Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T16:44:12.780Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 July 2020

Moritz Wolf
Affiliation:
Eidgenössische Technische Hochschule Zürich
Jean-Marc Bielser
Affiliation:
Merck Serono SA
Massimo Morbidelli
Affiliation:
Eidgenössische Technische Hochschule Zürich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Perfusion Cell Culture Processes for Biopharmaceuticals
Process Development, Design, and Scale-up
, pp. 174 - 197
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Absi, N. R., Kenty, B. M., Cuellar, M. E., Borys, M. C., Sakhamuri, S., Strachan, D. J., Hausladen, M. C. & Li, Z. J. (2011), ‘Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe’, Biotechnology and Bioengineering 108(5), 12151221.Google Scholar
Ahmed, S. U., Ranganathan, P., Pandey, A. & Sivaraman, S. (2010), ‘Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor’, Journal of Bioscience and Bioengineering 109(6), 588597.CrossRefGoogle ScholarPubMed
Al-Rubeai, M. (2015), Animal Cell Culture, Vol. 9, 9th edn, Spinger.Google Scholar
Allison, G., Cain, Y. T., Cooney, C., Garcia, T., Bizjak, T. G., Holte, O., Jagota, N., Komas, B., Korakianiti, E., Kourti, D., Madurawe, R., Morefield, E., Montgomery, F., Nasr, M., Randolph, W., Robert, J. L., Rudd, D. & Zezza, D. (2015), ‘Regulatory and quality considerations for continuous manufacturing May 20–21, 2014 continuous manufacturing symposium’, Journal of Pharmaceutical Sciences 104(3), 803812.Google Scholar
Amanullah, A., McFarlane, C. M., Emery, A. N. & Nienow, A. W. (2001), ‘Scale-down model to simulate spatial pH variations in large-scale bioreactors’, Biotechnology and Bioengineering 73(5), 390399.CrossRefGoogle ScholarPubMed
Ansorge, S., Esteban, G. & Schmid, G. (2010), ‘On-line monitoring of responses to nutrient feed additions by multi-frequency permittivity measurements in fed-batch cultivations of CHO cells’, Cytotechnology 62(2), 121132.CrossRefGoogle ScholarPubMed
Antonia, S. J., Larkin, J. & Ascierto, P. A. (2014), ‘Immuno-oncology combinations: A review of clinical experience and future prospects’, Clinical Cancer Research 20(24), 62586268.CrossRefGoogle ScholarPubMed
Arnold, L., Lee, K., Rucker-Pezzini, J. & Lee, J. H. (2018), ‘Implementation of fully integrated continuous antibody processing: Effects on productivity and COGm’, Biotechnology Journal 14(2), 110.Google ScholarPubMed
Arnold, S. A., Crowley, J., Woods, N., Harvey, L. M. & McNeil, B. (2003), ‘In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation’, Biotechnology and Bioengineering 84(1), 1319.Google Scholar
Assirelli, M., Bujalski, W., Eaglesham, A. & Nienow, A. (2005), ‘Intensifying micromixing in a semi-batch reactor using a Rushton turbine’, Chemical Engineering Science 60(8–9), 23332339.Google Scholar
Atkins, P., De Paula, J. & Friedmand, R. (2010), Physical Chemistry, 9th edn.Google Scholar
Bacchin, P., Aimar, P. & Field, R. W. (2006), ‘Critical and sustainable fluxes: Theory, experiments and applications’, Journal of Membrane Science 281(1–2), 4269.CrossRefGoogle Scholar
Bailey, J. E. & Ollis, D. F. (1986), ‘Fundamentals of Biochemical engineering’.Google Scholar
Bandyopadhyay, B., Humphrey, A. E. & Taguchi, H. (1967), ‘Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems’, Biotechnology and Bioengineering 9(4), 533544.Google Scholar
Baptista, R. P., Fluri, D. A. & Zandstra, P. W. (2013), ‘High density continuous production of murine pluripotent cells in an acoustic perfused bioreactor at different oxygen concentrations.’, Biotechnology and Bioengineering 110(2), 648655.Google Scholar
Barbaroux, M., Gerighausen, S. & Hackel, H. (2014), ‘An approach to quality and security of supply for single-use bioreactors’, Advances in Biochemical Engineering/Biotechnology 138, 239272.Google Scholar
Barberis, M., Klipp, E., Vanoni, M. & Alberghina, L. (2007), ‘Cell size at S phase initiation: An emergent property of the G1/S network’, PLoS Computational Biology 3(4), e64.Google Scholar
Barrett, S., Franklin, J., Stangl, M., Cvetkovic, A. & He, W. (2018), ‘Intensification of a multi-product perfusion platform managing growth characteristics at high cell density for maximized volumetric productivity’, Cell Culture Engineering XVI.Google Scholar
Barrett, T. A., Wu, A., Zhang, H., Levy, M. S. & Lye, G. J. (2010), ‘Microwell engineering characterization for mammalian cell culture process development’, Biotechnology and Bioengineering 105(2), 260275.CrossRefGoogle ScholarPubMed
Bartholomew, D. J. (2010), ‘Principal components analysis’, in International Encyclopedia of Education, Vol. 2, Elsevier, pp. 374–377.Google Scholar
Bates, R. L., Fondy, P. L. & Fenic, J. G. (1966), ‘Impeller characteristics and power’, in J. Uh L, VW; Gray, ed., Mixing: Theory and Practice 1, Vol. 1, pp. 111178.Google Scholar
Baur, D., Angarita, M., Müller-Späth, T. & Morbidelli, M. (2015), ‘Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture’, Biotechnology Journal 11(1), 135145.CrossRefGoogle ScholarPubMed
Baur, D., Angarita, M., Müller-Späth, T., Steinebach, F. & Morbidelli, M. (2016), ‘Comparison of batch and continuous multi-column protein A capture processes by optimal design’, Biotechnology Journal 11(7), 920931.Google Scholar
Bausch, M., Schultheiss, C. & Sieck, J. B. (2018), ‘Recommendations for comparison of productivity between fed-batch and perfusion processes’, Biotechnology Journal 14(2), 14.Google Scholar
Beier, S. P. & Jonsson, G. (2009), ‘Critical flux determination by flux-stepping’, Wiley Inter-Science 56(7), 17391747.Google Scholar
Bendiak, B. & Schachter, H. (1987), ‘Control of glycoprotein synthesis: Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver’, Journal of Biological Chemistry 262(12), 57845790.CrossRefGoogle ScholarPubMed
Benz, G. T. (2011), ‘Bioreactor design for chemical engineers’, American Institute of Chemical Engineers 107, 2126.Google Scholar
Beresford, T. P., Fitzsimons, N. A., Brennan, N. L. & Cogan, T. M. (2001), ‘Recent advances in cheese microbiology’, International Dairy Journal 11, 254274.Google Scholar
Berg, J. M., Tymoczko, J. L. & Stryer, L. (2007), Biochemistry, 6th edn, Sara Tenney.Google Scholar
Berg, P. (1974), ‘Potential biohazards of recombinant DNA molecules’, Science 1114(1973), 19731974.Google Scholar
Berg, P., Baltimore, D., Brenner, S., Roblin, R. & Singer, M. (1975), ‘Summary statement of the Asilomar conference on recombinant DNA molecules’, Proceedings of the National Academy of Sciences of the United States of America 72, 19811984.CrossRefGoogle ScholarPubMed
Berg, P. & Mertz, J. E. (2010), ‘Personal reflections on the origins and emergence of recombinant DNA technology’, Genetics 184(1), 917.Google Scholar
Berry, B. N., Dobrowsky, T. M., Timson, R. C., Kshirsagar, R., Ryll, T. & Wiltberger, K. (2016), ‘Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture’, Biotechnology Progress 32(1), 224234.CrossRefGoogle ScholarPubMed
Bertrand, V., Karst, D. J. & Morbidelli, M. (2019), ‘Transcriptome and proteome analysis of steady state in a perfusion CHO cell culture process’, Biotechnology and Bioengineering pp. 1–14.Google Scholar
Bertrand, V., Vogg, S., Villiger, T. K., Stettler, M., Broly, H., Soos, M. & Morbidelli, M. (2018), ‘Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform’, Journal of Biotechnology 279, 2736.Google Scholar
Beyer, B., Schuster, M., Jungbauer, A. & Lingg, N. (2018), ‘Microheterogeneity of recombinant antibodies: Analytics and functional impact’, Biotechnology Journal 13(1), 111.Google Scholar
Bibila, T. A. & Robinson, D. K. (1995), ‘In pursuit of the optimal fed-batch process for monoclonal antibody production’, Biotechnology Progress 11(1), 113.CrossRefGoogle ScholarPubMed
Bielser, J.-M., Chappuis, L., Xiao, Y., Souquet, J., Broly, H. & Morbidelli, M. (2019a), ‘Perfusion cell culture for the production of conjugated recombinant fusion proteins reduces clipping and quality heterogeneity compared to batch-mode processes’, Journal of Biotechnology 302, 2631.Google Scholar
Bielser, J.-M., Domaradzki, J., Souquet, J., Broly, H. & Morbidelli, M. (2019b), ‘Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors’, Biotechnology Progress 35(3), e2790.CrossRefGoogle ScholarPubMed
Bielser, J.-M., Wolf, M., Souquet, J., Broly, H. & Morbidelli, M. (2018), ‘Perfusion mammalian cell culture for recombinant protein manufacturing: A critical review’, Biotechnology Advances 36(4), 13281340.Google Scholar
Bödeker, B., Potere, E. & Dove, G. (2013), ‘Production of recombinant factor VIII from perfusion cultures: II. Large-scale purification’, in Spier, R. E., Griffiths, J. B. & Berthold, W., eds, Animal Cell Technology, Butterworth-Heinemann, pp. 584–590.Google Scholar
Böhm, E., Voglauer, R., Steinfellner, W., Kunert, R., Borth, N. & Katinger, H. (2004), ‘Screening for improved cell performance: Selection of subclones with altered production kinetics or improved stability by cell sorting’, Biotechnology and Bioengineering 88(6), 699706.Google Scholar
Bonham-Carter, J. (2018), ‘High productivity harvest – Intensify harvest and displace depth filtration in fed-batch cell culture’, in BioProcess International.Google Scholar
Bonham-Carter, J. & Shevitz, J. (2011), ‘A brief history of perfusion’, BioProcess International 9(9), 2430.Google Scholar
Bosco, B., Paillet, C., Amadeo, I., Mauro, L., Orti, E. & Forno, G. (2017), ‘Alternating flow filtration as an alternative to internal spin filter based perfusion process: Impact on productivity and product quality’, Biotechnology Progress 33(4), 15.CrossRefGoogle ScholarPubMed
Brányik, T., Vicente, A. A., Dostálek, P. & Teixeira, J. A. (2005), ‘Continuous beer fermentation using immobilized yeast cell bioreactor systems’, Biotechnology Progress 21(3), 653663.Google Scholar
Breinlinger, K. J., Hobbs, E. D., Malleo, D., Nevill, J. T. & White, M. P. (2018), ‘Movement and selection of micro-objects in a microfluidic apparatus’. U.S. Patent 0099282 A1.Google Scholar
Browne, S. M. & Al-Rubeai, M. (2007), ‘Selection methods for high-producing mammalian cell lines’, Trends in Biotechnology 25(9), 425432.Google Scholar
Brühlmann, D., Jordan, M., Hemberger, J., Sauer, M., Stettler, M. & Broly, H. (2015), ‘Tailoring recombinant protein quality by rational media design’, Biotechnology Progress 31(3), 615629.Google Scholar
