Published online by Cambridge University Press: 05 June 2016
Abstract. We put forward a new take on the logic of quantum mechanics, following Schrödinger's point of view that it is composition which makes quantum theory what it is, rather than its particular propositional structure due to the existence of superpositions, as proposed by Birkhoff and von Neumann. This gives rise to an intrinsically quantitative kind of logic, which truly deserves the name ‘logic’ in that it also models meaning in natural language, the latter being the origin of logic, that it supports automation, the most prominent practical use of logic, and that it supports probabilistic inference.
The physics and the logic of quantum-ish logic. In 1932 John von Neumann formalized Quantum Mechanics in his book “Mathematische Grundlagen der Quantenmechanik”. This was effectively the official birth of the quantum mechanical formalism which until now, some 75 years later, has remained the same. Quantum theory underpins so many things in our daily lives including chemical industry, energy production and information technology, which arguably makes it the most technologically successful theory of physics ever.
However, in 1935, merely three years after the birth of his brainchild, von Neumann wrote in a letter to American mathematician Garrett Birkhoff: “I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert space no more.” (sic)—for more details see [73].
Soon thereafter they published a paper entitled “The Logic of Quantum Mechanics” [13]. Their ‘quantum logic’ was cast in order-theoretic terms, very much in the spirit of the then reigning algebraic view of logic, with the distributive law being replaced with a weaker (ortho)modular law.
This resulted in a research community of quantum logicians [68, 71, 47, 30]. However, despite von Neumann's reputation, and the large body of research that has been produced in the area, one does not find a trace of this activity neither in the mainstream physics, mathematics, nor logic literature. Hence, 75 years later one may want to conclude that this activity was a failure.
What went wrong?
The mathematics of it. Let us consider the raison d'être for the Hilbert space formalism.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.