Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T01:39:04.827Z Has data issue: false hasContentIssue false

8 - Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

The McMurdo Dry Valleys (MDV) comprise a mosaic of habitats at scales ranging from micrometers to the kilometer scale. The varied landscape of the valleys, combined with strong physical and chemical gradients within and across the terrestrial and aquatic habitats, yields an ecosystem dominated by microbes that is both complex and diverse (Gordon et al.,2000; Smith et al., 2006; Mikucki and Priscu, 2007). The cold desert environment is analogous to icy conditions found on other icy worlds. For example, the low organic carbon, cold, arid soils of the MDV are similar to Mars' present-day terrestrial environment and the glaciers and ice-covered lakes of the MDV are comparable to conditions that existed on Mars in the past (Priscu et al., 1998; Wynn-Williams and Edwards, 2000; McKay et al., 2005). If there are extant or extinct life forms on Mars, they likely experience similar physical constraints and environmental challenges as do microbial communities in the MDV. Therefore, the MDV provide a unique earthly setting to gain insight into the diversity, adaptation, and function of life on other icy worlds. Here we describe the ecological processes and conditions that contribute to the microbial diversity observed in the MDV and relate these to potential life on Mars.

The McMurdo Dry Valley ecosystem

The MDV include a variety of unique habitats that are connected physically, chemically, and energetically (Fig. 8.1). Solar radiation and wind are the underlying forces that determine the existence and distribution of biota throughout the valleys (Dana et al., 1998; Nkem et al., 2006).

Type
Chapter
Information
Life in Antarctic Deserts and other Cold Dry Environments
Astrobiological Analogs
, pp. 221 - 257
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B. J., Bardgett, R. D., Ayres, E., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018.CrossRefGoogle Scholar
Adams, E. E., Priscu, J. C., Fritsen, C. H., Smith, S. R., and Brackman, S. L. (1998). Permanent ice covers of the McMurdo Dry Valley lakes, Antarctica: bubble formation and metamorphism. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 281–296.Google Scholar
Aiken, G., McKnight, D., Harnish, R., and Wershaw, R. (1996). Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry, 34, 157–188.CrossRefGoogle Scholar
Aislabie, J. M., Chhour, K. L., Saul, D. J., et al. (2006). Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3041–3056.CrossRefGoogle Scholar
Aislabie, J. M., Jordan, S., and Barker, G. M. (2008). Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144, 9–20.CrossRefGoogle Scholar
Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.Google ScholarPubMed
Angino, E. E., Armitage, K. B., and Tash, J. C. (1964). Physicochemical limnology of Lake Bonney, Antarctica. Limnology and Oceanography, 9, 207–217.CrossRefGoogle Scholar
Armitage, K. B. and House, H. B. (1962). A limnological reconnaissance in the area of McMurdo Sound, Antarctica. Limnology and Oceanography, 7, 36–41.CrossRefGoogle Scholar
Ayres, E. B., Adams, B. J., Barrett, J. E., Virginia, R. A., and Wall, D. H. (2007). Unique similarity of faunal communities across aquatic-terrestrial interfaces in a polar desert ecosystem: soil-sediment boundaries and faunal community. Ecosystems, 10, 523–535.CrossRefGoogle Scholar