Brühlmann, D., Muhr, A., Parker, R., Vuillemin, T., Bucsella, B., Kalman, F., Torre, S., La Neve, F., Lembo, A., Haas, T., Sauer, M., Souquet, J., Broly, H., Hemberger, J. & Jordan, M. (2017a), ‘Cell culture media supplemented with raffinose reproducibly enhances high mannose glycan formation’, Journal of Biotechnology 252, 3242.Google Scholar
Brühlmann, D., Sokolov, M., Butté, A., Sauer, M., Hemberger, J., Souquet, J., Broly, H. & Jordan, M. (2017b), ‘Parallel experimental design and multivariate analysis provides efficient screening of cell culture media supplements to improve Biosimilar product quality’, Biotechnology and Bioengineering 114(7), 14481458.Google Scholar
Brunner, M., Doppler, P., Klein, T., Herwig, C. & Fricke, J. (2018), ‘Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes’, Engineering in Life Sciences 18(3), 204214.Google Scholar
Buckley, K. & Ryder, A. G. (2017), ‘Applications of Raman spectroscopy in biopharmaceutical manufacturing: A short review’, Applied Spectroscopy 71(6), 10851116.Google Scholar
Bujalski, W., Nienow, A., Chatwin, S. & Cooke, M. (1987), ‘The dependency on scale of power numbers of Rushton disc turbines’, Chemical Engineering Science 42(2), 317326.Google Scholar
Bunnak, P., Allmendinger, R., Ramasamy, S. V., Lettieri, P. & Titchener-Hooker, N. J. (2016), ‘Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs’, Biotechnology Progress 32(5), 13241335.Google Scholar
Cao, D.-S., Xu, Q.-S., Liang, Y.-Z., Chen, X. & Li, H.-D. (2010), ‘Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine’, Journal of Chemometrics 24, 584595.CrossRefGoogle Scholar
Caplice, E. & Fitzgerald, G. F. (1999), ‘Food fermentations: Role of microorganisms in food production and preservation’, International Journal of Food Microbiology 50(1–2), 131149.Google Scholar
Carrondo, M. J., Alves, P. M., Carinhas, N., Glassey, J., Hesse, F., Merten, O. W., Micheletti, M., Noll, T., Oliveira, R., Reichl, U., Staby, A., Teixeira, A. P., Weichert, H. & Mandenius, C. F. (2012), ‘How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology?’, Biotechnology Journal 7(12), 15221529.CrossRefGoogle ScholarPubMed
Carvell, J. P. & Dowd, J. E. (2006), ‘On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance’, Cytotechnology 50(1–3), 3548.Google Scholar
Cervera, A. E., Petersen, N., Lantz, A. E., Larsen, A. & Gernaey, K. V. (2009), ‘Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation’, Biotechnology Progress 25(6), 15611581.Google Scholar
Chakrabarty, A., Buzzard, G. T. & Rundell, A. E. (2013), ‘Model-based design of experiments for cellular processes’, Wiley Interdisciplinary Reviews: Systems Biology and Medicine 5(2), 181203.Google Scholar
Chandrasekharan, K. & Calderbank, P. (1981), ‘Further observations on the scale-up of aerated mixing vessels’, Chemical Engineering Science 36(5), 818823.Google Scholar
Chen, C., Wong, H. E. & Goudar, C. T. (2018), ‘Upstream process intensification and continuous manufacturing’, Current Opinion in Chemical Engineering 22, 191198.Google Scholar
Chen, L., Nguang, S. K., Chen, X. D. & Li, X. M. (2004), ‘Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms’, Biochemical Engineering Journal 22(1), 5161.CrossRefGoogle Scholar
Chen, T.-T. (2013), ‘Immuno-oncology’, Journal for ImmunoTherapy of Cancer 1(18), 19.CrossRefGoogle ScholarPubMed
Chisti, Y. (2000), ‘Animal-cell damage in sparged bioreactors’, Trends in Biotechnology 18(10), 420432.Google Scholar
Chisti, Y. (2001), ‘Hydrodynamic damage to animal cells’, Critical Reviews in Biotechnology 21(2), 67110.Google Scholar
Chotteau, V. (2017), ‘Process development in screening scale bioreactors and perspectives for very high cell density perfusion’, Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series. p. 10691.Google Scholar
Chu, L. & Robinson, D. K. (2001), ‘Industrial choices for protein production by large-scale cell culture’, Current Opinion in Biotechnology 12(2), 180187.Google Scholar
Chugh, P. & Roy, V. (2014), ‘Biosimilars: Current scientific and regulatory considerations’, Current Clinical Pharmacology 9(1), 5363.Google Scholar
Chuppa, S., Tsai, Y. S., Yoon, S., Shackleford, S., Rozales, C., Bhat, R., Tsay, G., Matanguihan, C., Konstantinov, K. & Naveh, D. (1997), ‘Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells’, Biotechnology and Bioengineering 55(2), 328338.Google Scholar
Clincke, M. F., Mölleryd, C., Samani, P. K., Lindskog, E., Fäldt, E., Walsh, K. & Chotteau, V. (2013b), ‘Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactor, Part II: Applications for antibody production and cryopreservation’, Biotechnology Progress 29(3), 768777.Google Scholar
Clincke, M. F., Mölleryd, C., Zhang, Y., Lindskog, E., Walsh, K. & Chotteau, V. (2011), ‘Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor’, BMC Proceedings 5(8), 105.CrossRefGoogle ScholarPubMed
Clincke, M. F., Mölleryd, C., Zhang, Y., Lindskog, E., Walsh, K. & Chotteau, V. (2013a), ‘Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor, Part I: Effect of the cell density on the process’, Biotechnology Progress 29(3), 754767.Google Scholar
Coffman, J., Lin, H., Wang, S., Godfrey, S., Orozco, R., Yildirim, S., Salm, J., Hiller, G., Gagnon, M., Farner, R., Kottmeier, B. & Sullivan, D. (2017), ‘Balancing continuous, integrated, and batch processing’, in Integrated Continuous Biomanufacturing III.Google Scholar
Cohen, S. N., Chang, A. C. Y. & Hsu, L. (1972), ‘Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA’, Proceedings of the National Academy of Sciences of the United States of America 69, 21102114.Google Scholar
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. (1973), ‘Construction of biologically functional bacterial plasmids in vitro’, Proceedings of the National Academy of Sciences of the United States of America 70(11), 32403244.Google Scholar
Colosimo, A., Goncz, K., Holmes, A., Kunzelmann, K., Bennet, M. & Gruenert, D. (2000), ‘Transfer and expression of foreign genes in mammalian cells’, BioTechniques 29(2), 314331.Google Scholar
Coronel, J., Klausing, S., Heinrich, C., Noll, T., Figueredo-Cardero, A. & Castilho, L. R. (2016), ‘Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations’, Biochemical Engineering Journal 114, 101109.Google Scholar
Croughan, M. S., Konstantinov, K. B. & Cooney, C. (2015), ‘The future of industrial bioprocessing: Batch or continuous?’, Biotechnology and Bioengineering 112(4), 648651.Google Scholar
Davey, C. L., Davey, H. M., Kell, D. B. & Todd, R. W. (1993), ‘Introduction to the dielectric estimation of cellular biomass in real time, with special emphasis on measurements at high volume fractions’, Analytica Chimica Acta 279(1), 155161.Google Scholar
Davis, D., Delia, S., Safc, L., Ross, S., Lyons, D. & Hodzic, I. (2015), ‘Modeling perfusion at small scale using ambr© 15’, in ECI Digital Archives.Google Scholar
De Jesus, M. J., Girard, P., Bourgeois, M., Baumgartner, G., Jacko, B., Amstutz, H. & Wurm, F. M. (2004), ‘TubeSpin satellites: A fast track approach for process development with animal cells using shaking technology’, Biochemical Engineering Journal 17(3), 217223.Google Scholar
Demain, A. L. (2007), ‘The business of biotechnology’, Industrial Biotechnology 3(3), 269283.Google Scholar
Deschênes, J.-S., Desbiens, A., Perrier, M. & Kamen, A. (2006), ‘Use of cell bleed in a high cell density perfusion culture and multivariable control of biomass and metabolite concentrations’, Asia-Pacific Journal of Chemical Engineering 1(1–2), 8291.CrossRefGoogle Scholar
Deshpande, N. S. & Barigou, M. (1999), ‘Performance characteristics of novel mechanical foam breakers in a stirred tank reactor’, Journal of Chemical Technology and Biotechnology 987(May), 979987.Google Scholar
Deshpande, R. R. & Heinzle, E. (2004), ‘On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors’, Biotechnology Letters 26(9), 763767.Google Scholar
D’Este, M., Alvarado-Morales, M. & Angelidaki, I. (2017), ‘Amino acids production focusing on fermentation technologies: A review’, Biotechnology Advances 36(1), 1425.Google Scholar
Devi, T. T. & Kumar, B. (2017), ‘Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller’, Engineering Science and Technology, an International Journal 20(2), 730737.Google Scholar
Dhir, S., Morrow, K. J., Rhinehart, R. R. & Wiesner, T. (2000), ‘Dynamic optimization of hybridoma growth in a fed-batch bioreactor’, Biotechnology and Bioengineering 67(2), 197205.Google Scholar
Dorival-García, N. & Bones, J. (2017), ‘Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry’, Journal of Chromatography A 1512, 5160.Google Scholar
Dowd, J. E., Jubb, A., Kwok, K. E. & Piret, J. M. (2003), ‘Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates’, Cytotechnology 42(1), 3545.Google Scholar
Dowd, J. E., Weber, I., Rodriguez, B., Piret, J. M. & Kwok, K. E. (1999), ‘Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies’, Biotechnology and Bioengineering 63(4), 484492.Google Scholar
Du, Z., Treiber, D., Mccarter, J. D., Fomina-Yadlin, D., Saleem, R. A., Mccoy, R. E., Zhang, Y., Tharmalingam, T., Leith, M., Follstad, B. D., Dell, B., Grisim, B., Zupke, C., Heath, C., Morris, A. E. & Reddy, P. (2015), ‘Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures’, Biotechnology and Bioengineering 112(1), 141155.Google Scholar
Ducommun, P., Bolzonella, I., Marison, I., von Stockar, U. & Rhiel, M. (2002), ‘Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements’, Biotechnology and Bioengineering 77(2), 174185.Google Scholar
Ducommun, P., Bolzonella, I., Rhiel, M., Pugeaud, P., Von Stockar, U. & Marison, I. W. (2001a), ‘On-line determination of animal cell concentration’, Biotechnology and Bioengineering 72(5), 515522.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Duetz, W. A. (2007), ‘Microtiter plates as mini-bioreactors: Miniaturization of fermentation methods’, Trends in Microbiology 15(10), 469475.Google Scholar
Ecker, D. M., Jones, S. D. & Levine, H. L. (2015), ‘The therapeutic monoclonal antibody market’, mAbs 7(1), 914.Google Scholar
Eibl, R., Kaiser, S., Lombriser, R. & Eibl, D. (2010), ‘Disposable bioreactors: The current state-of-the-art and recommended applications in biotechnology’, Applied Microbiology and Biotechnology 86(1), 4149.Google Scholar
Eleftherios, P. (1991), ‘Media additives for protecting freely suspended animal cells against agitation and aeration damage’, Tibtech 9, 316324.Google Scholar
Eon-Duval, A., Gleixner, R., Valax, P., Soos, M., Neunstoecklin, B., Morbidelli, M. & Broly, H. (2013), ‘Quality by design applied to a Fc-fusion protein: A case studys’, in Therapeutic Fc-Fusion Proteins, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp. 155189.Google Scholar
