Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T08:22:56.175Z Has data issue: false hasContentIssue false

11 - Design and Optimization of Polarized Target Experiments

Published online by Cambridge University Press:  03 February 2020

Get access

Summary

The figure of merit is defined for some scattering applications; this figure permits the objective comparison of the various target types and polarization methods. The optimization of the polarized target operation in particle physics experiments is briefly discussed before treating the sources of possible false asymmetries due to the target. Finally a series of uses of polarized target techniques beyond particle and nuclear physics experiments is presented. These include notably the coherent small-angle neutron scattering (SANS) used in the studies of biological macromolecules, time–resolved SANS, pseudomagnetism, nuclear magnetic ordering, DNP enhancement of high-resolution NMR spectroscopy, particularly in solid state using the magic angle spinning techniques. The sensitivity and contrast enhancement are briefly discussed for magnetic resonance imaging (MRI) techniques. These use various DNP techniques and radical-free injectable polarized fluid methods, as well as the dissolution DNP techniques.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernard, R., Chaumette, P., Chesny, P., et al., A frozen spin target with three orthogonal polarization directions, Nucl. Instrum. and Methods A 249 (1986) 176184.Google Scholar
Bystricky, J., Chaumette, P., Deregel, J., et al., Measurement of the spin correlation parameter Aoonn and of the analyzing power for pp elastic scattering in the energy range from 0.5 to 0.8 GeV, Nucl. Phys. B 262 (1985) 727743.CrossRefGoogle Scholar
Kunne, R. A., Beard, C. I., Birsa, R., et al., First measurement of the Donon in p(bar)p elastic scattering, Phys. Lett. B 261 (1991) 191196.Google Scholar
Birsa, R., Bradamante, F., Bressan, A., et al., Measurement of the analysing power of the charge-exchange p(bar)p → n(bar)n reaction in the momentum range 546–875 MeV/c at LEAR, Phys. Lett. B 273 (1991) 533539.CrossRefGoogle Scholar
Niinikoski, T. O., Udo, F., “Frozen spin” polarized target, Nucl. Instr. and Meth. 134 (1976) 219233.Google Scholar
Abragam, A., The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961.Google Scholar
Goldman, M., Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford, 1970.Google Scholar
Abragam, A., Goldman, M., Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford, 1982.Google Scholar
Hautle, P., Grüebler, W., van den Brandt, B., et al., Polarization reversal by adiabatic fast passage in a deuterated alcohol, Phys. Rev. B 46 (1992) 65966599.Google Scholar
Hautle, P., Grüebler, W., van den Brant, B., et al., Fast polarization reversal in deuterated alcohol targets by the use of the adiabatic fast passage mechanism, in: Hasegawa, T., et al. (eds.) Proc. 10th Int. Symp. on High-Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1993, pp. 371474.Google Scholar
Hautle, P., Grüebler, W., Konter, J. A., et al., Polarization reversal by adiabatic fast passage in deuterated alcohols, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Berlin, Bonn, 1990, pp. 364368.Google Scholar
Parfenov, L. B., Prudkoglyad, A. F., Rapid reversal of sign of dynamically enhanced polarization in polarized targets, Sov. Phys. JETP 60 (1984) 123127.Google Scholar
Chabaud, V., Kuroda, K., A time-dependent analysis of asymmetry measurements in polarized-target experiments, Nucl. Instrum. Methods 125 (1975) 119124.Google Scholar
Niinikoski, T. O., Optimum measurement and analysis of small polarization asymmetry in high-energy inelastic scattering using a polarized target, Nucl. Instrum. and Meth. 134 (1976) 235241.Google Scholar
