Published online by Cambridge University Press: 03 February 2020
We discuss here the choice of solid compounds and materials which best suit various types of applications, focusing mainly on the polarized targets. These materials include hydrogen-rich glassy hydrocarbons and simple cubic crystalline ammonia and lithium hydrides. The glassy hydrocarbons can doped by dissolved stable free radicals, while crystalline materials are doped by radiolytic paramagnetic radicals. The leading application of DNP up till now has been the scattering experiments in high-energy and nuclear physics. Other applications include measurements of slow neutron cross-sections, molecular physics using slow neutrons, nuclear magnetism and other solid-state physics experiments, and spin filters. The use of polarized solids in fusion and in magnetic resonance imaging has also been discussed. The material choice evidently depends strongly not only on the application but also on the goal of the experiment or process which is considered. More recently DNP has been used for the signal enhancement in NMR studies of complex chemical and biochemical molecules. In this context DNP and other enhancement techniques are called by the term “hyperpolarization”.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.