Eon-Duval, A., Valax, P., Solacroup, T., Broly, H., Gleixner, R., Strat, C. L. & Sutter, J. (2012), ‘Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: Towards a global multi⣳step design space’, Journal of Pharmaceutical Sciences 101(10), 36043618.Google Scholar
Escandar, G. M., Damiani, P. C., Goicoechea, H. C. & Olivieri, A. C. (2006), ‘A review of multivariate calibration methods applied to biomedical analysis’, Microchemical Journal 82(1), 2942.Google Scholar
Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B. & Lewis, I. R. (2017), ‘Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing’, Analytical and Bioanalytical Chemistry 409(3), 637649.CrossRefGoogle ScholarPubMed
Feidl, F., Vogg, S., Wolf, M., Podobnik, M., Ruggeri, C., Ulmer, N., … & Morbidelli, M. (2020). Process-wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnology and Bioengineering.Google Scholar
Feidl, F. (2019), Digitalization Platform and Supervisory Control of a Continuous Integrated, PhD thesis, ETH Zürich.Google Scholar
Feidl, F., Garbellini, S., Vogg, S., Sokolov, M., Souquet, J., Broly, H., Butté, A. & Morbidelli, M. (2019), ‘A new flow cell and chemometric protocol for implementing in⣳line Raman spectroscopy in chromatography’, Biotechnology Progress (March), e2847.Google Scholar
Finn, B., Harvey, L. M., McNeil, B. & McNeil, B. (2006), ‘Near-infrared spectroscopic monitoring of biomass, glucose, ethanol and protein content in a high cell density baker’s yeast fed-batch bioprocess’, Yeast 23(7), 507517.Google Scholar
Fisher, A. C. C., Kamga, M.-H. H., Agarabi, C., Brorson, K., Lee, S. L. L. & Yoon, S. (2018), ‘The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing’, Trends in Biotechnology 37(3), 253267.Google Scholar
Fleischaker, R. J. & Sinskey, A. J. (1981), ‘Oxygen demand and supply in cell culture’, European Journal of Applied Microbiology and Biotechnology 12(4), 193197.Google Scholar
Fleming, A. (1929), ‘On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929’, British Journal of Experimental Pathology 10(3), 226236.Google Scholar
Fogler, H. S. (2008), Elements of Chemical Reaction Engineering, 5th edn, Pearson Education.Google Scholar
Frenzel, A., Hust, M. & Schirrmann, T. (2013), ‘Expression of recombinant antibodies’, Frontiers in Immunology 4(July), 120.Google Scholar
Froment, G. F., Bischoff, K. B. & De Wilde, J. (1990), Chemical Reactor Analysis and Design, Vol. 2, Wiley New York.Google Scholar
Gagnon, M., Hiller, G., Luan, Y. T., Kittredge, A., Defelice, J. & Drapeau, D. (2011), ‘High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures’, Biotechnology and Bioengineering 108(6), 13281337.Google Scholar
García-Muñoz, S. & Polizzi, M. (2012), ‘WSPLS: A new approach towards mixture modeling and accelerated product development’, Chemometrics and Intelligent Laboratory Systems 114, 116121.Google Scholar
Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B. & Kamen, A. (1996), ‘Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells’, Cytotechnology 22(1), 5363.Google Scholar
Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. (2015), ‘Review of multidimensional data processing approaches for Raman and infrared spectroscopy’, EPJ Techniques and Instrumentation 2(1), 8.Google Scholar
Glassey, J., Gernaey, K. V., Clemens, C., Schulz, T. W., Oliveira, R., Striedner, G. & Mandenius, C.-F. (2011), ‘Process analytical technology (PAT) for biopharmaceuticals.’, Biotechnology Journal 6(4), 369377.Google Scholar
Glassey, J. & von Stosch, M., eds (2018), Hybrid Modeling in Process Industries, CRC Press.Google Scholar
Godawat, R., Konstantinov, K., Rohani, M. & Warikoo, V. (2015), ‘End-to-end integrated fully continuous production of recombinant monoclonal antibodies’, Journal of Biotechnology 213, 1319.Google Scholar
Godoy Silva, R., Berdugo, C. & Chalmers, J. J. (2010), ‘Aeration, mixing, and hydrodynamics, animal cell bioreactors’, in Encyclopedia of Industrial Biotechnology, American Cancer Society, pp. 127.Google Scholar
Goh, P. S., Ismail, A. F. & Ng, B. C. (2017), ‘Raman spectroscopy’, Membrane Characterization 72(12), 3146.Google Scholar
Goletz, S., Stahn, R. & Kreye, S. (2016), Patent WO 2016/193083 A1.Google Scholar
Gomez, N., Ambhaikar, M., Zhang, L., Huang, C.-J. J., Barkhordarian, H., Lull, J. & Gutierrez, C. (2017), ‘Analysis of tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture’, Biotechnology Progress 33(2), 490499.Google Scholar
Gorenflo, V. M., Angepat, S., Bowen, B. D. & Piret, J. M. (2003), ‘Optimization of an acoustic cell filter with a novel air-backflush system’, Biotechnology Progress 19(1), 3036.CrossRefGoogle ScholarPubMed
Goudar, C., Stevens, J., Le, K., Gupta, S., Tan, C. & Munro, T. (2017), ‘Enabling next-generation cell line development using continuous perfusion and nanofluidic technologiese’, in Integrated Continuous Biomanufacturing III.Google Scholar
Goudar, C. T., Matanguihan, R., Long, E., Cruz, C., Zhang, C., Piret, J. M. & Konstantinov, K. B. (2007), ‘Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures’, Biotechnology and Bioengineering 96(6), 11071117.Google Scholar
Goudar, C. T., Piret, J. M. & Konstantinov, K. B. (2011), ‘Estimating cell specific oxygen uptake and carbon dioxide production rates for mammalian cells in perfusion culture’, Biotechnology Progress 27(5), 13471357.Google Scholar
Gramer, M. J., Eckblad, J. J., Donahue, R., Brown, J., Shultz, C., Vickerman, K., Priem, P., van den Bremer, E. T., Gerritsen, J. & van Berkel, P. H. (2011), ‘Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose’, Biotechnology and Bioengineering 108(7), 15911602.Google Scholar
Gray, D. R., Chen, S., Howarth, W., Inlow, D. & Maiorella, B. L. (1996), ‘CO2 in large-scale and high-density CHO cell perfusion culture’, Cytotechnology 22(1–3), 6578.CrossRefGoogle ScholarPubMed
Grillberger, L., Kreil, T. R., Nasr, S. & Reiter, M. (2009), ‘Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells’, Biotechnology Journal 4(2), 186201.Google Scholar
Gunther, J., Conner, J. & Seborg, D. (2007), ‘Fault detection and diagnosis in an industrial fed-batch cell culture process’, Biotechnology Progress 23(4), 851857.Google Scholar
Hammond, M., Marghitoiu, L., Lee, H., Perez, L., Rogers, G., Nashed-Samuel, Y., Nunn, H. & Kline, S. (2014), ‘A cytotoxic leachable compound from single-use bioprocess equipment that causes poor cell growth performance’, Biotechnology Progress 30(2), 332337.Google Scholar
Heidemann, R., Lünse, S., Tran, D. & Zhang, C. (2010), ‘Characterization of cell-banking parameters for the cryopreservation of mammalian cell lines in 100-mL cryobags’, Biotechnology Progress 26(4), 11541163.Google Scholar
Heidemann, R., Mered, M., Wang, D. Q., Gardner, B., Zhang, C., Michaels, J., Henzler, H. J., Abbas, N. & Konstantinov, K. (2002), ‘A new seed-train expansion method for recombinant mammalian cell lines’, Cytotechnology 38(1–3), 99108.CrossRefGoogle ScholarPubMed
Helenius, A. & Aebi, M. (2001), ‘Intracellular functions of N-linked glycans’, Science 291(5512), 23642369.Google Scholar
Henry, O., Kwok, E. & Piret, J. M. (2008), ‘Simpler non-instrumented batch and semi-continuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures’, Biotechnology Progress 24(4), 921931.Google Scholar
Higel, F., Seidl, A., Sörgel, F. & Friess, W. (2016), ‘N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins’, European Journal of Pharmaceutics and Biopharmaceutics 100, 94100.Google Scholar
Hiller, G. W., Ovalle, A. M., Gagnon, M. P., Curran, M. L. & Wang, W. (2017), ‘Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures’, Biotechnology and Bioengineering 114(7), 14381447.CrossRefGoogle ScholarPubMed
Hoos, A. (2016), ‘Development of immuno-oncology drugs: From CTLA4 to PD1 to the next generations’, Nature Reviews Drug Discovery 15(4), 235247.Google Scholar
Hossler, P., Khattak, S. F. & Li, Z. J. (2009), ‘Optimal and consistent protein glycosylation in mammalian cell culture’. Glycobiology 19(9), 936949.Google Scholar
Howard, D. H., Bach, P. B., Berndt, E. R. & Rena, M. C. (2015), ‘Pricing in the market for anticancer drugs’, Journal of Economic Perspectives 29(1), 16891699.Google Scholar
Hsie, A. W., Recio, L., Katz, D. S., Lee, C. Q., Wagner, M. & Schenley, R. L. (1986), ‘Evidence for reactive oxygen species inducing mutations in mammalian cells.’, Proceedings of the National Academy of Sciences 83(24), 96169620.Google Scholar
Hu, W.-S. (2012), Cell Culture Bioprocess Engineering. Springer.Google Scholar
Hubert, M. & Engelen, S. (2004), ‘Robust PCA and classification in biosciences’, Bioinformatics 20(11), 17281736.Google Scholar
Hughes, S. S. (2001), ‘Making dollars out of DNA: The first major patent in biotechnology and the commercialization of molecular biology, 1974–1980’, Isis 92(3), 541575.Google Scholar
Hughmark, G. A. (1980), ‘Power requirements and interfacial area in gas–liquid turbine agitated systems’, Industrial and Engineering Chemistry Process Design and Development 19(4), 638641.Google Scholar
Indahl, U. (2005), ‘A twist to partial least squares regression’, Journal of Chemometrics 19(1), 3244.Google Scholar
Ishida, M., Haga, R., Nishimura, N., Matuzaki, H. & Nakano, R. (1990), ‘High cell density suspension culture of mammalian anchorage independent cells: Oxygen transfer by gas sparging and defoaming with a hydrophobic net’, Cytotechnology 4(3), 215225.Google Scholar
Ivarsson, M., Noh, H., Morbidelli, M. & Soos, M. (2015), ‘Insights into pH-induced metabolic switch by flux balance analysis’, Biotechnology Progress 31(2), 347357.Google Scholar
Jackson, D., Symons, R. H. & Berg, P. (1972), ‘Biochemical method for inserting new genetic information into DNA of simian virus 40: Circular DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America 69, 29042909.Google Scholar
Jacquemart, R., Vandersluis, M., Zhao, M., Sukhija, K., Sidhu, N. & Stout, J. (2016), ‘A single-use strategy to enable manufacturing of affordable biologics’, Computational and Structural Biotechnology Journal 14, 309318.Google Scholar
Jagschies, G., Lindskog, E., Lacki, K. & Galliher, P. M. (2018), Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes, Elsevier Science.Google Scholar
Jang, J. D. & Barford, J. P. (2000), ‘An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody’, Biochemical Engineering Journal 4(2), 153168.Google Scholar