Williams, A. B., Taylor, F .J., Electronic Filter Design Handbook, McGraw-Hill, New York, 1995.Google Scholar
Dick, L., Gonidec, A., Gsponer, A., et al., Spin effects in the inclusive reactions π± + p(↑) → π± + anything at 8 GeV/c, Physics Letters B 57 (1975) 9396.CrossRefGoogle Scholar
European Muon Collaboration (EMC), Ashman, J., Badelek, B., et al., A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon proton scattering, Phys. Lett. B 206 (1988) 364370.Google Scholar
European Muon Collaboration (EMC), Ashman, J., Badelek, B., et al., An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons, Nucl. Phys. B 328 (1989) 135.Google Scholar
Ashman, J., Badelek, B., Baum, G., et al., An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons, Nucl. Phys. B 328 (1989) 135.Google Scholar
Spin Muon Collaboration (SMC), Adams, D., Adeva, B., et al., The polarized double-cell target of the SMC, Nucl. Instr. and Meth. A 437 (1999) 2367.CrossRefGoogle Scholar
Spin Muon Collaboration (SMC), Adeva, B., Ahmad, S., et al., Measurement of the spin-dependent structure function g1(x) of the proton, Phys. Lett. B 329 (1994) 399406.Google Scholar
European Muon Collaboration (EMC), Ashman, J., Badelek, B., et al., A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Physik C 57 (1993) 211218.Google Scholar
Abbon, P., Albrecht, E., Alexakhin, V. Y., et al., The COMPASS experiment at CERN, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 577 (2007) 455518.Google Scholar
Shapiro, F. L., Polarized nuclei and neutrons, Polarized Targets and Ion Sources, La Direction de la Physique, CEN Saclay, Saclay, France, 1966, pp. 339356.Google Scholar
Williams, W. G., Polarizing filters, in: Court, G. R., et al. (eds.) Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, Cosener’s House, Abingdon, Chilton, Didcot, UK, 1979, pp. 102105.Google Scholar
Rich, D. R., Gentile, T. R., Smith, T. B., Thompson, A. K., Jones, G. L., Spin exchange optical pumping at pressures near 1 bar for neutron spin filters, Appl. Phys. Lett. 80 (2002) 22102212.CrossRefGoogle Scholar
Schaerpf, O., Comparison of theoretical and experimental behaviour of supermirrors and discussion of limitations, Physica B: Condensed Matter 156157 (1989) 631638.Google Scholar
Masalovich, S., Analysis and design of multilayer structures for neutron monochromators and supermirrors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 722 (2013) 7181.CrossRefGoogle Scholar
Syromyatnikov, V. G., Pusenkov, V. M., New compact neutron supermirror transmission polarizer, Journal of Physics: Conference Series 862 (2017) 012028.Google Scholar
Dawidowski, J., Granada, J. R., Santisteban, J. R., Cantargi, F., Palomino, L. A. R., Appendix – neutron scattering lengths and cross sections, in: Fernandez-Alonso, F., Price, D. L. (eds.) Experimental Methods in the Physical Sciences, Academic Press, 2013, pp. 471528.Google Scholar
Glättli, H., Goldman, M., Neutron scattering, in: Sköld, K., Price, D. L. (eds.) Methods of Experimental Physics Vol. 23 C, Academic Press, New York, 1987.Google Scholar
Stuhrmann, H. B., Scharpf, O., Krumpolc, M., et al., Dynamic nuclear polarization of biological matter, Eur. Biophys. J. 14 (1986) 16.Google Scholar
Knop, W., Nierhaus, K. H., Novotny, V., et al., Polarised neutron scattering from dynamic polarised targets of biological origin, in: Jaccard, S., Mango, S. (eds.) Proc. Int. Workshop on Polarized Sources and Targets, 1986, pp. 741746.Google Scholar
Knop, W., Schink, H.-J., Stuhrmann, H. B., et al., Polarized neutron scattering by polarized protons of bovine serum albumin in deuterated solvent, J. Appl. Crystallography 22 (1989) 352362.Google Scholar
