References[1] Y., Aoyama, ‘On the depth and the projective dimension of the canonical module’, Japanese J. Math. 6 (1980) 61–66.
[2] Y., Aoyama, ‘Some basic results on canonical modules’, J. Math. Kyoto Univ. 23 (1983) 85–94.
[3] H., Bass, ‘On the ubiquity of Gorenstein rings’, Math. Zeit. 82 (1963) 8–28.
[4] M., Brodmann and C., Huneke, ‘A quick proof of the Hartshorne–Lichtenbaum Vanishing Theorem’, Algebraic geometry and its applications (Springer, New York, 1994), pp. 305–308.
[5] M., Brodmann and J., Rung, ‘Local cohomology and the connectedness dimension in algebraic varieties’, Comment. Math. Helvetici 61 (1986) 481–490.
[6] M., Brodmann and R. Y., Sharp, ‘Supporting degrees of multi-graded local cohomology modules’, J. Algebra 321 (2009) 450–482.
[7] W., Bruns and J., Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Revised Edition (Cambridge University Press, Cambridge, 1998).
[8] F. W., Call and R. Y., Sharp, ‘A short proof of the local Lichtenbaum– Hartshorne Theorem on the vanishing of local cohomology’, Bull. London Math. Soc. 18 (1986) 261–264.
[9] C., D'cruz, V., Kodiyalam and J. K., Verma, ‘Bounds on the a-invariant and reduction numbers of ideals’, J. Algebra 274 (2004) 594–601.
[10] D., Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150 (Springer, New York, 1994).
[11] D., Eisenbud and S., Goto, ‘Linear free resolutions and minimal multiplicity’, J. Algebra 88 (1984) 89–133.
[12] J., Elias, ‘Depth of higher associated graded rings’, J. London Math. Soc. (2) 70 (2004) 41–58.
[13] F., Enriques, Le superficie algebriche (Zanichelli, Bologna, 1949).
[14] G., Faltings, ‘ ‘Über die Annulatoren lokaler Kohomologiegruppen’, Archiv der Math. 30 (1978) 473–476.
[15] G., Faltings, ‘Algebraisation of some formal vector bundles’, Annals of Math. 110 (1979) 501–514.
[16] G., Faltings, ‘Der Endlichkeitssatz in der lokalen Kohomologie’, Math. Annalen 255 (1981) 45–56.
[17] R., Fedder and K., Watanabe, ‘A characterization of F -regularity in terms of F -purity’, Commutative algebra: proceedings of a microprogram held June 15 — July 2, 1987, Mathematical Sciences Research Institute Publications 15 (Springer, New York, 1989), pp. 227–245.
[18] D., Ferrand and M., Raynaud, ‘Fibres formelles d'un anneau local Noethérien’, Ann. Sci. École Norm. Sup. 3 (1970) 295–311.
[19] H.-B., Foxby, ‘Gorenstein modules and related modules’, Math. Scand. 31 (1972) 267–284.
[20] W., Fulton and J., Hansen, ‘A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings’, Annals of Math. 110 (1979) 159–166.
[21] P., Gabriel, ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962) 323–448.
[22] S., Goto and K., Watanabe, ‘On graded rings, II (ℤn-graded rings)’, Tokyo J. Math. 1 (1978) 237–261.
[23] A., Grothendieck, ‘Sur la classification des fibrés holomorphes sur la sphère de Riemann’, American J. Math. 79 (1957) 121–138.
[24] A., Grothendieck, ‘Éléments de géométrie algébrique IV: étude locale des schémas et des morphismes de schémas’, Institut des Hautes Études Scientifiques Publications Mathématiques 24 (1965) 5–231.
[25] A., Grothendieck, Local cohomology, Lecture Notes in Mathematics 41 (Springer, Berlin, 1967).
[26] A., Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Séminaire de Géométrie Algébrique du Bois-Marie 1962 (North-Holland, Amsterdam, 1968).
[27] J., Harris, Algebraic geometry: a first course, Graduate Texts in Mathematics 133 (Springer, New York, 1992).
[28] R., Hartshorne, ‘Complete intersections and connectedness’, American J. Math. 84 (1962) 497–508.
[29] R., Hartshorne, ‘Cohomological dimension of algebraic varieties’, Annals of Math. 88 (1968) 403–450.
[30] R., Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52 (Springer, New York, 1977).
[31] M., Herrmann, E., Hyry and T., Korb, ‘On a-invariant formulas’, J. Algebra 227 (2000) 254–267.
