Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- Evidence for Anisotropy and Unification
- Any Evidence against Unified Schemes?
- Spectropolarimetry of Cygnus A
- Spectropolarimetery of the Ultraluminous Infrared Galaxy IRAS 110548–1131
- Are there Dusty Tori in Seyfert 2 Galaxies?
- Imaging Spectrophotometry of Extended-Emission Seyfert Galaxies
- Spectroscopy of the Extended Emission Line Regions in NGC 4388
- Evidence and Implications of Anisotropy in Seyfert Galaxies
- Collimated Radiation in NGC 4151
- A Dust Ring around the Nucleus of NGC 4151
- Evolution of Narrow Line Clouds
- Star Formation in NGC 5953
- Stellar Activity in the Seyfert Nucleus of NGC 1808
- Direct Evidence for Anisotropy: Radio Maps and their Relation to Optical Morphology
- The Radio-Optical Connection in AGN
- Knots in Extragalactic Radio Jets
- Radio Emission and the Nature of Compact Objects in AGN
- The Radio Properties of Hidden Seyfert 1's: Implications for Unified Models
- Anisotropic Optical Continuum Emission in Radio Quasars
- The UV Component in Distant Radio Galaxies
- A Connection between BL Lacertæ Objects and Flat-Spectrum Radio Quasars?
- The Difference between BL Lacs and QSOs
- The Evolutionary Unified Scheme and the θ-z Plane
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Stellar Activity in the Seyfert Nucleus of NGC 1808
from I - Evidence and Implications of Anisotropy in AGN
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- Evidence for Anisotropy and Unification
- Any Evidence against Unified Schemes?
- Spectropolarimetry of Cygnus A
- Spectropolarimetery of the Ultraluminous Infrared Galaxy IRAS 110548–1131
- Are there Dusty Tori in Seyfert 2 Galaxies?
- Imaging Spectrophotometry of Extended-Emission Seyfert Galaxies
- Spectroscopy of the Extended Emission Line Regions in NGC 4388
- Evidence and Implications of Anisotropy in Seyfert Galaxies
- Collimated Radiation in NGC 4151
- A Dust Ring around the Nucleus of NGC 4151
- Evolution of Narrow Line Clouds
- Star Formation in NGC 5953
- Stellar Activity in the Seyfert Nucleus of NGC 1808
- Direct Evidence for Anisotropy: Radio Maps and their Relation to Optical Morphology
- The Radio-Optical Connection in AGN
- Knots in Extragalactic Radio Jets
- Radio Emission and the Nature of Compact Objects in AGN
- The Radio Properties of Hidden Seyfert 1's: Implications for Unified Models
- Anisotropic Optical Continuum Emission in Radio Quasars
- The UV Component in Distant Radio Galaxies
- A Connection between BL Lacertæ Objects and Flat-Spectrum Radio Quasars?
- The Difference between BL Lacs and QSOs
- The Evolutionary Unified Scheme and the θ-z Plane
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Abstract
Although claimed to possess a Seyfert nucleus, NGC 1808 reveals radio properties, line widths and ratios that are consistent with a few, albeit powerful, SNRs. There is as yet no compeling evidence for Seyfert activity, and this galaxy should be reclassified as a starburst galaxy (it shows many similarities to NGC 253 and M82).
Introduction
NGC 1808 is a ‘hotspot’ or Sersic–Pastoriza galaxy at a distance of 16.4 Mpc (1″ = 80 pc). Although this galaxy shows optical hotspots, these hotspots have largely disappeared at near–infrared wavelengths. It is a highly inclined and dusty Sbc spiral, with evidence for a burst of star formation in the circumnuclear region about 5 × 107 yrs ago. Two pieces of evidence suggested that NGC 1808 habours a Seyfert nucleus:
High resolution spectra revealed broad lines (Veron–Cetty & Veron 1985).
The 6cm radio luminosity of the compact nucleus is 500 times that of the most luminous Galactic supernova remnant (SNR), suggesting a non–stellar nucleus (Saikia et al. 1990).
Line Ratios
We have obtained a red spectrum of NGC 1808 (see Forbes, Boisson & Ward 1992 for details) containing the [SIII] lines at 9069 and 9532Å. Fig. 1 shows a diagnostic diagram based on the sulphur line ratios. We also show the mixing curve between the location of HII regions and Galactic SNRs. This line ratio diagram (and those for [OI]6300Å, [NII]6583Å, [SII]6717+6731Å) are consistent with a high abundance HII region and a ∼ 20% contribution from SNRs, i.e. no Seyfert nucleus is required to explain the line ratios.
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 55 - 57Publisher: Cambridge University PressPrint publication year: 1994