Janoschek, S., Schulze, M., Zijlstra, G., Greller, G. & Matuszczyk, J. (2018), ‘A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small scale bioreactors compared to shake flasks as scale-down model’, Biotechnology Progress 35(2), 810.Google Scholar
Jefferis, R. (2005), ‘Glycosylation of recombinant antibody therapeutics’, Biotechnology Progress 21(1), 1116.Google Scholar
Jefferis, R. (2009), ‘Recombinant antibody therapeutics: The impact of glycosylation on mechanisms of action’, Trends in Pharmacological Sciences 30(7), 356362.Google Scholar
Jesus, M. D. & Wurm, F. M. (2011), ‘Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors’, European Journal of Pharmaceutics and Biopharmaceutics 78(2), 184188.Google Scholar
Jiang, M., Severson, K. A., Love, J. C., Madden, H., Swann, P., Zang, L. & Braatz, R. D. (2017), ‘Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing’, Biotechnology and Bioengineering 114(11), 24452456.Google Scholar
Jiang, R., Hoesli, N., Mueller, R., Kretz, T., Chen, H., Xu, S. & Bowers, J. (2018), ‘Probing lactate metabolism variations in large-scale bioreactors’, Biotechnology Progress 34(3), 756766.Google Scholar
Jimenez del Val, I., Nagy, J. M. & Kontoravdi, C. (2011), ‘A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus’, Biotechnology Progress 27(6), 17301743.Google Scholar
Joao De Jesus, M. & Wurm, F. M. (2013), ‘Scale-up and predictability in process development with suspension cultures of mammalian cells for recombinant protein manufacture: comments on a trend reversal’, Pharmaceutical Bioprocessing 1(4), 13.Google Scholar
Joeris, K., Frerichs, J.-G., Konstantinov, K. & Scheper, T. (2002), ‘In-situ microscopy: Online process monitoring of mammalian cell cultures’, Cytotechnology 38(1–3), 129134.Google Scholar
Jolliffe, I. (2005), ‘Principal component analysis’, in Encyclopedia of Statistics in Behavioral Science, John Wiley and Sons.Google Scholar
Jordan, M. & Jenkins, N. (2007), ‘Tools for high-throughput medium and process optimization’, Methods in Biotechnology 24, 193202.Google Scholar
Jordan, M., Kinnon, N. M., Monchois, V., Stettler, M. & Broly, H. (2018), ‘Intensification of large-scale cell culture processes’, Current Opinion in Chemical Engineering 22, 253257.Google Scholar
Jordan, M., Voisard, D., Berthoud, A. & Tercier, L. (2012), ‘Cell culture medium improvement by rigorous shuffling of components using media blending’, Cytotechnology 65(1), 3140.Google Scholar
Karst, D. J., Scibona, E., Serra, E., Bielser, J.-M. M., Souquet, J., Stettler, M., Broly, H., Soos, M., Morbidelli, M. & Villiger, T. K. (2017b), ‘Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors’, Biotechnology and Bioengineering 114(9), 137.Google Scholar
Karst, D. J., Serra, E., Villiger, T. K., Soos, M. & Morbidelli, M. (2016), ‘Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes’, Biochemical Engineering Journal 110, 1726.Google Scholar
Karst, D. J., Steinebach, F. & Morbidelli, M. (2018), ‘Continuous integrated manufacturing of therapeutic proteins’, Current Opinion in Biotechnology 53, 7684.Google Scholar
Karst, D. J., Steinebach, F., Soos, M. & Morbidelli, M. (2017a), ‘Process performance and product quality in an integrated continuous antibody production process’, Biotechnology and Bioengineering 114(2), 298307.Google Scholar
Karst, D. J., Steinhoff, R. F., Kopp, M. R. G., Serra, E., Soos, M., Zenobi, R. & Morbidelli, M. (2017c), ‘Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture’, Biotechnology Progress 33(4), 879890.Google Scholar
Karst, D. J., Steinhoff, R. F., Kopp, M. R., Soos, M., Zenobi, R. & Morbidelli, M. (2017d), ‘Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI-TOF-MS’, Biotechnology Progress 33(6), 16301639.Google Scholar
Kaufmann, H., Mazur, X., Fussenegger, M. & Bailey, J. E. (1999), ‘Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells’, Biotechnology and Bioengineering 63(5), 573582.Google Scholar
Kawase, Y., Halard, B. & Moo-Young, M. (1992), ‘Liquid-phase mass transfer coefficients in bioreactors’, Biotechnology and Bioengineering 39(11), 11331140.Google Scholar
Kelly, P. S., McSweeney, S., Coleman, O., Carillo, S., Henry, M., Chandran, D., Kellett, A., Bones, J., Clynes, M., Meleady, P. & Barron, N. (2016), ‘Process-relevant concentrations of the leachable bDtBPP impact negatively on CHO cell production characteristics’, Biotechnology Progress 32(6), 15471558.Google Scholar
Kelly, W. J. (2008), ‘Using computational fluid dynamics to characterize and improve bioreactor performance’, Biotechnology and Applied Biochemistry 49(4), 225.Google Scholar
Kelly, W., Scully, J., Zhang, D., Feng, G., Lavengood, M., Condon, J., Knighton, J. & Bhatia, R. (2014), ‘Understanding and modeling alternating tangential flow filtration for perfusion cell culture’, Biotechnology Progress 30(6), 12911300.Google Scholar
Kettaneh, N., Berglund, A. & Wold, S. (2005), ‘PCA and PLS with very large data sets’, Computational Statistics and Data Analysis 48(1), 6985.Google Scholar
Khawli, L. A., Goswami, S., Hutchinson, R., Kwong, Z. W., Yang, J., Wang, X., Yao, Z., Sreedhara, A., Cano, T., Tesar, D., Nijem, I., Allison, D. E., Wong, P. Y., Kao, Y. H., Quan, C., Joshi, A., Harris, R. J. & Motchnik, P. (2010), ‘Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats’, mAbs 2(6), 613624.Google Scholar
Kimura, R. & Miller, W. M. (1996), ‘Effects of elevated pCO(2) and/or osmolality on the growth and recombinant tPA production of CHO cells.’, Biotechnology and Bioengineering 52(1), 152160.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Kiparissides, A., Koutinas, M., Kontoravdi, C., Mantalaris, A. & Pistikopoulos, E. N. (2011), ‘Closing the loop’ in biological systems modeling: From the in silico to the in vitro’, Automatica 47(6), 11471155.Google Scholar
Kirdar, A. O., Chen, G., Weidner, J. & Rathore, A. S. (2010), ‘Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic protein’, Biotechnology Progress 26(2), 527531.Google Scholar
Kiviharju, K., Salonen, K., Moilanen, U. & Eerikäinen, T. (2008), ‘Biomass measurement online: The performance of in situ measurements and software sensors’, Journal of Industrial Microbiology and Biotechnology 35(7), 657665.Google Scholar
Klutz, S., Holtmann, L., Lobedann, M. & Schembecker, G. (2016), ‘Cost evaluation of antibody production processes in different operation modes’, Chemical Engineering Science 141, 6374.Google Scholar
Klutz, S., Magnus, J., Lobedann, M., Schwan, P., Maiser, B., Niklas, J., Temming, M. & Schembecker, G. (2015), ‘Developing the biofacility of the future based on continuous processing and single-use technology’, Journal of Biotechnology 213, 120130.Google Scholar
Kochanowski, N., Blanchard, F., Cacan, R., Chirat, F., Guedon, E., Marc, A. & Goergen, J. L. (2008), ‘Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-γ glycosylation during batch and fed-batch cultures of CHO cells’, Biotechnology and Bioengineering 100(4), 721733.Google Scholar
Kohrt, H. E., Tumeh, P. C., Benson, D., Bhardwaj, N., Brody, J., Formenti, S., Fox, B. A., Galon, J., June, C. H., Kalos, M., Kirsch, I., Kleen, T., Kroemer, G., Lanier, L., Levy, R., Lyerly, H. K., Maecker, H., Marabelle, A., Melenhorst, J., Miller, J., Melero, I., Odunsi, K., Palucka, K., Peoples, G., Ribas, A., Robins, H., Robinson, W., Serafini, T., Sondel, P., Vivier, E., Weber, J., Wolchok, J., Zitvogel, L., Disis, M. L. & Cheever, M. A. (2016), ‘Immunodynamics: A cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials’, Journal for ImmunoTherapy of Cancer 4(1), 116.Google Scholar
Kolwyck, D., Mcsweeney, M. & Johns, J. (2017), Biomanufacturing Technology Roadmap: Supply Partnership Management, technical report, BioPhorum Operations Group Ltd.Google Scholar
Konstantinov, K. B. & Cooney, C. L. (2015), ‘White paper on continuous bioprocessing May 20–21, 2014 continuous manufacturing symposium’, Journal of Pharmaceutical Sciences 104(3), 813820.Google Scholar
Konstantinov, K. B., Yeong-shou, Tsai, Moles, D. & Matanguihan, R. (1996), ‘Control of long-term perfusion Chinese hamster ovary cell culture by glucose auxostat’, Biotechnology Progress 12(1), 100109.Google Scholar
Konstantinov, K., Chuppa, S., Sajan, E., Tsai, Y., Yoon, S. & Golini, F. (1994), ‘Real-time biomass-concentration monitoring in animal-cell cultures’, Trends in Biotechnology 12(8), 324333.Google Scholar
Konstantinov, K., Goudar, C., Ng, M., Meneses, R., Thrift, J., Chuppa, S., Matanguihan, C., Michaels, J. & Naveh, D. (2006), ‘The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells’, Advances in Biochemical Engineering/Biotechnology 101(July), 7598.Google Scholar
Kontoravdi, C., Pistikopoulos, E. N. & Mantalaris, A. (2010), ‘Systematic development of predictive mathematical models for animal cell cultures’, Computers and Chemical Engineering 34(8), 11921198.Google Scholar
Krambeck, F. J. & Betenbaugh, M. J. (2005), ‘A mathematical model of N-linked glycosylation’, Biotechnology and Bioengineering 92(6), 711728.Google Scholar
Krättli, M., Müller-Späth, T. & Morbidelli, M. (2013), ‘Multifraction separation in countercurrent chromatography (MCSGP).’, Biotechnology and Bioengineering 110(9), 2436– 2444.Google Scholar
Kratzer, R., Dorn, I., Mcnaull, S., Rode, C., Lilly, E., Shea, L. O., Campbell, C. & Diluzio, W. (2017), Biomanufacturing Technology Roadmap: Process Technologies, technical report, BioPhorum Operations Group Ltd.Google Scholar
Kreye, S., Stahn, R., Nawrath, K., Danielczyk, A., Goletz, S. & Gmbh, G. (2015), ‘GlycoExpress: A toolbox for the high yield production of glycooptimized fully human biopharmaceuticals in perfusion bioreactors at different scales’, in ECI Digital Archives.Google Scholar
Kumar, N., Bansal, A., Sarma, G. & Rawal, R. K. (2014), ‘Chemometrics tools used in analytical chemistry: An overview’, Talanta 123, 186199.Google Scholar
Kunkel, J. P., Jan, D. C., Butler, M. & Jamieson, J. C. (2000), ‘Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors’, Biotechnology Progress 16(3), 462470.Google Scholar
Kunkel, J. P., Jan, D. C., Jamieson, J. C. & Butler, M. (1998), ‘Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody’, Journal of Biotechnology 62, 5571.Google Scholar
Lai, T., Yang, Y. & Ng, S. K. (2013), ‘Advances in mammalian cell line development technologies’, Pharmaceuticals 6, 579603.Google Scholar
Lairson, L., Henrissat, B., Davies, G. & Withers, S. (2008), ‘Glycosyltransferases: Structures, functions, and mechanisms’, Annual Review of Biochemistry 77(1), 521555.Google Scholar