[32] M., Herrmann, S., Ikeda and U., Orbanz, Equimultiplicity and blowing up (Springer, Berlin, 1988).
[33] J., Herzog and E., Kunz, Der kanonische Modul eines Cohen–Macaulay-Rings, Lecture Notes in Mathematics 238 (Springer, Berlin, 1971).
[34] J., Herzog and E., Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1971 (Springer, Berlin, 1971).
[35] L. T., Hoa, ‘Reduction numbers and Rees algebras of powers of an ideal’, Proc. American Math. Soc. 119 (1993) 415–422.
[36] L. T., Hoa and C., Miyazaki, ‘Bounds on Castelnuovo–Mumford regularity for generalized Cohen–Macaulay graded rings’, Math. Annalen 301 (1995) 587–598.
[37] M., Hochster, ‘Contracted ideals from integral extensions of regular rings’, Nagoya Math. J. 51 (1973) 25–43.
[38] M., Hochster and C., Huneke, ‘Tight closure, invariant theory and the Briančon–Skoda Theorem’, J. American Math. Soc. 3 (1990) 31–116.
[39] M., Hochster and C., Huneke, ‘Indecomposable canonical modules and connectedness’, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemporary Mathematics 159 (American Mathematical Society, Providence, RI, 1994), pp. 197–208.
[40] G., Horrocks, ‘Vector bundles on the punctured spectrum of a local ring’, Proc. London Math. Soc. (3) 14 (1964) 689–713.
[41] C., Huneke, Tight closure and its applications, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 88 (American Mathematical Society, Providence, RI, 1996).
[42] C., Huneke, ‘Tight closure, parameter ideals and geometry’, Six lectures on commutative algebra (Bellaterra, 1996), Progress in Mathematics 166 (Birkhäauser, Basel, 1998), pp. 187–239.
[43] C. L., Huneke and R. Y., Sharp, ‘Bass numbers of local cohomology modules’, Transactions American Math. Soc. 339 (1993) 765–779.
[44] D., Kirby, ‘Coprimary decomposition of Artinian modules’, J. London Math. Soc. (2) 6 (1973) 571–576.
[45] I. G., Macdonald, ‘Secondary representation of modules over a commutative ring’, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, 1973) 23–43.
[46] I. G., Macdonald, ‘A note on local cohomology’, J. London Math. Soc. (2) 10 (1975) 263–264.
[47] I. G., Macdonald and R. Y., Sharp, ‘An elementary proof of the non-vanishing of certain local cohomology modules’, Quart. J. Math. Oxford (2) 23 (1972) 197–204.
[48] T., Marley, ‘The reduction number of an ideal and the local cohomology of the associated graded ring’, Proc. American Math. Soc. 117 (1993) 335–341.
[49] E., Matlis, ‘Injective modules over Noetherian rings’, Pacific J. Math. 8 (1958) 511–528.
[50] H., Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8 (Cambridge University Press, Cambridge, 1986).
[51] L., Melkersson, ‘On asymptotic stability for sets of prime ideals connected with the powers of an ideal’, Math. Proc. Cambridge Philos. Soc. 107 (1990) 267–271.
[52] L., Melkersson, ‘Some applications of a criterion for artinianness of a module’, J. Pure and Applied Algebra 101 (1995) 291–303.
[53] E., Miller and B., Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics 227 (Springer, New York, 2005).
[54] D., Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies 59 (Princeton University Press, Princeton, NJ, 1966).
[55] M. P., Murthy, ‘A note on factorial rings’, Arch. Math. (Basel) 15 (1964) 418–420.
[56] M., Nagata, Local rings (Interscience, New York, 1962).
[57] U., Nagel, ‘On Castelnuovo's regularity and Hilbert functions’, Compositio Math. 76 (1990) 265–275.
[58] U., Nagel and P., Schenzel, ‘Cohomological annihilators and Castelnuovo– Mumford regularity’, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemporary Mathematics 159 (American Mathematical Society, Providence, RI, 1994), pp. 307–328.
[59] D. G., Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics 42 (Cambridge University Press, Cambridge, 1953).
[60] D. G., Northcott, An introduction to homological algebra (Cambridge University Press, Cambridge, 1960).
[61] D. G., Northcott, Lessons on rings, modules and multiplicities (Cambridge University Press, Cambridge, 1968).
[62] D. G., Northcott, ‘Generalized Koszul complexes and Artinian modules’, Quart. J. Math. Oxford (2) 23 (1972) 289–297.
