Published online by Cambridge University Press: 02 December 2010
This appendix provides some background material on those aspects of optimization, game theory, and optimal and robust control theory which are frequently used in the text. It also serves to introduce the reader to our notation and terminology. For more detailed expositions on the topics covered here, standard references are for game theory, for optimal control, and for robust (H∞) control.
Introduction to optimization
We discuss in this section elements of and some key results from optimization in finite-dimensional spaces, including nonlinear, convex and linear programming, and distributed computation. Before we do this, however, it will be useful to introduce the notions of sets, spaces, norms, and functionals, which are building blocks of a theory of optimization.
Sets, spaces, and norms
A set S is a collection of elements. If s is a member (element) of S, we write s ∈ S; if s does not belong to S, we write s ∈ S. If S contains a finite number of elements, it is called a finite set; otherwise it is called an infinite set. If the number of elements of an infinite set is countable (i.e. if there is a one-to-one correspondence between its elements and positive integers), we say that it is a denumerable (countable) set, otherwise it is a nondenumerable (uncountable) set.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.