Lameris, R., de Bruin, R. C., Schneiders, F. L., van, Henegouwen, Bergen en, Verheul, P. M., de Gruijl, H. M., van der Vliet, T. D. H. J. (2014), ‘Bispecific antibody platforms for cancer immunotherapy’, Critical Reviews in Oncology/Hematology 92(3), 153165.CrossRefGoogle ScholarPubMed
Langer, E. S. (2011), ‘Trends in perfusion bioreactors: The next revolution in bioprocessing?’, BioProcess International 9(10), 1822.Google Scholar
Langer, E. S. (2014), ‘Continuous bioprocessing and perfusion: Wider adoption coming as bioprocessing matures’, BioProcessing Journal 13(1), 4349.Google Scholar
Lavery, M. & Nienow, A. W. (1987), ‘Oxygen transfer in animal cell culture medium’, Biotechnology and Bioengineering 30(3), 368373.Google Scholar
Le, K., Tan, C., Gupta, S., Guhan, T., Barkhordarian, H., Lull, J., Stevens, J. & Munro, T. (2018), ‘A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology’, Biotechnology Progress 34(6), 14381446.Google Scholar
Li, J., Wong, C. L., Vijayasankaran, N., Hudson, T. & Amanullah, A. (2012), ‘Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance’, Biotechnology and Bioengineering 109(5), 11731186.Google Scholar
Lim, Y., Wong, N. S. C., Lee, Y. Y., Ku, S. C. Y., Wong, D. C. F. & Yap, M. G. S. (2010), ‘Engineering mammalian cells in bioprocessing: Current achievements and future perspectives’, Biotechnology and Applied Biochemistry 55(4),175189.Google Scholar
Lin, H., Leighty, R. W., Godfrey, S. & Wang, S. B. (2017), ‘Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media’, Biotechnology Progress 33(4), 891901.Google Scholar
Ling, W. L. (2015), ‘Development of protein-free medium for therapeutic protein production in mammalian cells: Recent advances and perspectives’, Pharmaceutical Bioprocessing 3, 215226.Google Scholar
Lobban, P. (1972), An Enzymatic Method for End-to-End Joining of DNA Molecules, PhD thesis, Stanford University.Google Scholar
Lobban, P. & Kaiser, A. (1973), ‘Enzymatic end-to-end joining of DNA molecules’, Journal of Molecular Biology 78, 483471.Google Scholar
Löffelholz, C., Kaiser, S. C., Kraume, M., Eibl, R. & Eibl, D. (2014), ‘Dynamic single-use bioreactors used in modern liter- and m3- scale biotechnological processes: Engineering characteristics and scaling up’, Advances in Biochemical Engineering/Biotechnology 138, 144.Google Scholar
Long, Q., Liu, X., Yang, Y., Li, L., Harvey, L., McNeil, B. & Bai, Z. (2014), ‘The development and application of high throughput cultivation technology in bioprocess development’, Journal of Biotechnology 192, 323338.Google Scholar
Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M. & Aebi, M. (2017), ‘Influence of protein/glycan interaction on site-specific glycan heterogeneity’, The FASEB Journal 31(10), 46234635.Google Scholar
Luo, Y. & Chen, G. (2007), ‘Combined approach of NMR and chemometrics for screening peptones used in the cell culture medium for the production of a recombinant therapeutic protein’, Biotechnology and Bioengineering 97(6), 16541659.Google Scholar
Luttmann, R., Borchert, S. O., Mueller, C., Loegering, K., Aupert, F., Weyand, S., Kober, C., Faber, B. & Cornelissen, G. (2015), ‘Sequential/parallel production of potential Malaria vaccines: A direct way from single batch to quasi-continuous integrated production’, Journal of Biotechnology 213, 8396.Google Scholar
Luttmann, R., Bracewell, D. G., Cornelissen, G., Gernaey, K. V., Glassey, J., Hass, V. C., Kaiser, C., Preusse, C., Striedner, G. & Mandenius, C. (2012), ‘Soft sensors in bioprocessing: A status report and recommendations’, Biotechnology Journal 7(8), 10401048.Google Scholar
Ma, N., Mollet, M. & Chalmers, J. J. (2003), ‘Aeration, mixing and hydrodynamics in bioreactors’, in Encyclopedia of Cell Technology, John Wiley and Sons, Inc., Hoboken, pp. 225248.Google Scholar
Manchester, K. L. (2007), ‘Louis Pasteur, fermentation, and a rival’, South African Journal of Science 103(9–10), 377380.Google Scholar
Marks, D. M. (2003), ‘Equipment design considerations for large scale cell culture’, Cytotechnology 42(1), 2133.Google Scholar
Matthews, T. E., Berry, B. N., Smelko, J., Moretto, J., Moore, B. & Wiltberger, K. (2016), ‘Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production’, Biotechnology and Bioengineering 113(11), 24162424.Google Scholar
McCoy, R. E., Costa, N. a. & Morris, A. E. (2015), ‘Factors that determine stability of highly concentrated chemically defined production media’, Biotechnology Progress 31(2), 493502.Google Scholar
McCracken, N. A., Kowle, R. & Ouyang, A. (2014), ‘Control of galactosylated glycoforms distribution in cell culture system’, Biotechnology Progress 30(3), 547553.Google Scholar
McGovern, P. E., Glusker, D. L., Exner, L. J. & Voigt, M. M. (1996), ‘Neolithic resinated wine’, Nature 381, 480481.Google Scholar
McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C.-S., Cheng, G., Zhao, Z. & Wang, C. (2004), ‘Fermented beverages of pre- and proto-historic China’, Proceedings of the National Academy of Sciences 101(51), 1759317598.Google Scholar
Meglen, R. R. (1992), ‘Examining large databases: A chemometric approach using principal component analysis’, Marine Chemistry 39(1–3), 217237.Google Scholar
Mehdizadeh, H., Lauri, D., Karry, K. M., Moshgbar, M., Procopio-Melino, R. & Drapeau, D. (2015), ‘Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors’, Biotechnology Progress 31(4), 10041013.Google Scholar
Meier, S. J., Hatton, T. A. & Wang, D. I. (1999), ‘Cell death from bursting bubbles: Role of cell attachment to rising bubbles in sparged reactors’, Biotechnology and Bioengineering 62(4), 468478.Google Scholar
Mercier, S. M., Diepenbroek, B., Wijffels, R. H. & Streefland, M. (2014), ‘Multivariate PAT solutions for biopharmaceutical cultivation: current progress and limitations’, Trends in Biotechnology 32(6), 329336.Google Scholar
Mercier, S. M., Rouel, P. M. & Lebrun, P. (2016), ‘Process analytical technology tools for perfusion cell culture’, Engineering in Life Sciences 16(1), 2535.Google Scholar
Mercille, S., Johnson, M., Lanthier, S., Kamen, A. A. & Messie, B. (2000), ‘Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates’, Biotechnology and Bioengineering 67(4), 435450.Google Scholar
Mertz, J. E. & Davis, R. (1972), ‘Cleavage of DNA by RI restriction endonuclease generates cohesive ends’, Proceedings of the National Academy of Sciences of the United States of America 69(11), 33703374.Google Scholar
Meuwly, F., Weber, U., Ziegler, T., Gervais, A., Mastrangeli, R., Crisci, C., Rossi, M., Bernard, A., von Stockar, U. & Kadouri, A. (2006), ‘Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality’, Journal of Biotechnology 123(1), 106116.Google Scholar
Miller, W. M., Blanch, H. W. & Wilke, C. R. (1988), ‘A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: effect of nutrient concentration, dilution rate, and pH’, Biotechnology and Bioengineering 32(8), 947965.Google Scholar
Miller, W. M., Wilke, C. R. & Blanch, H. W. (1987), ‘Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture’, Journal of Cellular Physiology 132(3), 524530.Google Scholar
Mokuolu, S. (2018), ‘New standards define single-use materials qualification’, Pharmaceutical Technology 42(2), 5253.Google Scholar
Monteil, D. T., Juvet, V., Paz, J., Moniatte, M., Baldi, L., Hacker, D. L. & Wurm, F. M. (2016), ‘A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation’, BiotechnologyGoogle Scholar
Morari, M. & Zafiriou, E. (1989), Robust Process Control. Prentice Hall.Google Scholar
Morrow, J., Cohen, S. N., Chang, A. C., Boyer, H. W. & Goodman, H. M. (1974), ‘Replication and transcription of eukaryotic DNA in Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America 71(5), 17431747.Google Scholar
Moussa, A. S., Soos, M., Sefcik, J. & Morbidelli, M. (2007), ‘Effect of solid volume fraction on aggregation and breakage in colloidal suspensions in batch and continuous stirred tanks’, Langmuir 23(4), 16641673.Google Scholar
Moyle, D. (2017), Biomanufacturing Technology Roadmap: Modular and Mobile, Technical report, BioPhorum Operations Group Ltd.Google Scholar
Mulukutla, B. C., Gramer, M. & Hu, W. S. (2012), ‘On metabolic shift to lactate consumption in fed-batch culture of mammalian cells’, Metabolic Engineering 14(2), 138149.Google Scholar
Narayanan, H., Luna, M., von Stoch, M., Cruz Bournazou, M., Polotti, G., Morbidelli, M., Butté, A. & Sokolov, M. (2019a), ‘Bioprocess in the digital age: The role of process models’, Biotechnology Journal 15(1), https://doi.org/10.1002/biot.201900172.Google Scholar
Narayanan, H., Sokolov, M., Butté, A. & Morbidelli, M. (2019b), ‘Decision Tree-PLS (DT-PLS) algorithm for the development of process: Specific local prediction models’, Biotechnology Progress 35(4), e2818.Google Scholar
Narayanan, H., Sokolov, M., Morbidelli, M. & Butté, A. (2019c), ‘A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins’, Biotechnology and Bioengineering 116(10), 25402549.Google Scholar
Nasr, M. M., Krumme, M., Matsuda, Y., Trout, B. L., Badman, C., Mascia, S., Cooney, C. L., Jensen, K. D., Florence, A., Johnston, C., Konstantinov, K. & Lee, S. L. (2017), ‘Regulatory perspectives on continuous pharmaceutical manufacturing: Moving from theory to practice, September 26–27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals’, Journal of Pharmaceutical Sciences 106(11), 31993206.Google Scholar
Neunstoecklin, B., Stettler, M., Solacroup, T., Broly, H., Morbidelli, M. & Soos, M. (2015), ‘Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture’, Journal of Biotechnology 194, 100109.CrossRefGoogle ScholarPubMed
Neunstoecklin, B., Villiger, T. K., Lucas, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016), ‘Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture’, Applied Microbiology and Biotechnology 100(8), 34893498.Google Scholar
Nienow, A. W. (1997), ‘On impeller circulation and mixing effectiveness in the turbulent flow regime’, Chemical Engineering Science 52(15), 25572565.Google Scholar
Nienow, A. W. (1998), ‘Hydrodynamics of stirred bioreactors’, Applied Mechanics Reviews 51(1), 332.Google Scholar
Nienow, A. W. (2006), ‘Reactor engineering in large scale animal cell culture’, Cytotechnology 50(1–3), 933.Google Scholar
Nienow, A. W. (2010), ‘Impeller selection for animal cell culture’, in Encyclopedia of Industrial Biotechnology, American Cancer Society, pp. 125.Google Scholar
Nienow, A. W., Rielly, C. D., Brosnan, K., Bargh, N., Lee, K., Coopman, K. & Hewitt, C. J. (2013), ‘The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4’, Biochemical Engineering Journal 76, 2536.Google Scholar