Bamforth, S. S., Wall, D. H., and Virginia, R. A. (2005). Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biology, 28, 756–762.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Wall, D. H., et al. (2004). Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology, 85, 3105–3118.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Wall, D. H., et al. (2006). Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science, 18, 535–548.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Lyons, W. B., et al. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research, 112, G01010.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Wall, D. H., et al. (2008). Persistent effects of a discrete climate event on a polar desert ecosystem. Global Change Biology, doi: 10.1111/j.1365–2486.2008.01641.x.CrossRef
Bate, D. B., Barrett, J. E., Poage, M. A., and Virginia, R. A. (2007). Soil phosphorus cycling in an Antarctic polar desert. Geoderma, 144, 21–31.CrossRefGoogle Scholar
Baublis, J. A., Wharton, R. A., and Volz, P. A. (1991). Diversity of micro-fungi in an Antarctic dry valley. Journal of Basic Microbiology, 31, 3–12.CrossRefGoogle Scholar
Bell, W. and Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to extracellular products. Biological Bulletin, 143, 265.CrossRefGoogle Scholar
Borneman, J. and Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology, 63, 2647–2653.Google ScholarPubMed
Bowman, J. P., McCammon, S. A., Rea, S. M., and McMeekin, T. A. (2000). The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiology Letters, 183, 81–88.CrossRefGoogle ScholarPubMed
Brambilla, E., Hippe, H., Hagelstein, A., Tindall, B. J., and Stackebrandt, E. (2001). 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles, 5, 23–33.CrossRefGoogle ScholarPubMed
Burkins, M. B., Virginia, R. A., and Wall, D. H. (2001). Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 113–125.CrossRefGoogle Scholar
Cameron, R. E., King, J., and David, C. N. (1970). Soil microbial ecology of Wheeler Valley, Antarctica. Soil Science, 109, 110–120.CrossRefGoogle Scholar
Campbell, I. B., Claridge, G. G., Campbell, D. I., and Balks, M. R. (1998). The soil environment of the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 297–322.Google Scholar
Chesson, P. and Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist, 150, 519–553.CrossRefGoogle ScholarPubMed
Chesson, P., Gebauer, R. L. E., Schwinning, S., et al. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141, 236–253.CrossRefGoogle ScholarPubMed
Christner, B. C., Kvitko, 2nd, B. H., and Reeve, J. N. (2003). Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7, 177–183.Google ScholarPubMed
Clocksin, K. M., Jung, D. O., and Madigan, M. T. (2007). Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 73, 3077–3083.CrossRefGoogle ScholarPubMed
Connell, J. H. (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42, 710–723.CrossRefGoogle Scholar
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a non-equilibrium state. Science, 199, 1302–1310.CrossRefGoogle Scholar
Connell, L., Redman, R., Craig, S., and Rodriguez, R. (2006). Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology and Biochemistry, 38, 3083–3094.CrossRefGoogle Scholar
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G., and House, H. R. (1998). Hydrological processes influencing streamflow variation in Fryxell Basin, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 93–108.Google Scholar
Cowan, D. A. and Tow, L. A. (2004). Endangered Antarctic environments. Annual Review of Microbiology, 58, 649–690.CrossRefGoogle ScholarPubMed
Cowan, D. A., Russell, N. J., Mamais, A., and Sheppard, D. M. (2002). Antarctic dry valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles, 6, 431–436.CrossRefGoogle ScholarPubMed
Cozzetto, K., McKnight, D., Nylen, T., and Fountain, A. (2006). Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell Basin, Antarctica. Advances in Water Resources, 29, 130–153.CrossRefGoogle Scholar
Dale, T. M., Skotnicki, M. L., Adam, K. D., and Selkirk, P. M. (1999). Genetic diversity in the moss Hennediella heimii in Miers Valley, southern Victoria Land, Antarctica. Polar Biology, 21, 228–233.CrossRefGoogle Scholar