Hayter, J. B., Jenkin, G. T., White, J. W., Polarized-neutron diffraction from spin-polarized protons: a tool in structure determination?, Phys. Rev. Lett. 33 (1974) 696699.Google Scholar
Leslie, M., Crystallographic studies of polarized lanthanum magnesium nitrate (LMN) using polarized neutrons, in: Court, G. R., et al. (eds.) Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, Cosener’s House, Abingdon, Chilton, Didcot, UK, 1979, pp. 106111.Google Scholar
Kohgi, M., Ishida, M., Ishikawa, Y., et al., Small-angle neutron scattering from dynamically polarized hydrogenous materials, Journal of the Physical Society of Japan 56 (1987) 26812688.Google Scholar
Glättli, H., Fermon, C., Eisenkremer, M., Pinot, M., Small angle neutron scattering with nuclear polarization on polymers, J. Phys. France 50 (1989) 23752387.Google Scholar
Knop, W., Nierhaus, K. H., Novotny, V., et al., Spin Contrast Variation – a New Tool in Macromolecular Structure Research, GKSS Geesthacht Report 1988.Google Scholar
Knop, W., Hirai, M., Schink, H.-J., et al., A new polarized target for neutron scattering studies on biomolecules: first results on apoferritin and the deuterated 50S subunit of ribosomes, J. Appl. Crystallography 25 (1992) 155165.Google Scholar
Stuhrmann, H., Contrast variation in X-ray and neutron scattering, Journal of Applied Crystallography 40 (2007) 2327.Google Scholar
Stuhrmann, H. B., Contrast variation application in small-angle neutron scattering experiments, Journal of Physics: Conference Series 351 (2012) 012002.Google Scholar
van den Brandt, B., Glättli, H., Grillo, I., et al., Time-resolved nuclear spin-dependent small-angle neutron scattering from polarised proton domains in deuterated solutions, The European Physical Journal B – Condensed Matter and Complex Systems 49 (2006) 157165.CrossRefGoogle Scholar
Oliver, Z., Hélène, M. J., Heinrich, B. S., Time-resolved proton polarisation (TPP) images tyrosyl radical sites in bovine liver catalase, Journal of Physics: Conference Series 848 (2017) 012002.Google Scholar
Stuhrmann, H. B., Time-resolved polarized neutron scattering from dynamic polarized nuclear spin targets, Journal of Physics: Conference Series 351 (2012) 012003.Google Scholar
Noda, Y., Koizumi, S., Dynamic nuclear polarization apparatus for contrast variation neutron scattering experiments on iMATERIA spectrometer at J-PARC, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 923 (2019) 127133.Google Scholar
Baryshevskii, V. G., Podgoretskii, M. I., Nuclear precession of neutrons, Zh. Eksp.Teor. Fiz. (Sov. Phys. JETP 20 (1965) 704) 47 (1964) 10501054.Google Scholar
Tsulaia, M. I., Neutron nuclear precession—nuclear pseudomagnetism, Phys. Atom. Nuclei 77 (2014) 13211333.Google Scholar
Pokazan’ev, V. G., Skrotskiĭ, G. V., Pseudomagnetism, Soviet Physics Uspekhi 22 (1979) 943959.Google Scholar
Abragam, A., Bacchella, G. L., Glättli, H., et al., Résonance nucléaire “pseudo-magnetique” du neutron induite par un champ nucléaire de radiofréquence, C.R. Acad. Sci. B 274 (1972) 423433.Google Scholar
Glättli, H., Bacchella, G. L., Fourmond, M., et al., Experimental values of spin dependent nuclear scattering lengths of slow neutrons, Journal de Physique 40 (1979) 629634.Google Scholar
Marks, J., Wenckebach, W. T., Poulis, N. J., Magnetic ordering of proton spins in Ca(OH)2, Physica B 96 (1979) 337340.Google Scholar
Chapellier, M., Goldman, M., Chau, V. H., Abragam, A., Production et observation d’un état antiferromagnétique nucléaire, C.R. Acad. Sci. 268 (1969) 15301533.Google Scholar
Chapellier, M., Goldman, M., Chau, V. H., Abragam, A., Production and observation of a nuclear antiferromagnetic state, J. Appl. Phys. 41 (1970) 849853.Google Scholar
