Book contents
- Frontmatter
- Contents
- List of contributors
- Foreword by Sidney Altman
- Foreword by Victor R. Ambros
- Introduction
- I Discovery of microRNAs in various organisms
- II MicroRNA functions and RNAi-mediated pathways
- III Computational biology of microRNAs
- IV Detection and quantitation of microRNAs
- V MicroRNAs in disease biology
- 22 Dysregulation of microRNAs in human malignancy
- 23 High throughput microRNAs profiling in cancers
- 24 Roles of microRNAs in cancer and development
- 25 miR-122 in mammalian liver
- 26 MiRNAs in glioblastoma
- 27 Role of microRNA pathway in Fragile X mental retardation
- 28 Insertion of miRNA125b-1 into immunoglobulin heavy chain gene locus mediated by V(D)J recombination in precursor B cell acute lymphoblastic leukemia
- 29 miRNAs in TPA-induced differentiation of HL-60 cells
- 30 MiRNAs in skeletal muscle differentiation
- 31 Identification and potential function of viral microRNAs
- 32 Lost in translation: regulation of HIV-1 by microRNAs and a key enzyme of RNA-directed RNA polymerase
- VI MicroRNAs in stem cell development
- Index
- Plate section
- References
27 - Role of microRNA pathway in Fragile X mental retardation
from V - MicroRNAs in disease biology
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of contributors
- Foreword by Sidney Altman
- Foreword by Victor R. Ambros
- Introduction
- I Discovery of microRNAs in various organisms
- II MicroRNA functions and RNAi-mediated pathways
- III Computational biology of microRNAs
- IV Detection and quantitation of microRNAs
- V MicroRNAs in disease biology
- 22 Dysregulation of microRNAs in human malignancy
- 23 High throughput microRNAs profiling in cancers
- 24 Roles of microRNAs in cancer and development
- 25 miR-122 in mammalian liver
- 26 MiRNAs in glioblastoma
- 27 Role of microRNA pathway in Fragile X mental retardation
- 28 Insertion of miRNA125b-1 into immunoglobulin heavy chain gene locus mediated by V(D)J recombination in precursor B cell acute lymphoblastic leukemia
- 29 miRNAs in TPA-induced differentiation of HL-60 cells
- 30 MiRNAs in skeletal muscle differentiation
- 31 Identification and potential function of viral microRNAs
- 32 Lost in translation: regulation of HIV-1 by microRNAs and a key enzyme of RNA-directed RNA polymerase
- VI MicroRNAs in stem cell development
- Index
- Plate section
- References
Summary
Introduction
Loss of the Fragile X Mental Retardation Protein (FMRP) has been identified as the major cause of Fragile X syndrome, one of the most common forms of inherited mental retardation. FMRP's RNA binding character has implicated it in translational regulation. Recently, FMRP has also been linked to the microRNA pathway that is involved in translational suppression. Current work on Fragile X syndrome strives to determine the functional role of FMRP in translational suppression of associated mRNA targets and how components of the microRNA pathway may help to mediate this function.
Clinical phenotypes of Fragile X syndrome
Fragile X syndrome is one of the most common forms of inherited mental retardation with an estimated prevalence of about 1 in 4000 males and 1 in 8000 females. The syndrome is transmitted as an X-linked dominant trait with reduced penetrance (80% in males and 30% in females). The clinical presentations of Fragile X syndrome include mild to severe mental retardation, with IQ between 20 and 70, mildly abnormal facial features of a prominent jaw and large ears, mainly in males, and macroorchidism in post-pubescent males (Crawford et al., 2001; Terracciano et al., 2005). Many patients also display subtle connective tissue abnormalities. Behaviorally, affected males tend to exhibit hyperactivity, social anxiety, preservative speech and language, tactile defensiveness, and hand biting (Crawford et al., 2001; Terracciano et al., 2005).
- Type
- Chapter
- Information
- MicroRNAsFrom Basic Science to Disease Biology, pp. 363 - 371Publisher: Cambridge University PressPrint publication year: 2007