[63] D. G., Northcott and D., Rees, ‘Reductions of ideals in local rings’, Proc. Cambridge Philos. Soc. 50 (1954) 145–158.
[64] L., O'Carroll, ‘On the generalized fractions of Sharp and Zakeri’, J. London Math. Soc. (2) 28 (1983) 417–427.
[65] A., Ooishi, ‘Castelnuovo's regularity of graded rings and modules’, Hiroshima Math. J. 12 (1982) 627–644.
[66] C., Peskine and L., Szpiro, ‘Dimension projective finie et cohomologie locale’, Institut des Hautes Études Scientifiques Publications Mathématiques 42 (1973) 323–395.
[67] L. J., Ratliff Jr., ‘Characterizations of catenary rings’, American J. Math. 93 (1971) 1070–1108.
[68] D., Rees, ‘The grade of an ideal or module’, Proc. Cambridge Philos. Soc. 53 (1957) 28–42.
[69] I., Reiten, ‘The converse to a theorem of Sharp on Gorenstein modules’, Proc. American Math. Soc. 32 (1972) 417–420.
[70] P., Roberts, Homological invariants of modules over commutative rings, Séminaire de Mathématiques Supérieures (Les Presses de l'Université de Montréal, Montréal, 1980).
[71] J. J., Rotman, An introduction to homological algebra (Academic Press, Orlando, FL, 1979).
[72] P., Schenzel, ‘Einige Anwendungen der lokalen Dualitäat und verallgemeinerte Cohen–Macaulay-Moduln’, Math. Nachr. 69 (1975) 227–242.
[73] P., Schenzel, ‘Flatness and ideal-transforms of finite type’, Commutative algebra, Proceedings, Salvador 1988, Lecture Notes in Mathematics 1430 (Springer, Berlin, 1990), pp. 88–97.
[74] P., Schenzel, ‘On the use of local cohomology in algebra and geometry’, Six lectures on commutative algebra (Bellaterra, 1996), Progress in Mathematics 166 (Birkhäauser, Basel, 1998), pp. 241–292.
[75] P., Schenzel, ‘On birational Macaulayfications and Cohen–Macaulay canonical modules’, J. Algebra 275 (2004) 751–770.
[76] P., Schenzel, N. V., Trung and N. T., Cuong, ‘Verallgemeinerte Cohen– Macaulay-Moduln’, Math. Nachr. 85 (1978) 57–73.
[77] J.-P., Serre, ‘Faisceaux algébriques cohérents’, Annals of Math. 61 (1955) 197–278.
[78] F., Severi, Serie, sistemi d'equivalenza e corrispondenze algebriche sulle varietà algebriche (a cura di F. Conforto e di E. Martinelli, Roma, 1942).
[79] R. Y., Sharp, ‘Finitely generated modules of finite injective dimension over certain Cohen–Macaulay rings’, Proc. London Math. Soc. (3) 25 (1972) 303–328.
[80] R. Y., Sharp, ‘On the attached prime ideals of certain Artinian local cohomology modules’, Proc. Edinburgh Math. Soc. (2) 24 (1981) 9–14.
[81] R. Y., Sharp, Steps in commutative algebra: Second edition, London Mathematical Society Student Texts 51 (Cambridge University Press, Cambridge, 2000).
[82] R. Y., Sharp and M., Tousi, ‘A characterization of generalized Hughes complexes’, Math. Proc. Cambridge Philos. Soc. 120 (1996) 71–85.
[83] J. R., Strooker, Homological questions in local algebra, London Mathematical Society Lecture Notes 145 (Cambridge University Press, Cambridge, 1990).
[84] J., Stäckrad and W., Vogel, Buchsbaum rings and applications (Springer, Berlin, 1986).
[85] K., Suominen, ‘Localization of sheaves and Cousin complexes’, Acta Mathematica 131 (1973) 27–41.
[86] N. V., Trung, ‘Reduction exponent and degree bound for the defining equations of graded rings’, Proc. American Math. Soc. 101 (1987) 229–236.
[87] N. V., Trung, ‘The largest non-vanishing degree of graded local cohomology modules’, J. Algebra 215 (1999) 481–499.
[88] O., Zariski, ‘Complete linear systems on normal varieties and a generalization of a lemma of Enriques–Severi’, Annals of Math. 55 (1952) 552–592.
[89] O., Zariski and P., Samuel, Commutative algebra, Vol. II, Graduate Texts in Mathematics 29 (Springer, Berlin, 1975).