Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T10:08:29.989Z Has data issue: false hasContentIssue false

5 - Modeling and Validation of RF Nanoelectronic Devices

Published online by Cambridge University Press:  21 September 2017

T. Mitch Wallis
Affiliation:
National Institute of Standards and Technology, Boulder
Pavel Kabos
Affiliation:
National Institute of Standards and Technology, Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hanson, G. W., “Fundamental Transmitting Properties of Carbon Nanotube Antennas,” IEEE Transactions on Antennas and Propagation 53 (2005) pp. 34263435.CrossRefGoogle Scholar
Rutherglen, C. and Burke, P. J., “Nanoelectromagnetics: Circuits and Electromagnetic Properties of Carbon Nanotubes,” Small 8 (2009) pp. 884906.CrossRefGoogle Scholar
Yogeswaran, U. and Chen, S., “A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material,” Sensors 8 (2008) pp. 290313.CrossRefGoogle ScholarPubMed
Fiedler, S., Zwanzig, M., Schnidt, R. and Scheel, W., “Nanowires in Electronics Packaging.” In Nanopackaging: Nanotechnologies and Electronics Packaging, (Morris, J. E., ed.), (Springer, 2009).Google Scholar
Rathmell, A. R., Bergin, S. M., Hua, Y. -., Li, Z. and Wiley, B. J., “The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films,” Advanced Materials 22 (2010) pp. 35583563.CrossRefGoogle ScholarPubMed
Koo, S., Edelstein, M. D., Li, Q., Richter, C. A. and Vogel, E. M., “Silicon Nanowires as Enhancement-Mode Schottky Barrier Field-Effect Transistors,” Nanotechnology 16 (2005) pp. 14821485.CrossRefGoogle Scholar
Llinas, R. R., Walton, K. D., Nakao, M., Hunter, I. and Anquetil, P. A., “Neuro-vascular Central Nervous Recording/Stimulating System: Using Nanotechnology Probes,” Journal of Nanoparticle Research 7 (2005) pp. 111127.CrossRefGoogle Scholar
Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., “Enhanced Thermoelectric Performance of Rough Silicon Nanowires,” Nature 451 (2008) pp. 163167.CrossRefGoogle ScholarPubMed
Boland, J. J., “Flexible Electronics: Within Touch of Artificial Skin,” Nature Materials 9 (2010) pp. 790792.CrossRefGoogle ScholarPubMed
Burke, P. J., “An RF Circuit Model for Carbon Nanotubes,” IEEE Transactions on Nanotechnology 2 (2003) pp. 5558.CrossRefGoogle Scholar
Burke, P. J., “Lüttinger Liquid Theory as a Model of the Gigahertz Electrical Properties of Carbon Nanotubes,” IEEE Transactions on Nanotechnology 1 (2002) pp. 129144.CrossRefGoogle Scholar
ANSYS HFSS: 3D full-wave electromagnetic field simulation. www.ansys.com/products/electronics/ansys-hfss. Accessed April 26, 2017.Google Scholar
Burger, S., et al., “JCMsuite: An Adaptive FEM Solver for Precise Simulations in Nano-optics,” Integrated Photonics and Nanophotonics Research and Applications Conference Paper ITuE4 Optical Society of America (2008).CrossRefGoogle Scholar
ANSYS. Ansoft designer. www.ansys.com/. Accessed April 26, 2017.Google Scholar
AWR microwave office: RF/microwave design software. www.awrcorp.com/products/ni-awr-design-environment/microwave-office. Accessed April 26, 2017.Google Scholar
Kim, K., Wallis, T. M., Rice, P., Chiang, C.-J., Imtiaz, A., Kabos, P., and Filipovic, D. S., “A Framework for Broadband Characterization of Individual Nanowires,” IEEE Microwave and Wireless Component Letters 20 (2010) pp. 178180.CrossRefGoogle Scholar
Kim, K., Rice, P., Wallis, T. M., Gu, D., Lim, S., Imtiaz, A., Kabos, P., and Filipovic, D. S., “High-frequency Characterization of Contact Resistance and Conductivity of Platinum Nanowires,” IEEE Transactions on Microwave Theory and Techniques 59 (2011) pp. 26472654.CrossRefGoogle Scholar
