Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T15:31:25.674Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2012

M. P. Brodmann
Affiliation:
Universität Zürich
R. Y. Sharp
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Local Cohomology
An Algebraic Introduction with Geometric Applications
, pp. 480 - 484
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Y., Aoyama, ‘On the depth and the projective dimension of the canonical module’, Japanese J. Math. 6 (1980) 61–66.Google Scholar
[2] Y., Aoyama, ‘Some basic results on canonical modules’, J. Math. Kyoto Univ. 23 (1983) 85–94.Google Scholar
[3] H., Bass, ‘On the ubiquity of Gorenstein rings’, Math. Zeit. 82 (1963) 8–28.Google Scholar
[4] M., Brodmann and C., Huneke, ‘A quick proof of the Hartshorne–Lichtenbaum Vanishing Theorem’, Algebraic geometry and its applications (Springer, New York, 1994), pp. 305–308.Google Scholar
[5] M., Brodmann and J., Rung, ‘Local cohomology and the connectedness dimension in algebraic varieties’, Comment. Math. Helvetici 61 (1986) 481–490.Google Scholar
[6] M., Brodmann and R. Y., Sharp, ‘Supporting degrees of multi-graded local cohomology modules’, J. Algebra 321 (2009) 450–482.Google Scholar
[7] W., Bruns and J., Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Revised Edition (Cambridge University Press, Cambridge, 1998).Google Scholar
[8] F. W., Call and R. Y., Sharp, ‘A short proof of the local Lichtenbaum– Hartshorne Theorem on the vanishing of local cohomology’, Bull. London Math. Soc. 18 (1986) 261–264.Google Scholar
[9] C., D'cruz, V., Kodiyalam and J. K., Verma, ‘Bounds on the a-invariant and reduction numbers of ideals’, J. Algebra 274 (2004) 594–601.Google Scholar
[10] D., Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150 (Springer, New York, 1994).Google Scholar
[11] D., Eisenbud and S., Goto, ‘Linear free resolutions and minimal multiplicity’, J. Algebra 88 (1984) 89–133.Google Scholar
[12] J., Elias, ‘Depth of higher associated graded rings’, J. London Math. Soc. (2) 70 (2004) 41–58.Google Scholar
[13] F., Enriques, Le superficie algebriche (Zanichelli, Bologna, 1949).Google Scholar
[14] G., Faltings, ‘ ‘Über die Annulatoren lokaler Kohomologiegruppen’, Archiv der Math. 30 (1978) 473–476.Google Scholar
[15] G., Faltings, ‘Algebraisation of some formal vector bundles’, Annals of Math. 110 (1979) 501–514.Google Scholar
[16] G., Faltings, ‘Der Endlichkeitssatz in der lokalen Kohomologie’, Math. Annalen 255 (1981) 45–56.Google Scholar
[17] R., Fedder and K., Watanabe, ‘A characterization of F -regularity in terms of F -purity’, Commutative algebra: proceedings of a microprogram held June 15 — July 2, 1987, Mathematical Sciences Research Institute Publications 15 (Springer, New York, 1989), pp. 227–245.Google Scholar
[18] D., Ferrand and M., Raynaud, ‘Fibres formelles d'un anneau local Noethérien’, Ann. Sci. École Norm. Sup. 3 (1970) 295–311.Google Scholar
[19] H.-B., Foxby, ‘Gorenstein modules and related modules’, Math. Scand. 31 (1972) 267–284.Google Scholar
[20] W., Fulton and J., Hansen, ‘A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings’, Annals of Math. 110 (1979) 159–166.Google Scholar
[21] P., Gabriel, ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962) 323–448.Google Scholar
[22] S., Goto and K., Watanabe, ‘On graded rings, II (ℤn-graded rings)’, Tokyo J. Math. 1 (1978) 237–261.Google Scholar
[23] A., Grothendieck, ‘Sur la classification des fibrés holomorphes sur la sphère de Riemann’, American J. Math. 79 (1957) 121–138.Google Scholar
[24] A., Grothendieck, ‘Éléments de géométrie algébrique IV: étude locale des schémas et des morphismes de schémas’, Institut des Hautes Études Scientifiques Publications Mathématiques 24 (1965) 5–231.Google Scholar
[25] A., Grothendieck, Local cohomology, Lecture Notes in Mathematics 41 (Springer, Berlin, 1967).Google Scholar
[26] A., Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Séminaire de Géométrie Algébrique du Bois-Marie 1962 (North-Holland, Amsterdam, 1968).Google Scholar
[27] J., Harris, Algebraic geometry: a first course, Graduate Texts in Mathematics 133 (Springer, New York, 1992).Google Scholar
[28] R., Hartshorne, ‘Complete intersections and connectedness’, American J. Math. 84 (1962) 497–508.Google Scholar
[29] R., Hartshorne, ‘Cohomological dimension of algebraic varieties’, Annals of Math. 88 (1968) 403–450.Google Scholar
[30] R., Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (Springer, New York, 1977).Google Scholar
[31] M., Herrmann, E., Hyry and T., Korb, ‘On a-invariant formulas’, J. Algebra 227 (2000) 254–267.Google Scholar