Opel, C. F., Li, J. & Amanullah, A. (2010), ‘Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy’, Biotechnology Progress 26(4), 11871199.Google Scholar
Ozturk, S. S. (1996), ‘Engineering challenges in high density cell culture systems’, Cytotechnology 22, 316.Google Scholar
Ozturk, S. S. (2014), ‘Opportunities and challenges for the implementation of continuous processing in biomanufacturing’, in Subramanian, G., ed., Continuous Processing in Pharmaceutical Manufacturing, Wiley-Blackwell, chapter 18, pp. 457478.Google Scholar
Ozturk, S. S. & Hu, W.-S. (2006), Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, Taylor and Francis.Google Scholar
Ozturk, S. S. & Kompala, D. S. (2006), ‘Optimization of high cell density perfusion bioreactors’, in Cell Culture Technology for Pharmaceutical and Cell-Based Therapies, Taylor and Francis Group, Boca Raton, pp. 387416.Google Scholar
Ozturk, S. S. & Palsson, B. O. (1990), ‘Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture’, Biotechnology Progress 6(6), 437446.Google Scholar
Ozturk, S. S. & Palsson, B. O. (1991), ‘Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and mediumpHin a batch reactor’, Biotechnology Progress 7(6), 481494.Google Scholar
Pardee, A. B. (1989), ‘G1 events and regulation of cell proliferation’, Science 246(4930), 603608.Google Scholar
Park, J. H., Noh, S. M., Woo, J. R., Kim, J. W. & Lee, G. M. (2015), ‘Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity’, Biotechnology Journal 11(4), 487496.Google Scholar
Pasteur, L. (1885), Mémoire sur la fermentation alcoolique, PhD thesis, Académie des sciences.Google Scholar
Pattison, R., Swamy, J., Mendenhall, B., Hwang, C. & Frohlich, B. (2000), ‘Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor’, Biotechnology Progress 16(5), 769774.Google Scholar
Pfister, D., Nicoud, L. & Morbidelli, M. (2018), Continuous Biopharmaceutical Processes, Cambridge University Press.Google Scholar
Pham, P. L., Kamen, A. & Durocher, Y. (2006), ‘Large-scale transfection of mammalian cells for the fast production of recombinant protein’, Molecular Biotechnology 34(2), 225237.Google Scholar
Pilkington, P. H., Margaritis, A., Mensour, N. A. & Russell, I. (1998), ‘Fundamentals of immobilised yeast cells for continuous beer fermentation: A review’, Journal of the Institute of Brewing 104(1), 1931.Google Scholar
Pohlscheidt, M., Jacobs, M., Wolf, S., Thiele, J., Jockwer, A., Gabelsberger, J., Jenzsch, M., Tebbe, H. & Burg, J. (2013), ‘Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors’, Biotechnology Progress 29(1), 222229.Google Scholar
Politis, S., Colombo, P., Colombo, G. & Rekkas, D. (2017), ‘Design of experiments (DoE) in pharmaceutical development’, Drug Development and Industrial Pharmacy 43(6), 889901.Google Scholar
Pollock, J., Coffman, J., Ho, S. V. & Farid, S. S. (2017), ‘Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture’, Biotechnology Progress 33(4), 854866.Google Scholar
Pollock, J., Ho, S. V. & Farid, S. S. (2013), ‘Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty’, Biotechnology and Bioengineering 110(1), 206219.Google Scholar
Pörtner, R. (2015), ‘Bioreactors for mammalian cells’, in Al-Rubeai, M., ed., Animal Cell Culture, Springer International Publishing, pp. 89–135.Google Scholar
Pörtner, R. & Schäfer, T. (1996), ‘Modelling hybridoma cell growth and metabolism a comparison of selected models and data’, Journal of Biotechnology 49(1–3), 119135.Google Scholar
Radoniqi, F., Zhang, H., Bardliving, C. L., Shamlou, P. & Coffman, J. (2018), ‘Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture’, Biotechnology and Bioengineering 115(11), 27512759.Google Scholar
Raghunath, B., Bin, W., Pattnaik, P. & Janssens, J. (2013), ‘Best practices for optimization and scale-up of microfiltration TFF processes’, BioProcessing Journal 11(1), 3040.Google Scholar
Ramakrishnan, B., Boeggeman, E., Ramasamy, V. & Qasba, P. K. (2004), ‘Structure and catalytic cycle of β-1,4-galactosyltransferase’, Current Opinion in Structural Biology 14(5), 593600.Google Scholar
Ranganathan, P. & Sivaraman, S. (2011), ‘Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics’, Chemical Engineering Science 66(14), 31083124.Google Scholar
Rathore, A. S. (2009), ‘Roadmap for implementation of quality by design (QbD) for biotechnology products’. Trend in Biotechnology, 27(9), 546553, https://doi.org/10.1016/ j.tibtech.2009.06.006.Google Scholar
Rathore, A. S. (2014), ‘QbD/PAT for bioprocessing: Moving from theory to implementation’. Current Opinion in Chemical Engineering, 6, 18, https://doi.org/10.1016/j.coche.2014.05 .006.Google Scholar
Rathore, A. S., Kateja, N. & Kumar, D. (2018), ‘Process integration and control in continuous bioprocessing’, Current Opinion in Chemical Engineering 22, 1825.Google Scholar
Rathore, A. S., Pathak, M. & Godara, A. (2016), ‘Process development in the QbD paradigm: Role of process integration in process optimization for production of biotherapeutics’, Biotechnology Progress 32(2), 355362.Google Scholar
Rathore, A. S. & Winkle, H. (2009), ‘Quality by design for biopharmaceuticals’, Nature 27(1), 2634.Google Scholar
Read, E., Park, J., Shah, R., Riley, B., Brorson, K. & Rathore, A. (2010a), ‘Process analytical technology (PAT) for biopharmaceutical products: Part I. Concepts and applications’, Biotechnology and Bioengineering 105(2), 276284.Google Scholar
Read, E., Shah, R., Riley, B., Park, J., Brorson, K. & Rathore, A. (2010b), ‘Process analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and applications’, Biotechnology and Bioengineering 105(2), 285295.Google Scholar
Reinhart, D., Damjanovic, L., Kaisermayer, C. & Kunert, R. (2015), ‘Benchmarking of commercially available CHO cell culture media for antibody production’, Applied Microbiology and Biotechnology 99(11), 46454657.Google Scholar
Rivinoja, A., Hassinen, A., Kokkonen, N., Kauppila, A. & Kellokumpu, S. (2009), ‘Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases’, Journal of Cellular Physiology 220(1), 144154.Google Scholar
Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J. & Oliveira, R. (2010), ‘Technological progresses in monoclonal antibody production systems’, Biotechnology Progress 26(2), 332351.Google Scholar
Rouiller, Y., Bielser, J.-M., Brühlmann, D., Jordan, M., Broly, H. & Stettler, M. (2016), ‘Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems’, Biotechnology Progress 32(1), 160170.Google Scholar
Rouiller, Y., Périlleux, A., Collet, N., Jordan, M., Stettler, M. & Broly, H. (2013), ‘A high-throughput media design approach for high performance mammalian fed-batch cultures’, mAbs 5(3), 501–511.Google Scholar
Rouiller, Y., Solacroup, T., Deparis, V., Barbafieri, M., Gleixner, R., Broly, H. & Eon-Duval, A. (2012), ‘Application of quality by design to the characterization of the cell culture process of an Fc-fusion protein’, European Journal of Pharmaceutics and Biopharmaceutics 81(2), 426437.Google Scholar
Routledge, S. J. (2012), ‘Beyond de-foaming: The effects of antifoams on bioprocess productivity’, Computational and Structural Biotechnology Journal 3(4), e201210001.Google Scholar
Roy, J. (2009), ‘Glycosylation of antibody therapeutics: Optimisation for purpose’, in Methods in Molecular Biology, Vol. 483, pp. 223238.Google Scholar
Roychoudhury, P., O’Kennedy, R., McNeil, B. & Harvey, L. M. (2007), Analytica Chimica Acta 590(1), 110117.Google Scholar
Running, J. A. & Bansal, K. (2016), ‘Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates’, Biotechnology and Bioengineering 113(8), 17291735.Google Scholar
Rutherford, K., Mahmoudi, S. M. S., Lee, K. C. & Yianneskis, M. (1996), ‘The influence of Rushton impeller blade and disk thickness on the mixing characteristics of stirred vessels’, Chemical Engineering Research and Design 74(3), 369378.Google Scholar
Ryan, P. W., Li, B., Shanahan, M., Leister, K. J. & Ryder, A. G. (2010), ‘Prediction of cell culture media performance using fluorescence spectroscopy’, Analytical Chemistry 82(4), 13111317.Google Scholar
Saha, D., Soos, M., Lüthi, B., Holzner, M., Liberzon, A., Babler, M. U. & Kinzelbach, W. (2014), ‘Experimental characterization of breakage rate of colloidal aggregates in axisymmetric extensional flow’, Langmuir 30(48), 1438514395.Google Scholar
Sajjadi, S. & Yianneskis, M. (2003), ‘Semibatch emulsion polymerization of methyl methacrylate with a neat monomer feed’, Polymer Reaction Engineering 11(4), 715736.Google Scholar
Sano, C. (2009), ‘History of glutamate production’, American Journal of Clinical Nutrition 90(3), 728732.Google Scholar
Sawyer, D., Sanderson, K., Lu, R., Daszkowski, T., Clark, E., Mcduff, P., Astrom, J., Heffernan, C., Duffy, L., Poole, S., Ryll, T., Sheehy, P., Strachan, D., Souquet, J., Beattie, D., Pollard, D., Stauch, O., Bezy, P., Sauer, T., Boettcher, L., Simpson, C., Dakin, J., Pitt, S. & Boyle, A. (2017a), Biomanufacturing Technology Roadmap: Overview, Technical report, BioPhorum Operations Group Ltd.Google Scholar
Sawyer, D., Sanderson, K., Lu, R., Daszkowski, T., Clark, E., Mcduff, P., Heffernan, C., Duffy, L., Poole, S., Ryll, T., Sheehy, P., Strachan, D., Beattie, D., Souquet, J., Pollard, D., Stauch, O., Bezy, P., Sauer, T., Boettcher, L., Simpson, C., Dakin, J., Pitt, S. & Boyle, A. (2017b), Biomanufacturing Technology Roadmap: Executive Summary, Technical report, BioPhorum Operations Group Ltd.Google Scholar
Scarff, M., Arnold, S. A., Harvey, L. M. & McNeil, B. (2006), ‘Near infrared spectroscopy for bioprocess monitoring and control: Current status and future trends’, Critical Reviews in Biotechnology 26(1), 1739.Google Scholar
Seth, G., Hamilton, R. W., Stapp, T. R., Zheng, L., Meier, A., Petty, K., Leung, S. & Chary, S. (2013), ‘Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns’, Biotechnology and Bioengineering 110(5), 13761385.Google Scholar
Shah, Y. T. (1979), Gas Liquid Solid Reactor Design, Vol. 327, McGraw-Hill International.Google Scholar
Sharma, C., Malhotra, D. & Rathore, A. S. (2011), ‘Review of computational fluid dynamics applications in biotechnology processes’, Biotechnology Progress 27(6), 14971510.Google Scholar
Sherr, C. J. & Roberts, J. M. (1999), ‘CDK inhibitors: Positive and negative regulators of G1-phase progression’, Genes & Development 13(12), 15011512.Google Scholar
Shukla, A. A. & Gottschalk, U. (2013), ‘Single-use disposable technologies for biopharmaceutical manufacturing’, Trends in Biotechnology 31(3), 147154.Google Scholar
