Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
X-Ray Polarization Properties in the Two-Phase Model for AGN
from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Abstract
The polarization properties of a two-phase model, recently proposed to explain the X-ray emission of Active Galactic Nuclei, have been calculated for different values of the model parameters. An important signature of the model is the orthogonality between the UV/soft X-ray and hard X-ray polarization.
Recently, a two-phase model in which hot, thermal electrons in an optically thin layer comptonize the soft photons coming from an underlying cold, optically thick accretion disc, has been proposed to explain the X-ray emission of Active Galactic Nuclei.
Assuming a plane-parallel geometry, and isotropic and unpolarized disc thermal radiation, we have calculated the polarization properties as a function of the energy and of the inclination angle, for different values of τ0, the optical depth of the hot phase (which, in the adopted model, is related to the electron temperature). This was done by solving the well-known equation of radiative transfer by separating the different scattering orders. The polarization of the X-rays reflected from the disc has also been taken into account. In the figure we show the degree of polarization as a function of the energy for different values of the inclination angle (at the two extremes of the energy range ∣P∣ increases with it). The assumed energy shape of the thermal radiation is a black-body with T=50eV. Note that the hard X-rays have a negative polarization (i.e. the polarization vector lies in the meridian plane), while the polarization of the UV/soft X-rays is positive (i.e. the polarization vector is perpendicular to the meridian plane).
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 308 - 309Publisher: Cambridge University PressPrint publication year: 1994