Dana, G. L., Wharton, Jr., R. A., and Dubayah, R. (1998). Solar radiation in the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 39–64.Google Scholar
Torre, J. R., Goebel, B. M., Friedmann, E. I., and Pace, N. R. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 3858–3867.CrossRefGoogle ScholarPubMed
DeSantis, T. Z., Hugenholtz, P., Larsen, N., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072.CrossRefGoogle ScholarPubMed
Dore, J. E. and Priscu, J. C. (2001). Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography, 46, 1331–1346.CrossRefGoogle Scholar
Doran, P. T., Wharton, R. A., and Lyons, W. B. (1994). Paleolimnology of the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 10, 85–114.CrossRefGoogle ScholarPubMed
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517–520.CrossRefGoogle ScholarPubMed
Doran, P. T., Fritsen, C. H., McKay, C. P., Priscu, J. C., and Adams, E. E. (2003). Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. Proceedings of the National Academy of Sciences of the United States of America, 100, 26–31.CrossRefGoogle Scholar
Dunbar, J., Takala, S., Barns, S. M., Davis, J. A., and Kuske, C. R. (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 65, 1662–1669.Google ScholarPubMed
Esposito, R. M. M., Horn, S. L., McKnight, D. M., et al. (2006). Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophysical Research Letters, 33, 1–4.CrossRefGoogle Scholar
Fell, J. W., Scorzetti, G., Connell, L., and Craig, S. (2006). Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biology and Biochemistry, 38, 3107–3119.CrossRefGoogle Scholar
Fierer, N. and Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626–631.CrossRefGoogle ScholarPubMed
Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L., and Priscu, J. C. (2007). Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research, 112, 1–11.CrossRefGoogle Scholar
Fountain, A., Tranter, M., Nylen, T., Lewis, K., and Mueller, D. (2004). Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 50, 35–45.CrossRefGoogle Scholar
Franzmann, P. D., Liu, Y., Balkwill, D. L., et al. (1997). Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. International Journal of Systematics and Bacteriology, 47, 1068–1072.CrossRefGoogle ScholarPubMed
Friedmann, E. I. (1993). Antarctic Microbiology. New York: Wiley-Liss.Google Scholar
Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R. (1988). Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung, 58, 251–259.Google ScholarPubMed
Fritsen, C. H. and Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.CrossRefGoogle Scholar
Fritsen, C. H., Adams, E. E., McKay, C. P., and Priscu, J. C. (1998). Permanent ice covers of the McMurdo Dry Valleys lakes, Antarctica: liquid water contents. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 269–280.Google Scholar
Fritsen, C. H., Grue, A. M., and Priscu, J. C. (2000). Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica. Polar Biology, 23, 121–128.CrossRefGoogle Scholar
Gause, G. F. (1934). The Struggle for Existence. Baltimore, MD: Williams and Wilkins.CrossRefGoogle ScholarPubMed
Gilichinsky, D. A. (2007). Microbial populations in Antarctic permafrost: biodiversity, state age, and inplication for astrobiology. Astrobiology, 7, 275–311.CrossRefGoogle ScholarPubMed
Glatz, R. E., Lepp, P. W., Ward, B. B., and Francis, C. A. (2006). Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology, 4, 53–67.CrossRefGoogle Scholar
Glausiusz, J. (2007). Extreme culture. Nature, 447, 905–906.CrossRefGoogle ScholarPubMed
Goldman, C. R. (1964). Primary productivity studies in Antarctic lakes. In Biologie Antarctique. Proceedings of 1st SCAR symposium, ed. Carrick, R., Holgate, M., and Prevost, J.. Paris: Hermann, pp. 291–299.Google Scholar
Goldman, C. R., Mason, D. T., and Hobbie, J. E. (1967). Two Antarctic desert lakes. Limnology and Oceanography, 12, 295–310.CrossRefGoogle Scholar