Shukla, A. A. & Thömmes, J. (2010), ‘Recent advances in large-scale production of monoclonal antibodies and related proteins’, Trends in Biotechnology 28(5), 253261.Google Scholar
Sidoli, F. R., Asprey, S. P. & Mantalaris, A. (2006), ‘A coupled single cell-population-balance model for mammalian cell cultures’, Industrial and Engineering Chemistry Research 45(16), 58015811.Google Scholar
Sidoli, F. R., Mantalaris, A. & Asprey, S. P. (2004), ‘Modelling of mammalian cells and cell culture processes’, Cytotechnology 44(1–2), 2746.Google Scholar
Sieblist, C., Jenzsch, M. & Pohlscheidt, M. (2013), ‘Influence of pluronic F68 on oxygen mass transfer’, Biotechnology Progress 29(5), 12781288.Google Scholar
Sieblist, C., Jenzsch, M. & Pohlscheidt, M. (2016), ‘Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes’, Cytotechnology 68(4), 13811401.Google Scholar
Sieblist, C., Jenzsch, M., Pohlscheidt, M. & Lübbert, A. (2011), ‘Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply’, Biotechnology Journal 6(12), 15321546.Google Scholar
Sieck, J. B., Budach, W. E., Suemeghy, Z., Leist, C., Villiger, T. K., Morbidelli, M. & Soos, M. (2014), ‘Adaptation for survival: Phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging’, Journal of Biotechnology 189, 94103.Google Scholar
Sieck, J. B., Cordes, T., Budach, W. E., Rhiel, M. H., Suemeghy, Z., Leist, C., Villiger, T. K., Morbidelli, M. & Soos, M. (2013), ‘Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions’, Journal of Biotechnology 164(1), 4149.Google Scholar
Siganporia, C. C., Ghosh, S., Daszkowski, T., Papageorgiou, L. G. & Farid, S. S. (2014), ‘Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities’, Biotechnology Progress 30, 594606.Google Scholar
Singer, M. & Soll, D. (1973), ‘Guidelines for DNA hybrid molecules’, Science 181, 1114.Google Scholar
Smelko, P. J., Wiltberger, R. K., Hickman, F. E., et al. (2011), ‘Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems’, Biotechnology Progress 27(5), 13581364.Google Scholar
Sokolov, M., Morbidelli, M., Butté, A., Souquet, J. & Broly, H. (2018), ‘Sequential multivariate cell culture modeling at multiple scales supports systematic shaping of a monoclonal antibody toward a quality target’, Biotechnology Journal 13(4), 1700461.Google Scholar
Sokolov, M., Ritscher, J., MacKinnon, N., Bielser, J.-M., Brühlmann, D., Rothenhäusler, D., Thanei, G., Soos, M., Stettler, M., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017a), ‘Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody’, Biotechnology Progress 33(1), 181191.Google Scholar
Sokolov, M., Ritscher, J., MacKinnon, N., Bielser, J.-M. J.-M., Brühlmann, D., Rothenhäusler, D., Thanei, G., Soos, M., Stettler, M., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017b), ‘Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody’, Biotech Progress Journal 33(1), 181.191.Google Scholar
Sokolov, M., Ritscher, J., Mackinnon, N., Souquet, J., Broly, H., Morbidelli, M. & Butté, A. (2017c), ‘Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality’, Biotechnology Progress pp. 1–13.Google Scholar
Sokolov, M., Soos, M., Neunstoecklin, B., Morbidelli, M., Butté, A., Leardi, R., Solacroup, T., Stettler, M. & Broly, H. (2015), ‘Fingerprint detection and process prediction by multivariate analysis of fed-batch monoclonal antibody cell culture data’, Biotechnology Progress 31(6), 16331644.Google Scholar
Soleas, G. J., Diamandis, E. P. & Goldberg, D. M. (1997), ‘Wine as a biological fluid: History, production, and role in disease prevention’, Journal of Clinical Laboratory Analysis 11(5), 287313.Google Scholar
Solomon, B. L. & Garrido-Laguna, I. (2018), ‘TIGIT: A novel immunotherapy target moving from bench to bedside’, Cancer Immunology, Immunotherapy 67(11), 16591667.Google Scholar
Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M. & Striedner, G. (2017), ‘Quality by control: Towards model predictive control of mammalian cell culture bioprocesses’, Biotechnology Journal 12(7), 17.Google Scholar
Soos, M., Ehrl, L., Bäbler, M. U. & Morbidelli, M. (2010), ‘Aggregate breakup in a contracting nozzle’, Langmuir 26(1), 1018.Google Scholar
Soos, M., Kaufmann, R., Winteler, R., Kroupa, M. & Lüthi, B. (2013), ‘Determination of maximum turbulent energy dissipation rate generated by a rushton impeller through large eddy simulation’, AIChE Journal 59(10), 36423658.Google Scholar
Sou, S. N., Jedrzejewski, P. M., Lee, K., Sellick, C., Polizzi, K. M. & Kontoravdi, C. (2017), ‘Model-based investigation of intracellular processes determining antibody Fc-glycosylation under mild hypothermia’, Biotechnology and Bioengineering 114(7), 15701582.Google Scholar
Stahmann, K. P., Revuelta, J. L. & Seulberger, H. (2000), ‘Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production’, Applied Microbiology and Biotechnology 53(5), 509516.Google Scholar
Steeno, G. S. (2010), ‘Experimental design for pharmaceutical development’, in David, J., ed., Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing, John Wiley and Sons, pp. 597–620.Google Scholar
Steinebach, F., Angarita, M., Karst, D. J., Müller-Späth, T. & Morbidelli, M. (2016a), ‘Model based adaptive control of a continuous capture process for monoclonal antibodies production’, Journal of Chromatography A 1444, 5056.Google Scholar
Steinebach, F., Müller-Späth, T. & Morbidelli, M. (2016b), ‘Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production’, Biotechnology Journal 11(9), 11261141.Google Scholar
Steinebach, F., Ulmer, N., Wolf, M., Decker, L., Schneider, V., Wälchli, R., Karst, D., Souquet, J. & Morbidelli, M. (2017), ‘Design and operation of a continuous integrated monoclonal antibody production process’, Biotechnology Progress 33(5), 13031313.Google Scholar
Swann, P., Brophy, L., Strachan, D., Lilly, E. & Jeffers, P. (2017), Biomanufacturing Technology Roadmap: In-line monitoring and real-time release, Technical report, BioPhorum Operations Group Ltd.Google Scholar
Tabas, I. & Kornfeld, S. (1979), ‘Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides’, The Journal of Biological Chemistry 254(22), 11655–63.Google Scholar
Takesono, S., Onodera, M., Toda, K., Yoshida, M., Yamagiwa, K. & Ohkawa, A. (2006), ‘Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter’, Bioprocess and Biosystems Engineering 28(4), 235242.Google Scholar
Tanzeglock, T., Soos, M., Stephanopoulos, G. & Morbidelli, M. (2009), ‘Induction of mammalian cell death by simple shear and extensional flows’, Biotechnology and Bioengineering 104(2), 360370.Google Scholar
Tao, Y., Shih, J., Sinacore, M., Ryll, T. & Yusuf-Makagiansar, H. (2011), ‘Development and implementation of a perfusion-based high cell density cell banking process’, Biotechnology Progress 27(3), 824829.Google Scholar
Teixeira, A., Cunha, A., Clemente, J., Moreira, J., Cruz, H., Alves, P., Carrondo, M. & Oliveira, R. (2005), ‘Modelling and optimization of a recombinant BHK-21 cultivation process using hybrid grey-box systems’, Journal of Biotechnology 118(3), 290303.Google Scholar
Thomas, T. N. (2017), ‘Are we prepared to meet the demands of a challenging, but promising future?’, in Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series’.Google Scholar
Tribe, L. A., Briens, C. L. & Margaritis, A. (1995), ‘Determination of the volumetric mass transfert coefficient (kla) using the dynamic “gas out–gas in” method’, Biotechnology and Bioengineering 46, 388392.Google Scholar
Tsang, V. L., Wang, A. X., Yusuf-Makagiansar, H. & Ryll, T. (2014), ‘Development of a scale down cell culture model using multivariate analysis as a qualification tool’, Biotechnology Progress 30(1), 152160.Google Scholar
Tziampazis, E. & Sambanis, A. (1994), ‘Modeling of cell culture processes’, Cytotechnology 14(3), 191204.Google Scholar
Umaña, P. & Bailey, J. E. (1997), ‘A mathematical model of N-linked glycoform biosynthesis’, Biotechnology and Bioengineering 55(6), 890908.Google Scholar
Undey, C., Low, D., Menezes, J. C. & Koch, M. (2011), PAT Applied in Biopharmaceutical Process Development and Manufacturing: An Enabling Tool for Quality-by-Design, Vol. 33, CRC Press.Google Scholar
Van’t Riet, K. (1979), ‘Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels’, Industrial and Engineering Chemistry Process Design and Development 18(3), 357364.Google Scholar
Velasco, A. (1993), ‘Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II’, The Journal of Cell Biology 122(1), 3951.Google Scholar
Versteeg, H. K. & Malalasekera, W. (1995), An Introduction to Computational Fluid Dynamics, John Wiley and Sons.Google Scholar
Villiger, T. K., Morbidelli, M. & Soos, M. (2015), ‘Experimental determination of maximum effective hydrodynamic stress in multiphase flow using shear sensitive aggregates’, AIChE Journal 61(5), 17351744.Google Scholar
Villiger, T. K., Neunstoecklin, B., Karst, D. J., Lucas, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2018), ‘Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale’, Biochemical Engineering Journal 131, 8494.Google Scholar
Villiger, T. K., Roulet, A., Périlleux, A., Stettler, M., Broly, H., Morbidelli, M., Soos, M., Scibona, E., Stettler, M., Broly, H., Morbidelli, M., Soos, M., Roulet, A., Périlleux, A., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016a), ‘Controlling the time evolution of mAb N-linked glycosylation – Part I: Micro-bioreactor experiments’, Biotechnology Progress 32(5), 11231134.Google Scholar
Villiger, T. K., Scibona, E., Stettler, M., Broly, H., Morbidelli, M. & Soos, M. (2016b), ‘Controlling the time evolution of mAb N-linked glycosylation – Part II: Model-based predictions’, Biotechnology Progress 32(5), 11351148.Google Scholar
Villiger, T. K., Steinhoff, R. F., Ivarsson, M., Solacroup, T., Stettler, M., Broly, H., Krismer, J., Pabst, M., Zenobi, R., Morbidelli, M. & Soos, M. (2016c), ‘High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation’, Journal of Biotechnology 229, 312.Google Scholar
Villiger-Oberbek, A., Yang, Y., Zhou, W. & Yang, J. (2015), ‘Development and application of a high-throughput platform for perfusion-based cell culture processes’, Journal of Biotechnology 212, 2129.Google Scholar
Vogg, S., Müller-Späth, T. & Morbidelli, M. (2018), ‘Current status and future challenges in continuous biochromatography’, Current Opinion in Chemical Engineering 22, 138144.Google Scholar
Voisard, D., Meuwly, F., Ruffieux, P. A., Baer, G. & Kadouri, A. (2003), ‘Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells’, Biotechnology and Bioengineering 82(7), 751765.Google Scholar