Kim, K., Characterization of Carbon Nanotubes and Nanowires and Their Application, PhD Thesis, University of Colorado (2010).Google Scholar
Smith, P. A., Nordquist, C. D., Jackson, T. N., Mayer, T. S., Martin, B. R., Mbindyo, J., and Mallouk, T. E., “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Applied Physics Letters 77 (2000) pp. 13991401.CrossRefGoogle Scholar
Molares, M. E. Toimil, Hohberger, E. M., Scheaflein, C., Blick, R. H., Neumann, R, and Trautmann, C., “Electrical Characterization of Electrochemically Grown Single Copper Nanowires,” Applied Physics Letters 82 (2003) pp. 21392141.CrossRefGoogle Scholar
Lin, J.-F., Bird, J. P., Rotkina, L., and Bennett, P. A., “Classical and Quantum Transport in Focused-Ion-Beam-Deposited Pt Nanointerconnects,”Applied Physics Letters 82 (2003) pp. 804805.CrossRefGoogle Scholar
De Marzil, G., Iacopino, D., Quinn, A. J., and Redmont, G., “Probing Intrinsic Transport Properties of Single Metal Nanowires: Direct-Write Contact Formation Using a Focused Ion Beam,” Journal of Applied Physics 96 (2004) pp. 34583462.CrossRefGoogle Scholar
Penate-Quesada, L., Mitra, J., and Dawson, P., “Non-linear Electronic Transport in Pt Nanowires Deposited by Focused Ion Beam,” Nanotechnology 18 (2007) pp. 215203215207.CrossRefGoogle Scholar
Schwamb, T., Burg, B. R., Schirmer, N. C., and Poulikakos, D., “On the Effect of the Electrical Contact Resistance in Nanodevices,” Applied Physics Letters 92 (2008) art. no. 243106.CrossRefGoogle Scholar
Mayadas, A. F. and Shatzkes, M., “Electrical-Resistivity Model for Polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces,” Physical Review B 1 (1970) pp. 13821389.CrossRefGoogle Scholar
Hao, J. and Hanson, G. W., “Infrared and Optical Properties of Carbon Nanotube Dipole Antennas,” IEEE Transactions on Nanotechnology 5 (2006) pp. 766775.CrossRefGoogle Scholar
Rice, P., Wallis, T. M., Russek, S. E. and Kabos, P., “Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts,” Nano Letters 7 (2007) pp. 10861090.CrossRefGoogle ScholarPubMed
Saluhuddin, S., Ludstrom, M., and Datta, S., “Transport Effects on Signal Propagation in Quantum Wires,” IEEE Transactions on Electron Devices 52 (2005) pp. 17341752.CrossRefGoogle Scholar
Srivastava, N. and Banerjee, K., “Performance Analysis of Carbon Nanotube Interconnects for VLSI Applications,” Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (2005) pp. 383390.Google Scholar
Awano, Y., “Carbon Nanotube Technologies for LSI via Interconnects,” IEICE Transactions on Electronics E89-C (2006) pp. 14991503.CrossRefGoogle Scholar
Nihei, M., Kawabata, A., Kondo, D., Horibe, M., Sato, S. and Awano, Y., “Electrical Properties of Carbon Nanotube Bundles for Future via Interconnects,” Japanese Journal of Applied Physics 44 (2005) pp. 16261628.CrossRefGoogle Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science 273 (1996) pp. 483487.CrossRefGoogle ScholarPubMed
Dresselhaus, M. S., Dresselhaus, G. and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, 2001).CrossRefGoogle Scholar
Sarto, M. S. and Tamburrano, A., “Electromagnetic Analysis of Radiofrequency Signal Propagation along SWCN Bundles,” Proceedings of the Sixth IEEE Conference on Nanotechnology (IEEE-NANO 2006) (2006) pp. 201204.Google Scholar
Sarto, M. S. and Tamburrano, A., “Multiconductor Transmission Line Modeling of SWCNT Bundles in Common-Mode Excitation,” Proceedings of 2006 IEEE International Symposium on Electromagnetic Compatibility (EMC 2006) (2006) pp. 466471.Google Scholar