Gordon, D. A., Priscu, J., and Giovannoni, S. (2000). Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microbial Ecology, 39, 197–202.Google ScholarPubMed
Hall, J., Mitchell, K., Jackson-Weaver, O., et al. (2008). Molecular characterization of the diversity and distribution of a thermal spring microbial community using rRNA and functional genes. Applied and Environmental Microbiology, 74, 4910–4922.CrossRefGoogle Scholar
Hardin, G. (1960). The competitive exclusion principle. Science, 131, 1292–1297.CrossRefGoogle ScholarPubMed
Hogg, I. D., Craig Cary, S., Convey, P., et al. (2006). Biotic interactions in Antarctic terrestrial ecosystems: are they a factor?Soil Biology and Biochemistry, 38, 3035–3040.CrossRefGoogle Scholar
Hopkins, D. W., Sparrow, A. D., Novis, P. M., et al. (2006). Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proceedings of the Royal Society of London, Biological Sciences, 273, 2687–2695.CrossRefGoogle ScholarPubMed
Horner-Devine, M. C., Carney, K. M., and Bohannan, B. J. M. (2003). An ecological perspective on bacterial biodiversity. Proceedings of the Royal Society of London, Series B, 271, 113–122.CrossRefGoogle Scholar
Horner-Devine, M. C., Silver, J. M., Leibold, M. A., et al. (2007). A comparison of taxon co-occurrence for macro- and microorganisms. Ecology, 88, 1345–1353.CrossRefGoogle ScholarPubMed
Horowitz, N. H., Cameron, R. E., and Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science, 176, 242–245.CrossRefGoogle ScholarPubMed
Howard-Williams, C., Schwarz, A. M., Hawes, I., and Priscu, J. C. (1998). Optical properties of the McMurdo Dry Valley lakes, Antarctica. Antarctic Research Series, 72, 189–203.Google Scholar
Hughes, J. B., Hellmann, J. J., Ricketts, T. H., and Bohannan, B. J. (2001). Counting the uncountable: statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology, 67, 4399–4406.CrossRefGoogle ScholarPubMed
Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81.CrossRefGoogle Scholar
Hutchinson, G. E. (1961). The paradox of the plankton. American Naturalist, 95, 137–145.CrossRefGoogle Scholar
Jones, J. and Simon, B. (1985). Interaction of acetogens and methanogens in anaerobic freshwater sediments. Applied and Environmental Microbiology, 49, 944–948.Google ScholarPubMed
Jung, D. O., Achenbach, L. A., Karr, E. A., Takaichi, S., and Madigan, M. T. (2004). A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Archives of Microbiology, 182, 236–243.CrossRefGoogle ScholarPubMed
Karr, E. A., Sattley, W. M., Jung, D. O., Madigan, M. T., and Achenbach, L. A. (2003). Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Applied and Environmental Microbiology, 69, 4910–4914.CrossRefGoogle Scholar
Karr, E. A., Sattley, W. M., Rice, M. R., et al. (2005). Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 71, 6353–6359.CrossRefGoogle ScholarPubMed
Karr, E. A., Ng, J. M., Belchik, S. M., et al. (2006). Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 72, 1663–1666.CrossRefGoogle ScholarPubMed
Kepner, Jr., R. L., Wharton, Jr., R. A., and Suttle, C. A. (1998). Viruses in Antarctic lakes. Limnology and Oceanography, 43, 1754–1761.CrossRefGoogle ScholarPubMed
Kepner, R. L., Wharton, Jr., R. A., and Coats, D. W. (1999). Ciliated protozoa of two Antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates. Polar Biology, 21, 285–294.CrossRefGoogle ScholarPubMed
Koob, D. D. and Leister, G. L. (1972). Primary productivity and associated physical chemical and biological characteristics of Lake Bonney: a perennially ice-covered lake in Antarctica. Antarctic Research Series, 20, 51–68.CrossRefGoogle Scholar
Krembs, C., Juhl, A. R., Long, R. A., and Azam, F. (1998). Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method. Limnology and Oceanography, 43, 307–314.CrossRefGoogle Scholar
Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34, 318–323.CrossRefGoogle Scholar
