Published online by Cambridge University Press: 03 May 2011
Light gets scattered when it encounters an obstacle or inhomogeneity even on a microscopic scale. A well-known example is the blue color of the sky, resulting from Rayleigh scattering of light by molecules in the air. Such redirection of energy can be used to amplify signals by taking power from a “pump” wave co-propagating with the signal in an appropriate optical medium. An example of this is provided by Raman scattering. Having said that, it is important to realize that scattering does not always occur when light interacts with a material [1]. In some cases, photons get absorbed in the medium, and their energy is eventually dissipated as heat. In other cases, the absorbed light may be re-emitted after a relatively short time delay in the form of a less energetic photon [2], a process known as fluorescence. If fluorescence takes place after a considerable delay, the same process is called phosphorescence [3].
For a photon to get absorbed by a material, its energy must correspond to the energy required by the atoms or molecules of that material to make a transition from one energy level to a higher energy level. In contrast, the scattering of photons from a material can take place without such a requirement. However, if the energy of the incident photon is close to an allowed energy transition, significant enhancement of scattering can occur.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.