CrossRefGoogle Scholar
Skinner, B. J. and Luce, F. D. 1971. Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist, 56, 12691296.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., et al. 2012. Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.CrossRefGoogle ScholarPubMed
Sprague, A., Warrell, J., and Cremonese, G., et al. 2007. Mercury’s surface composition and character as measured by ground-based observations. Space Science Reviews, 132, 399431.CrossRefGoogle Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R. et al. 2012. Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical Research: Planets, 117(E12), E004140.CrossRefGoogle Scholar
Story-Maskelyne, N. 1870. On the mineral constituents of meteorites: The Busti aerolite of 1852. Philosophical Transactions of the Royal Society of London, 160, 189214.Google Scholar
Taylor, G. J. and Scott, E. R. D. 2003. Mercury. In Meteorites, Comets and Planets, ed. Davis, A. M.. Oxford: Elsevier-Pergamon, pp. 477485.Google Scholar
Taylor, G. J., Keil, K., Newsom, H., et al. 1988. Magmatism and impact on the aubrite parent body: Evidence from the Norton County enstatite achondrite (abstract). Lunar and Planetary Science Conference, 19, 11851186.Google Scholar
Ulff-Møller, F. 1990. Formation of native iron in sediment-contaminated magma: 1. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochimica et Cosmochimica Acta, 54, 5770.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. 2015. Sulfur solubility in silicate melts under highly reducing conditions relevant to Mercury. Lunar and Planetary Science Conference, 46, 1040.Google Scholar
Wasson, J. T. 1988. The building stones of the planets. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, 622650.Google Scholar
Watters, T. R. and Prinz, M. 1979. Aubrites: Their origin and relationship to enstatite chondrites. Lunar and Planetary Science Conference, 10, 10731093.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., et al. 2015. Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.CrossRefGoogle Scholar
Wetherill, G. W. 1988. Accumulation of Mercury from planetesimals. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 670691.Google Scholar
Wheelock, M. ., Keil, K., Floss, C., et al. 1994. REE geochemistry of oldhamite-dominated clasts from the Norton County aubrite: Igneous origin of oldhamite. Geochimica et Cosmochimica Acta, 58, 449458.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×