Laybourn-Parry, J. (1997). The microbial loop in Antarctic lakes. In Ecosystems Processes in Antarctic Ice-Free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: A. A. Balkema, pp. 231–240.Google Scholar
Lee, P. A., Mikucki, J. A., Foreman, C. M., et al. (2004). Thermodynamic constraints on microbially mediated processes in lakes of the McMurdo Dry Valleys, Antarctica. Geomicrobiology Journal, 21, 221–237.CrossRefGoogle Scholar
Levins, R. (1968). Evolution in Changing Environments. Princeton, NJ: Princeton University Press.Google Scholar
Lisle, J. T. and Priscu, J. C. (2004). The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 47, 427–439.CrossRefGoogle ScholarPubMed
Lizotte, M. P. and Priscu, J. C. (1992). Spectral irradiance and bio-optical properties in perennially ice-covered lakes of the Dry Valleys (McMurdo Sound, Antarctica). Antarctic Research Series, 57, 1–14.CrossRefGoogle Scholar
Lizotte, M. P., Sharp, T. R., and Priscu, J. C. (1996). Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica. I. Biomass and productivity during the winter-spring transition. Polar Biology, 16, 155–162.CrossRefGoogle Scholar
Lozupone, C. and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71, 8228–8235.CrossRefGoogle ScholarPubMed
Lozupone, C. A. and Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 11436.CrossRefGoogle ScholarPubMed
Lyons, W. B., Welch, K. A., Neumann, K., et al. (1998). Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica. Antarctic Research Series, 72, 77–92.Google Scholar
Lyons, W. B., Tyler, S. W., Wharton, R. A., McKnight, D. M., and Vaughn, B. H. (2004). A Late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 247–256.Google Scholar
Madigan, M. T., Jung, D. O., Woese, C. R., and Achenbach, L. A. (2000). Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Archives of Microbiology, 173, 269–277.CrossRefGoogle ScholarPubMed
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford, UK: Blackwell.Google Scholar
Matsubaya, O., Sakai, H., Torii, T., Burton, H., and Kerry, K. (1979). Antarctic saline lakes: stable isotopic ratios, chemical compositions and evolution. Geochimica et Cosmochimica Acta, 43, 7–25.CrossRefGoogle Scholar
May, R. M. (1974). On the theory of niche overlap. Theoretical Population Biology, 5, 297–332.CrossRefGoogle ScholarPubMed
May, R. M. (1975). Patterns of species abundance and diversity. Ecology and Evolution of Communities, 1, 81–120.Google Scholar
McKay, C. P., Andersen, D. T., Wayne, H., et al. (2005). Polar lakes, streams, and springs as analogs for the hydrological cycle on Mars. In Water on Mars and Life, ed. Tokano, T.. Heidelberg, Germany: Springer, pp. 219–233.Google Scholar
McKnight, D. M., Alger, A., Tate, C. M., Shupe, G., and Spaulding, S. (1998). Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 109–127.Google Scholar
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985–995.CrossRefGoogle Scholar
McKnight, D. M., Tate, C. M., Andrews, E. D., et al. (2007). Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology, 89, 186–204.CrossRefGoogle Scholar
Mikell, Jr., A. T., Parker, B. C., and Gregory, E. M. (1986). Factors affecting high-oxygen survival of heterotrophic microorganisms from an Antarctic lake. Applied and Environmental Microbiology, 52, 1236–1241.Google ScholarPubMed
Mikucki, J. A. (2005). Microbial ecology of an Antarctic subglacial environment. Ph.D. thesis, Montana State University, Bozeman, MT.Google Scholar
Mikucki, J. A. and Priscu, J. C. (2007). Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology, 73, 4029–4039.CrossRefGoogle ScholarPubMed
Mosier, A. C., Murray, A. E., and Fritsen, C. H. (2007). Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiology Ecology, 59, 274–288.CrossRefGoogle ScholarPubMed
Nemergut, D. R., Costello, E. K., Meyer, A. F., et al. (2005). Structure and function of alpine and arctic soil microbial communities. Research in Microbiology, 156, 775–784.CrossRefGoogle ScholarPubMed
