Published online by Cambridge University Press: 01 March 2011
Preface. This paper grew out of three tutorial lectures on automatic structures given at the Logic Colloquium 2007 in Wrocław (Poland). The paper will follow the outline of the tutorial lectures, supplementing some material along the way. We discuss variants of automatic structures related to several models of computation: word automata, tree automata, Büchi automata, and Rabin automata. Word automata process finite strings, tree automata process finite labeled trees, Büchi automata process infinite strings, and Rabin automata process infinite binary labeled trees. Finite automata are the most commonly known in the general computer science community. An automaton of this type reads finite input strings from left to right, making state transitions along the way. Depending on its last state after processing a given string, the automaton either accepts or rejects the input string. Automatic structures are mathematical objects which can be represented by (word, tree, Büchi, or Rabin) automata. The study of properties of automatic structures is a relatively new and very active area of research.
We begin with some motivation and history for studying automatic structures. We introduce definitions of automatic structures, present examples, and discuss decidability and definability theorems. Next, we concentrate on finding natural isomorphism invariants for classes of automatic structures. These classes include well-founded partial orders, Boolean algebras, linear orders, trees, and finitely generated groups. Finally, we address the issue of complexity for automatic structures.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.