Roinel, Y., Bouffard, V., Fermon, C., et al., Phase diagrams in ordered nuclear spins in LiH: a new phase at positive temperature?, J. Physique 48 (1987) 837845.Google Scholar
Roinel, Y., Bachella, G. L., Avenel, O., et al., Neutron diffraction study of nuclear magnetic ordered phases and domains in lithium hydride, J. Physique Lett. 41 (1980) 123125.Google Scholar
Roinel, Y., Bouffard, V., Bachella, G. L., et al., First study of nuclear antiferromagnetism by neutron diffraction, Phys. Rev. Lett. 41 (1978) 15721574.Google Scholar
Van der Zon, C. M., Van Velzen, G. D., Wenckebach, W. T., Nuclear magnetic ordering in Ca(OH)2. III. Experimental determination of the critical temperature, J. Physique 51 (1990) 14791488.Google Scholar
Gutowsky, H. S., Pake, G. E., Structural investigations by means of nuclear magnetism. II. hindered rotation in solids, J. Chem. Phys. 18 (1950) 162170.Google Scholar
Lowe, I. J., Free induction decays of rotating solids, Phys. Rev. Lett. 285 (1959) 285287.Google Scholar
Andrew, E. R., Bradbury, A., Eades, R. G., Nuclear magnetic resonance spectra from a crystal rotated at high speed, Nature 182 (1958) 16591659.Google Scholar
Slichter, C. P., Principles of Magnetic Resonance, 3rd ed., Springer-Verlag, Berlin, 1990.Google Scholar
Samoson, A., Lippmaa, E., Pines, A., High resolution solid-state N.M.R., Molecular Physics 65 (1988) 10131018.Google Scholar
Wind, R. A., Duijvestijn, M. J., van der Lugt, C., Manenschijn, A., Vriend, J., Applications of dynamic nuclear polarization in 13 C NMR in solids, Progress in Nuclear Magnetic Resonance Spectroscopy 17 (1985) 3367.Google Scholar
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M., Corzilius, B., Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR, Progress in Nuclear Magnetic Resonance Spectroscopy 102103 (2017) 120195.CrossRefGoogle ScholarPubMed
Becerra, L. R., Gerfen, G. J., Bellew, B. F., et al., A spectrometer for dynamic nuclear polarization and electron paramagnetic resonance at high frequencies, Journal of Magnetic Resonance, Series A 117 (1995) 2840.CrossRefGoogle Scholar
Gerfen, G. J., Becerra, L. R., Hall, D. A., et al., High frequency (140 GHz) dynamic nuclear polarization: polarization transfer to a solute in frozen aqueous solution, The Journal of Chemical Physics 102 (1995) 94949497.Google Scholar
Song, C., Hu, K.-N., Joo, C.-G., Swager, T. M., Griffin, R. G., TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media, Journal of the American Chemical Society 128 (2006) 1138511390.Google Scholar
Krummenacker, J. G., Denysenkov, V. P., Terekhov, M., Schreiber, L. M., Prisner, T. F., DNP in MRI: an in-bore approach at 1.5 T, J. Magn. Res. 215 (2012) 9499.Google Scholar
McCarney, E. R., Armstrong, B. D., Lingwood, M. D., Han, S., Hyperpolarized water as an authentic magnetic resonance imaging contrast agent, Proceedings of the National Academy of Sciences 104 (2007) 17541759.Google Scholar
McCarney, E. R., Han, S., Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging, J. Magn. Res. 190 (2008) 307315.CrossRefGoogle ScholarPubMed
Ebert, S., Amar, A., Bauer, C., et al., A mobile DNP polarizer for continuous flow applications, Applied Magnetic Resonance 43 (2012) 195206.Google Scholar
Ardenkjaer-Larsen, J. H., On the present and future of dissolution-DNP, J. Magn. Res. 264 (2016) 312.Google Scholar
Jähnig, F., Kwiatkowski, G., Däpp, A., et al., Dissolution DNP using trityl radicals at 7 T field, Physical Chemistry Chemical Physics 19 (2017) 1919619204.CrossRefGoogle ScholarPubMed
Capozzi, A., Patel, S., Gunnarsson, C. P., et al., Efficient hyperpolarization of U-13 C-glucose using narrow-line UV-generated labile free radicals, Angewandte Chemie International Edition 58 13341339.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×