[32] M., Herrmann, S., Ikeda and U., Orbanz, Equimultiplicity and blowing up (Springer, Berlin, 1988).Google Scholar
[33] J., Herzog and E., Kunz, Der kanonische Modul eines Cohen–Macaulay-Rings, Lecture Notes in Mathematics 238 (Springer, Berlin, 1971).Google Scholar
[34] J., Herzog and E., Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1971 (Springer, Berlin, 1971).Google Scholar
[35] L. T., Hoa, ‘Reduction numbers and Rees algebras of powers of an ideal’, Proc. American Math. Soc. 119 (1993) 415–422.Google Scholar
[36] L. T., Hoa and C., Miyazaki, ‘Bounds on Castelnuovo–Mumford regularity for generalized Cohen–Macaulay graded rings’, Math. Annalen 301 (1995) 587–598.Google Scholar
[37] M., Hochster, ‘Contracted ideals from integral extensions of regular rings’, Nagoya Math. J. 51 (1973) 25–43.Google Scholar
[38] M., Hochster and C., Huneke, ‘Tight closure, invariant theory and the Briančon–Skoda Theorem’, J. American Math. Soc. 3 (1990) 31–116.Google Scholar
[39] M., Hochster and C., Huneke, ‘Indecomposable canonical modules and connectedness’, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemporary Mathematics 159 (American Mathematical Society, Providence, RI, 1994), pp. 197–208.Google Scholar
[40] G., Horrocks, ‘Vector bundles on the punctured spectrum of a local ring’, Proc. London Math. Soc. (3) 14 (1964) 689–713.Google Scholar
[41] C., Huneke, Tight closure and its applications, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 88 (American Mathematical Society, Providence, RI, 1996).Google Scholar
[42] C., Huneke, ‘Tight closure, parameter ideals and geometry’, Six lectures on commutative algebra (Bellaterra, 1996), Progress in Mathematics 166 (Birkhäauser, Basel, 1998), pp. 187–239.Google Scholar
[43] C. L., Huneke and R. Y., Sharp, ‘Bass numbers of local cohomology modules’, Transactions American Math. Soc. 339 (1993) 765–779.Google Scholar
[44] D., Kirby, ‘Coprimary decomposition of Artinian modules’, J. London Math. Soc. (2) 6 (1973) 571–576.Google Scholar
[45] I. G., Macdonald, ‘Secondary representation of modules over a commutative ring’, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, 1973) 23–43.Google Scholar
[46] I. G., Macdonald, ‘A note on local cohomology’, J. London Math. Soc. (2) 10 (1975) 263–264.Google Scholar
[47] I. G., Macdonald and R. Y., Sharp, ‘An elementary proof of the non-vanishing of certain local cohomology modules’, Quart. J. Math. Oxford (2) 23 (1972) 197–204.Google Scholar
[48] T., Marley, ‘The reduction number of an ideal and the local cohomology of the associated graded ring’, Proc. American Math. Soc. 117 (1993) 335–341.Google Scholar
[49] E., Matlis, ‘Injective modules over Noetherian rings’, Pacific J. Math. 8 (1958) 511–528.Google Scholar
[50] H., Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8 (Cambridge University Press, Cambridge, 1986).Google Scholar
[51] L., Melkersson, ‘On asymptotic stability for sets of prime ideals connected with the powers of an ideal’, Math. Proc. Cambridge Philos. Soc. 107 (1990) 267–271.Google Scholar
[52] L., Melkersson, ‘Some applications of a criterion for artinianness of a module’, J. Pure and Applied Algebra 101 (1995) 291–303.Google Scholar
[53] E., Miller and B., Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics 227 (Springer, New York, 2005).Google Scholar
[54] D., Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies 59 (Princeton University Press, Princeton, NJ, 1966).Google Scholar
[55] M. P., Murthy, ‘A note on factorial rings’, Arch. Math. (Basel) 15 (1964) 418–420.Google Scholar
[56] M., Nagata, Local rings (Interscience, New York, 1962).Google Scholar
[57] U., Nagel, ‘On Castelnuovo's regularity and Hilbert functions’, Compositio Math. 76 (1990) 265–275.Google Scholar
[58] U., Nagel and P., Schenzel, ‘Cohomological annihilators and Castelnuovo– Mumford regularity’, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemporary Mathematics 159 (American Mathematical Society, Providence, RI, 1994), pp. 307–328.Google Scholar
[59] D. G., Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics 42 (Cambridge University Press, Cambridge, 1953).Google Scholar
[60] D. G., Northcott, An introduction to homological algebra (Cambridge University Press, Cambridge, 1960).Google Scholar
[61] D. G., Northcott, Lessons on rings, modules and multiplicities (Cambridge University Press, Cambridge, 1968).Google Scholar
[62] D. G., Northcott, ‘Generalized Koszul complexes and Artinian modules’, Quart. J. Math. Oxford (2) 23 (1972) 289–297.Google Scholar
[63] D. G., Northcott and D., Rees, ‘Reductions of ideals in local rings’, Proc. Cambridge Philos. Soc. 50 (1954) 145–158.Google Scholar