Niederberger, T. D., McDonald, I. R., Hacker, A. L., et al. (2008). Microbial community composition in soils of northern Victoria Land, Antarctica. Environmental Microbiology, 10, 1713–1724.CrossRefGoogle Scholar
Nkem, J. N., Wall, D. H., Virginia, R. A., et al. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology, 29, 346–352.CrossRefGoogle Scholar
Paerl, H. W. and Priscu, J. C. (1998). Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36, 221–230.CrossRefGoogle ScholarPubMed
Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–75.CrossRefGoogle Scholar
Parker, B. C., Hoehn, R. C., Paterson, R. A., et al. (1977). Changes in dissolved organic matter, photosynthetic production and microbial community composition in Lake Bonney, southern Victoria Land, Antarctica. In Adaptations within Antarctic Ecosystems, ed. Llano, G.. Washington, D.C.: Smithsonian Institution, pp. 859–872.Google Scholar
Parker, B. C., Simmons, G. M., Wharton, R. A., Seaburg, K. G., and Love, F. G. (1982). Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. Journal of Phycology, 18, 72–78.CrossRefGoogle Scholar
Poff, N. L. and Ward, J. V. (1989). Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1805–1817.CrossRefGoogle Scholar
Porazinska, D. L., Fountain, A. G., Nylen, T. H., et al. (2004). The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic Antarctic and Alpine Research, 36, 84–91.CrossRefGoogle Scholar
Priscu, J. C. (1995). Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biology, 34, 215–227.CrossRefGoogle Scholar
Priscu, J. C., Downes, M. T., and McKay, C. P. (1996). Extreme supersaturation of nitrous oxide in a poorly ventilated Antarctic lake. Limnology and Oceanography, 41, 1544–1551.CrossRefGoogle Scholar
Priscu, J. C., Fritsen, C. H., Adams, E. E., et al. (1998). Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 2095–2098.CrossRefGoogle Scholar
Priscu, J. C., Wolf, C. F., Takacs, C. D., et al. (1999). Carbon transformations in a perennially ice-covered Antarctic lake. BioScience, 49, 997–1008.CrossRefGoogle Scholar
Priscu, J. C., Vincent, W. F., and Howard-Williams, C. (2002). Inorganic nitrogen uptake and regeneration in perennially ice-covered Lakes Fryxell and Vanda, Antarctica. Journal of Plankton Research, 11, 335–351.CrossRefGoogle Scholar
Priscu, J. C., Christner, B. C., Dore, J. E., et al. (2008). Supersaturated N2O in a perennially ice-covered lake: molecular and stable isotopic evidence for a biogeochemical relict. Limnology and Oceanography, 53(6), 2439–2450.CrossRefGoogle Scholar
Roberts, E. C. and Laybourn-Parry, J. (1999). Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshwater Biology, 41, 737–746.CrossRefGoogle Scholar
Roberts, E. C., Laybourn-Parry, J., McKnight, D. M., and Novarino, G. (2000). Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshwater Biology, 44, 649–661.CrossRefGoogle Scholar
Roberts, E. C., Priscu, J. C., Wolf, C., Lyons, W. B., and Laybourn-Parry, J. (2004). The distribution of microplankton in the McMurdo Dry Valley lakes, Antarctica: response to ecosystem legacy or present-day climatic controls? Polar Biology, 27, 238–249.CrossRefGoogle Scholar
Roth, R. R. (1976). Spatial heterogeneity and bird species diversity. Ecology, 57, 773–782.CrossRefGoogle Scholar
Runkel, R. L., McKnight, D. M., and Andrews, E. D. (1998). Analysis of transient storage subject to unsteady flow: diel flow variation in an Antarctic stream. Journal of the North American Benthological Society, 17, 143–154.CrossRefGoogle Scholar
Sattley, W. M. and Madigan, M. T. (2006). Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 72, 5562–5568.CrossRefGoogle ScholarPubMed
Sattley, W. M. and Madigan, M. T. (2007). Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiology Letters, 272, 48–54.CrossRefGoogle ScholarPubMed
