from Implementations
Published online by Cambridge University Press: 04 August 2010
In, Harper, Honsell, and Plotkin present LF (the Logical Framework) as a general framework for the definition of logics. LF provides a uniform way of encoding a logical language, its inference rules and its proofs. In, Avron, Honsell, and Mason give a variety of examples for encoding logics in LF. In this paper we describe Elf, a meta-language intended for environments dealing with deductive systems represented in LF.
While this paper is intended to include a full description of the Elf core language, we only state, but do not prove here the most important theorems regarding the basic building blocks of Elf. These proofs are left to a future, paper. A preliminary account of Elf can be found in. The range of applications of Elf includes theorem proving and proof transformation in various logics, definition and execution of structured operational and natural semantics for programming languages, type checking and type inference, etc. The basic idea behind Elf is to unify logic definition (in the style of LF) with logic programming (in the style of λProlog, see). It achieves this unification by giving types an operational interpretation, much the same way that Prolog gives certain formulas (Horn-clauses) an operational interpretation. An alternative approach to logic programming in LF has been developed independently by Pym.
Here are some of the salient characteristics of our unified approach to logic definition and meta-programming.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.