[64] L., O'Carroll, ‘On the generalized fractions of Sharp and Zakeri’, J. London Math. Soc. (2) 28 (1983) 417–427.Google Scholar
[65] A., Ooishi, ‘Castelnuovo's regularity of graded rings and modules’, Hiroshima Math. J. 12 (1982) 627–644.Google Scholar
[66] C., Peskine and L., Szpiro, ‘Dimension projective finie et cohomologie locale’, Institut des Hautes Études Scientifiques Publications Mathématiques 42 (1973) 323–395.Google Scholar
[67] L. J., Ratliff Jr., ‘Characterizations of catenary rings’, American J. Math. 93 (1971) 1070–1108.Google Scholar
[68] D., Rees, ‘The grade of an ideal or module’, Proc. Cambridge Philos. Soc. 53 (1957) 28–42.Google Scholar
[69] I., Reiten, ‘The converse to a theorem of Sharp on Gorenstein modules’, Proc. American Math. Soc. 32 (1972) 417–420.Google Scholar
[70] P., Roberts, Homological invariants of modules over commutative rings, Séminaire de Mathématiques Supérieures (Les Presses de l'Université de Montréal, Montréal, 1980).Google Scholar
[71] J. J., Rotman, An introduction to homological algebra (Academic Press, Orlando, FL, 1979).Google Scholar
[72] P., Schenzel, ‘Einige Anwendungen der lokalen Dualitäat und verallgemeinerte Cohen–Macaulay-Moduln’, Math. Nachr. 69 (1975) 227–242.Google Scholar
[73] P., Schenzel, ‘Flatness and ideal-transforms of finite type’, Commutative algebra, Proceedings, Salvador 1988, Lecture Notes in Mathematics 1430 (Springer, Berlin, 1990), pp. 88–97.Google Scholar
[74] P., Schenzel, ‘On the use of local cohomology in algebra and geometry’, Six lectures on commutative algebra (Bellaterra, 1996), Progress in Mathematics 166 (Birkhäauser, Basel, 1998), pp. 241–292.Google Scholar
[75] P., Schenzel, ‘On birational Macaulayfications and Cohen–Macaulay canonical modules’, J. Algebra 275 (2004) 751–770.Google Scholar
[76] P., Schenzel, N. V., Trung and N. T., Cuong, ‘Verallgemeinerte Cohen– Macaulay-Moduln’, Math. Nachr. 85 (1978) 57–73.Google Scholar
[77] J.-P., Serre, ‘Faisceaux algébriques cohérents’, Annals of Math. 61 (1955) 197–278.Google Scholar
[78] F., Severi, Serie, sistemi d'equivalenza e corrispondenze algebriche sulle varietà algebriche (a cura di F. Conforto e di E. Martinelli, Roma, 1942).Google Scholar
[79] R. Y., Sharp, ‘Finitely generated modules of finite injective dimension over certain Cohen–Macaulay rings’, Proc. London Math. Soc. (3) 25 (1972) 303–328.Google Scholar
[80] R. Y., Sharp, ‘On the attached prime ideals of certain Artinian local cohomology modules’, Proc. Edinburgh Math. Soc. (2) 24 (1981) 9–14.Google Scholar
[81] R. Y., Sharp, Steps in commutative algebra: Second edition, London Mathematical Society Student Texts 51 (Cambridge University Press, Cambridge, 2000).Google Scholar
[82] R. Y., Sharp and M., Tousi, ‘A characterization of generalized Hughes complexes’, Math. Proc. Cambridge Philos. Soc. 120 (1996) 71–85.Google Scholar
[83] J. R., Strooker, Homological questions in local algebra, London Mathematical Society Lecture Notes 145 (Cambridge University Press, Cambridge, 1990).Google Scholar
[84] J., Stäckrad and W., Vogel, Buchsbaum rings and applications (Springer, Berlin, 1986).Google Scholar
[85] K., Suominen, ‘Localization of sheaves and Cousin complexes’, Acta Mathematica 131 (1973) 27–41.Google Scholar
[86] N. V., Trung, ‘Reduction exponent and degree bound for the defining equations of graded rings’, Proc. American Math. Soc. 101 (1987) 229–236.Google Scholar
[87] N. V., Trung, ‘The largest non-vanishing degree of graded local cohomology modules’, J. Algebra 215 (1999) 481–499.Google Scholar
[88] O., Zariski, ‘Complete linear systems on normal varieties and a generalization of a lemma of Enriques–Severi’, Annals of Math. 55 (1952) 552–592.Google Scholar
[89] O., Zariski and P., Samuel, Commutative algebra, Vol. II, Graduate Texts in Mathematics 29 (Springer, Berlin, 1975).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • M. P. Brodmann, Universität Zürich, R. Y. Sharp, University of Sheffield
  • Book: Local Cohomology
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044059.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • M. P. Brodmann, Universität Zürich, R. Y. Sharp, University of Sheffield
  • Book: Local Cohomology
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044059.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • M. P. Brodmann, Universität Zürich, R. Y. Sharp, University of Sheffield
  • Book: Local Cohomology
  • Online publication: 05 December 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139044059.024
Available formats
×