Published online by Cambridge University Press: 06 August 2010
Introduction
In the previous chapter we considered the various methods for relating echo attenuation with diffusion in the case of free isotropic diffusion for a single diffusing species. It was observed that the echo signal attenuation was single exponential with respect to q2 and the correct value of the diffusion coefficient was determined irrespective of the measuring time (i.e., Δ). Due to the relatively long timescale of the diffusion measurement (i.e., Δ), gradient-based measurements are sensitive to the enclosing geometry (or pore) in which the diffusion occurs (i.e., restricted diffusion) and an appropriate model must be used to account for the effects of restricted diffusion when analysing the data. The effects of the restriction can be used to provide structural information for pores with characterisitc distances (a) in the range of 0.01–100 μm. Thus, gradient methods are especially suited to studying the physics of restricted diffusion and transport in porous materials.
Non-single-exponential decays can arise in a number of ways including multicomponent systems, anisotropic or restricted diffusion. These effects are the subject of the next two chapters (more complex models are studied in Chapter 4). The relevant analytical formulae for diffusion between planes and inside spheres are presented (diffusion in cylinders is presented in the following chapter). It is remarked that these are the commonly used models for benchmarking numerical approaches. We also mention that Grebenkov has recently presented a review of NMR studies of restricted Brownian motion.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.