Säwström, C., Lisle, J., Anesio, A. M., Priscu, J. C., and Laybourn-Parry, J. (2008). Bacteriophage in polar inland waters. Extremophiles, 12, 167–175.CrossRefGoogle ScholarPubMed
Schoener, T. W. (1974). Competition and the form of habitat shift. Theoretical Population Biology, 6, 265–307.CrossRefGoogle ScholarPubMed
Schwarz, A. M. J., Green, T. G. A., and Seppelt, R. D. (1992). Terrestrial vegetation at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 12, 397–404.CrossRefGoogle Scholar
Scott, R. F. (1905). The Voyage of the “Discovery”. New York: C. Scribner's Sons.CrossRefGoogle Scholar
Shivaji, S., Reddy, G. S. N., Suresh, K., et al. (2005). Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov., from Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55, 757–762.CrossRefGoogle ScholarPubMed
Skotnicki, M. L., Ninham, J. A., and Selkirk, P. M. (2000). Genetic diversity, mutagenesis and dispersal of Antarctic mosses: a review of progress with molecular studies. Antarctic Science, 12, 363–373.CrossRefGoogle Scholar
Smith, J. J., Tow, L. A., Stafford, W., Cary, C., and Cowan, D. A. (2006). Bacterial diversity in three different Antarctic cold desert mineral soils. Microbial Ecology, 51, 413–421.CrossRefGoogle ScholarPubMed
Sommer, U. (1985). Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnology and Oceanography, 30, 335–346.CrossRefGoogle Scholar
Spigel, R. H. and Priscu, J. C. (1998). Physical limnology of the McMurdo Dry Valley lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 153–187.Google Scholar
Stackebrandt, E., Brambilla, E., Cousin, S., Dirks, W., and Pukall, R. (2004). Culture-independent analysis of bacterial species from an anaerobic mat from Lake Fryxell, Antarctica: prokaryotic diversity revisited. Cellular and Molecular Biology, 50, 517–524.Google ScholarPubMed
Stingl, U., Cho, J. C., Foo, W., et al. (2008). Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 55, 395–405.CrossRefGoogle ScholarPubMed
Takacs, C. D. and Priscu, J. C. (1998). Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microbial Ecology, 36, 239–250.CrossRefGoogle ScholarPubMed
Takacs, C. D., Priscu, J. C., and McKnight, D. M. (2001). Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography, 46, 1189–1194.CrossRefGoogle Scholar
Takacs-Vesbach, C., Mitchell, K., Jackson-Weaver, O., and Reysenbach, A. L. (2008). Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environmental Microbiology, 10, 1681–1689.CrossRefGoogle ScholarPubMed
Taton, A., Grubisic, S., Brambilla, E., Wit, R., and Wilmotte, A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69, 5157–5169.CrossRefGoogle ScholarPubMed
Thompson, J. R., Pacocha, S., Pharino, C., et al. (2005). Genotypic diversity within a natural coastal bacterioplankton population. Science, 307, 1311–1313.CrossRefGoogle ScholarPubMed
Tilman, D., Kilham, S. S., and Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Reviews in Ecology and Systematics, 13, 349–372.CrossRefGoogle Scholar
Tindall, B. J., Brambilla, E., Steffen, M., et al. (2000). Cultivatable microbial biodiversity: gnawing at the Gordian knot. Environmental Microbiology, 2, 310–318.CrossRefGoogle ScholarPubMed
Torsvik, V., Ovreas, L., and Thingstad, T. F. (2002). Prokaryotic diversity: magnitude, dynamics, and controlling factors. Science, 296, 1064–1066.CrossRefGoogle ScholarPubMed
Townsend, C. R., Scarsbrook, M. R., and Doledec, S. (1997). The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography, 42, 938–949.CrossRefGoogle Scholar
Treonis, A. M., Wall, D. H., and Virginia, R. A. (1999). Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems, 2, 482–492.CrossRefGoogle Scholar
Urbach, E., Vergin, K. L., Young, L., et al. (2001). Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography, 46, 557–572.CrossRefGoogle Scholar
Urbach, E., Vergin, K. L., Larson, G. L., and Giovannoni, S. J. (2007). Bacterioplankton communities of Crater Lake, Oregon: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia, 574, 161–177.CrossRefGoogle Scholar