Shuba, M. V., Maksimenko, S. A. and Lakhtakia, A., “Electromagnetic Wave Propagation in an Almost Circular Bundle of Closely Packed Metallic Carbon Nanotubes,” Physical Review B 76 (2007) art. no. 155407.CrossRefGoogle Scholar
Sarto, M. S., Tamburrano, A. and D’Amore, M., “New Electron-Waveguide-Based Modeling for Carbon Nanotube Interconnects,” IEEE Transactions on Nanotechnology 8 (2009) pp. 214225.CrossRefGoogle Scholar
Naeemi, A., Sarvari, R. and Meindl, J. D., “Performance Comparison between Carbon Nanotube and Copper Interconnects for GSI,” IEDM Technical Digest in Electron Devices Meeting (2004) pp. 699702.Google Scholar
Nieuwoudt, A. and Massoud, Y., “Evaluating the Impact of Resistance in Carbon Nanotube Bundles for VLSI Interconnect Using Diameter-dependent Modeling Techniques,” IEEE Transactions on Electron Devices 53 (2006) pp. 24602466.CrossRefGoogle Scholar
Tan, C. W. and Miao, Jianmin, “Modeling of Carbon Nanotube Vertical Interconnects as Transmission Lines,” Proceedings of the 2006 IEEE Conference on Emerging Technologies – Nanoelectronics (2006) pp. 7578.CrossRefGoogle Scholar
Wallis, T. M., “A Genetic Algorithm for Generating RF Circuit Models from Calibrated Broadband Measurements,” Proceedings of the 78th ARFTG Microwave Measurement Symposium (2011) pp. 15.Google Scholar
Pascual, J. G., Quesada, P. F., Rebenaque, D. C., Tornero, J. L. G., and Melcon, A. A., “A Multilayered Shielded Microwave Circuit Design Method Based on Genetic Algorithms and Neural Networks,” 2006 IEEE MTT-S International Microwave Symposium Digest (2006) pp. 14271430.Google Scholar
Iezekiel, S., “Application of Evolutionary Computation Techniques to Nonlinear Microwave Circuit Analysis,” Proceedings of the 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (2000) pp. 230235.CrossRefGoogle Scholar
Adalev, A. S., Korovkin, N. V., Hayakawa, M., and Nitsch, J. B., “Deembedding and Unterminating Microwave Fixtures with the Genetic Algorithm,” IEEE Transactions on Microwave Theory and Techniques 54 (2006) pp. 31313140.CrossRefGoogle Scholar
Jargon, J., Gupta, K. C., Schreurs, D., Remley, K., and DeGroot, D., “A Method of Developing Frequency-Domain Models for Nonlinear Circuits Based on Large-Signal Measurements,” Proceedings of the 58th ARFTG Microwave Measurement Symposium (2001) pp. 3548.Google Scholar
Orloff, N., Mateu, J., Murakami, M., Takeuchi, I., and Booth, J. C., “Broadband Characterization of Multilayer Dielectric Thin-Films,” 2007 IEEE MTT-S International Microwave Symposium Digest (MTT) (2007) pp. 11771180.CrossRefGoogle Scholar
Plombon, J. J., O’Brien, K. P., Gstrein, F., Dubin, V. M., and Jiao, Y., “High-Frequency Electrical Properties of Individual and Bundled Carbon Nanotubes,” Applied Physics Letters 90 (2007) art. no. 063106.CrossRefGoogle Scholar
Gu, D., Wallis, T. M., Blanchard, P., Lim, S.-H., Imtiaz, A., Bertness, K. A., Sanford, N. A., and Kabos, P., “Deembedding Parasitic Elements of GaN Nanowire Metal Semiconductor Field Effect Transistors by Use of Microwave Measurements,” Applied Physics Letters 98 (2011) art. no. 223109.CrossRefGoogle Scholar
Kim, K., Wallis, T. M., Rice, P., Chiang, C.-J., Imtiaz, A., Kabos, P., and Filipovic, D., “Modeling and Metrology of Metallic Nanowires with Application to Microwave Interconnects,” 2010 IEEE MTT-S International Microwave Symposium Digest (MTT) (2010) pp. 12921295.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×