Vojinović, V., Cabral, J. M. S. & Fonseca, L. P. (2006), ‘Real-time bioprocess monitoring: Part I: In situ sensors’, Sensors and Actuators, B: Chemical 114, 10831091.Google Scholar
Von Stosch, M., Hamelink, J.-M. & Oliveira, R. (2016), ‘Hybrid modeling as a QbD/PAT tool in process development: An industrial E. coli case study’, Bioprocess and Biosystems Engineering 39(5), 773784.Google Scholar
Von Stosch, M. & Willis, M. J. (2017), ‘Intensified design of experiments for upstream bioreactors’, Engineering in Life Sciences 17(11), 11731184.Google Scholar
Vulto, A. G. & Jaquez, O. A. (2017), ‘The process defines the product: What really matters in biosimilar design and production?’, Rheumatology 56(suppl 4), 1429.Google Scholar
Walsh, G. (2010), ‘Post-translational modifications of protein biopharmaceuticals’, Drug Discovery Today 15(17–18), 773780.Google Scholar
Walsh, G. (2014), ‘Biopharmaceutical benchmarks 2014’, Nature Biotechnology 32(7), 9921000.Google Scholar
Walther, J., Godawat, R., Hwang, C., Abe, Y., Sinclair, A. & Konstantinov, K. (2015), ‘The business impact of an integrated continuous biomanufacturing platform for recombinant protein production’, Journal of Biotechnology 213, 312.Google Scholar
Walther, J., Lu, J., Hollenbach, M., Yu, M., Hwang, C., McLarty, J. & Brower, K. (2018), ‘Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch’, Biotechnology Journal 14(2), 1700733.Google Scholar
Walther, J., McLarty, J. & Johnson, T. (2019), ‘The effects of alternating tangential flow (ATF) residence time, hydrodynamic stress, and filtration flux on high-density perfusion cell culture’, Biotechnology and Bioengineering 116(2), 320332.Google Scholar
Walther, J., Shah, N., Hollenbach, M., Wang, J., Yu, M., Lu, J., Yang, Y., Konstantinov, K. B. & Hwang, C. (2016), ‘Overcoming process intensification challenges to deliver a manufacturable and competitive integrated continuous biomanufacturing platform’, in Cell Culture Engineering XV, Robert Kiss, Genentech Sarah Harcum, Clemson University Jeff Chalmers, Ohio State University Eds, ECI Symposium Series.Google Scholar
Wang, J., Liu, L., Ball, T., Yu, L., Li, Y. & Xing, F. (2016), ‘Revealing a 5,000-y-old beer recipe in China’, Proceedings of the National Academy of Sciences 113(23), 64446448.Google Scholar
Wang, S. B., Lee-Goldman, A., Ravikrishnan, J., Zheng, L. & Lin, H. (2018), ‘Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures’, Biotechnology and Bioengineering 115(4), 921931.Google Scholar
Wang, S., Godfrey, S., Ravikrishnan, J., Lin, H., Vogel, J. & Coffman, J. (2017), ‘Shear contributions to cell culture performance and product recovery in ATF and TFF perfusion systems’, Journal of Biotechnology 246, 5260.Google Scholar
Wang, Z., Zhuge, J., Fang, H. & Prior, B. A. (2001), ‘Glycerol production by microbial fermentation: A review’, Biotechnology Advances 19(3), 201223.Google Scholar
Warikoo, V., Godawat, R., Brower, K., Jain, S., Cummings, D., Simons, E., Johnson, T., Walther, J., Yu, M., Wright, B., McLarty, J., Karey, K. P., Hwang, C., Zhou, W., Riske, F. & Konstantinov, K. (2012), ‘Integrated continuous production of recombinant therapeutic proteins’, Biotechnology and Bioengineering 109(12), 30183029.Google Scholar
Watanabe, S., Shuttleworth, J. & Al-Rubeai, M. (2002), ‘Regulation of cell cycle and productivity in NS0 cells by the over-expression of p21CIP1’, Biotechnology and Bioengineering 77(1), 17.Google Scholar
Webster, T. A., Hadley, B. C., Hilliard, W., Jaques, C. & Mason, C. (2018), ‘Development of generic raman models for a GS-KOTM CHO platform process’, Biotechnology Progress 34(3), 730737.Google Scholar
Whelan, J., Craven, S. & Glennon, B. (2012), ‘In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors’, Biotechnology Progress (5), 13551362.Google Scholar
Whitford, W. G. (2014), ‘Single-use systems support continuous bioprocessing by perfusion culture’, in Continuous Processing in Pharmaceutical Manufacturing, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, chapter 9, pp. 183226.Google Scholar
Wold, S., Sjöström, M. & Eriksson, L. (2001), ‘PLS-regression: A basic tool of chemometrics’, Chemometrics and Intelligent Laboratory Systems 58(2), 109130.Google Scholar
Wolf, M. K. F., Closet, A., Bzowska, M., Bielser, J.-M., Souquet, J., Broly, H. & Morbidelli, M. (2019a), ‘Improved performance in mammalian cell perfusion cultures by growth inhibition’, Biotechnology Journal 14(2), 1700722.Google Scholar
Wolf, M. K. F., Lorenz, V., Karst, D. J., Souquet, J., Broly, H. & Morbidelli, M. (2018), ‘Devel-opment of a shake tube-based scale-down model for perfusion cultures’, Biotechnology and Bioengineering 115(11), 27032713.Google Scholar
Wolf, M. K. F., Müller, A., Souquet, J., Broly, H. & Morbidelli, M. (2019b), ‘Process design and development of a mammalian cell perfusion culture in shake-tube and benchtop bioreactors’, Biotechnology and Bioengineering 116(8), 19731985.Google Scholar
Wolf, M. K. F., Pechlaner, A., Lorenz, V., Karst, D. J., Souquet, J., Broly, H., & Morbidelli, M. (2019c). A two-step procedure for the design of perfusion bioreactors. Biochemical Engineering Journal, 151, 107295.Google Scholar
Wolton, A. D. & Rayner, A. (2014), ‘Lessons learned in the ballroom’, Pharmaceutical Engineering 34(4), 15.Google Scholar
Wong, Y. H., Krishnaswamy, P. R. & Teo, W. K. (1992), ‘Advanced control of pH in mammalian cell culture’, in Furusaki, S., Endo, I. & Matsuno, R., eds, Biochemical Engineering for 2001, Springer Japan, pp. 689–691.Google Scholar
Woodcock, J. (2014), ‘Modernizing pharmaceutical manufacturing: Continuous manufacturing as a key enabler, in International Symposium on Continuous Manufacturing of Pharmaceuticals, Cambridge, MA.Google Scholar
Wright, B., Bruninghaus, M., Vrabel, M., Walther, J. & Shah, N. (2015), ‘A novel seed-train process’, BioProcess International 13(3), 1625.Google Scholar
Wurm, F. M. (2004), ‘Production of recombinant protein therapeutics in cultivated mammalian cells’, Nature Biotechnology (11), 13931398.Google Scholar
Xu, P., Clark, C., Ryder, T., Sparks, C., Zhou, J., Wang, M., Russell, R. & Scott, C. (2017a), ‘Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development’, Biotechnology Progress 33(2), 478489.Google Scholar
Xu, S. & Chen, H. (2016), ‘High-density mammalian cell cultures in stirred-tank bioreactor without external pH control’, Journal of Biotechnology 231, 149159.Google Scholar
Xu, S., Gavin, J., Jiang, R. & Chen, H. (2017b), ‘Bioreactor productivity and media cost comparison for different intensified cell culture processes’, Biotechnology Progress 33(4), 867878.Google Scholar
Xu, S., Jiang, R., Chen, Y., Wang, F. & Chen, H. (2017c), ‘Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance’, Bioprocess and Biosystems Engineering 40(9), 13171326.Google Scholar
Yang, W. C., Lu, J., Kwiatkowski, C., Yuan, H., Kshirsagar, R., Ryll, T. & Huang, Y. M. (2014), ‘Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality’, Biotechnology Progress 30(3), 616625.Google Scholar
Yang, W. C., Minkler, D. F., Kshirsagar, R., Ryll, T. & Huang, Y. M. (2016), ‘Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity’, Journal of Biotechnology 217, 111.Google Scholar
Yao, T. & Asayama, Y. (2017), ‘Animal-cell culture media: History, characteristics, and current issues’, Reproductive Medicine and Biology 16(2), 99117.Google Scholar
Yeung, K. S. Y., Hoare, M., Thornhill, N. F., Williams, T. & Vaghjiani, J. D. (2002), ‘Near⣳infrared spectroscopy for bioprocess monitoring and control’, Biotechnology and Bioengineering 63(6), 684693.Google Scholar
Yoon, S. K., Choi, S. L., Song, J. Y. & Lee, G. M. (2005), ‘Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0C’, Biotechnology and Bioengineering 89(3), 345356.Google Scholar
Yoon, S. & Konstantinov, K. B. (1994), ‘Continuous, real-time monitoring of the oxygen uptake rate (OUR) in animal cell bioreactors’, Biotechnology and Bioengineering 44, 983990.Google Scholar
Yu, L. X., Baker, J., Berlam, S. C., Boam, A., Brandreth, E. J., Buhse, L., Cosgrove, T., Doleski, D., Ensor, L., Famulare, J., Ganapathy, M., Grampp, G., Hussong, D., Iser, R., Johnston, G., Kesisoglou, F., Khan, M., Kozlowski, S., Lacana, E., Lee, S. L., Miller, S., Miksinski, S. P., Moore, C. M. V., Mullin, T., Raju, G. K., Raw, A., Rosencrance, S., Rosolowsky, M., Stinavage, P., Thomas, H., Wesdyk, R., Windisch, J. & Vaithiyalingam, S. (2015), ‘Advancing product quality: A summary of the inaugural FDA/PQRI Conference’, The AAPS Journal 17(4), 10111018.Google Scholar
Zagari, F., Jordan, M., Stettler, M., Broly, H. & Wurm, F. M. (2013), ‘Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity’, New Biotechnology 30(2), 238245.Google Scholar
Zalai, D., Tobak, T. & Putics, Á. (2015), ‘Impact of apoptosis on the on-line measured dielectric properties of CHO cells’, Bioprocess and Biosystems Engineering 38(12), 24272437.Google Scholar
Zhang, A., Tsang, V. L., Moore, B., Shen, V., Huang, Y. M., Kshirsagar, R. & Ryll, T. (2015a), ‘Advanced process monitoring and feedback control to enhance cell culture process production and robustness’, Biotechnology and Bioengineering 112(12), 24952504.Google Scholar
Zhang, Y. H. P., Sun, J. & Ma, Y. (2016), ‘Biomanufacturing: History and perspective’, Journal of Industrial Microbiology and Biotechnology 44(4–5), 773784.Google Scholar
Zhang, Y., Stobbe, P., Silvander, C. O. & Chotteau, V. (2015b), ‘Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor’, Journal of Biotechnology 213, 2841.Google Scholar
Zhou, W. & Kantardjieff, A. (2014), Mammalian Cell Cultures for Biologics Manufacturing, Springer.Google Scholar
Zhu, L. K., Song, B. Y., Wang, Z. L., Monteil, D. T., Shen, X., Hacker, D. L., De Jesus, M. & Wurm, F. M. (2017), ‘Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes’, Biotechnology Progress 33(1), 192200.Google Scholar
Zhu, M. M., Goyal, A., Rank, D. L., Gupta, S. K., Vanden Boom, T. & Lee, S. S. (2005), ‘Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: A case study’, Biotechnology Progress 21(1), 7077.Google Scholar
Zoro, B. & Tait, A. (2017), ‘Development of a novel automated perfusion mini bioreactor ambr 250 perfusion’, in Integrated Continuous Biomanufacturing III, Suzanne Farid, University College London, United Kingdom Chetan Goudar, Amgen, USA Paula Alves, IBET, Portugal Veena Warikoo, Axcella Health, Inc., USA Eds, ECI Symposium Series 2017’, p. 250.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×