Trappen, S., Mergaert, J., Eygen, S., et al. (2002). Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Systematic and Applied Microbiology, 25, 603–610.CrossRefGoogle ScholarPubMed
Trappen, S., Vandecandelaere, I., Mergaert, J., and Swings, J. (2004). Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. International Journal of Systematic and Evolutionary Microbiology, 54, 1969–1973.CrossRefGoogle Scholar
Vincent, W. F. (1981). Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanently ice-covered lake. Ecology, 62, 1215–1224.CrossRefGoogle Scholar
Vincent, W. F. (1988). Microbial Ecosystems of Antarctica. New York: Cambridge University Press.Google Scholar
Vincent, W. F. and Howard-Williams, C. (1986). Antarctic stream ecosystems: physiological ecology of a blue-green algal epilithon. Freshwater Biology, 16, 219–233.CrossRefGoogle Scholar
Vincent, W. F. and Howard-Williams, C. (1989). Microbial communities in Southern Victoria Land streams (Antarctica). II. The effects of low temperature. Hydrobiologia, 172, 39–49.CrossRefGoogle Scholar
Vincent, W. F. and James, M. R. (1996). Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea Sector, Antarctica. Biodiversity and Conservation, 5, 1451–1471.CrossRefGoogle Scholar
Vincent, W. F., Rae, R., Laurion, I., Howard-Williams, C., and Priscu, J. C. (1998). Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnology and Oceanography, 43, 618–624.CrossRefGoogle Scholar
Virginia, R. A. and Wall, D. H. (1999). How soils structure communities in the Antarctic Dry Valleys. BioScience, 49, 973–983.CrossRefGoogle Scholar
Vishniac, H. S. (1993). The microbiology of Antarctic soils. In Antarctic Microbiology, ed. Friedmann, E. I.. New York: Wiley-Liss, pp. 297–341.Google Scholar
Voytek, M. A. and Ward, B. B. (1995). Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Applied and Environmental Microbiology, 61, 1444–1450.Google ScholarPubMed
Voytek, M. A., Priscu, J. C., and Ward, B. B. (1999). The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia, 401, 113–130.CrossRefGoogle Scholar
Ward, B. B. and Priscu, J. C. (1997). Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia, 347, 57–68.CrossRefGoogle Scholar
Ward, B. B., Granger, J., Maldonado, M. T., et al. (2005). Denitrification in the hypolimnion of permanently ice-covered Lake Bonney, Antarctica. Aquatic Microbial Ecology, 38, 295–307.CrossRefGoogle Scholar
Ward, D. M. (1998). A natural species concept for prokaryotes. Current Opinion in Microbiology, 1, 271–277.CrossRefGoogle ScholarPubMed
Ward, D. M., Cohan, F. M., Bhaya, D., et al. (2008). Genomics, environmental genomics and the issue of microbial species. Heredity, 100, 207–219.CrossRefGoogle ScholarPubMed
Wharton, Jr., R. A., McKay, C. P., Simmons, Jr., G. M., and Parker, B. C. (1985). Cryoconite holes on glaciers. BioScience, 35, 499–503.CrossRefGoogle ScholarPubMed
Wynn-Williams, D. D. and Edwards, H. G. M. (2000). Antarctic ecosystems as models for extraterrestrial surface habitats. Planetary and Space Science, 48, 1065–1075.CrossRefGoogle Scholar
Young, I. M. and Ritz, K. (2000). Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53, 201–213.CrossRefGoogle Scholar
Zeglin, L. (2008). Microbial diversity and function at aquatic-terrestrial interfaces in desert ecosystems. Ph.D. thesis, University of New Mexico, Albuquerque, NM.Google Scholar
Zeglin, L., Sinsabaugh, R., Barrett, J. E., Gooseff, M., and Takacs-Vesbach, C. (2009). Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology and geochemistry in a cold desert ecosystem. Ecosystems, 12(4), 562–573.CrossRefGoogle Scholar
Zhou, J., Xia, B., Treves, D. S., et al. (2002). Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology, 68, 326–334.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×