A particle in a classical harmonic oscillator potential, mω2x2/2, has minimum energy when it sits at rest at the bottom of the potential. Then the particle's energy vanishes. The Heisenberg uncertainty principle however modifies this picture for the quantum harmonic oscillator. The particle cannot sit at rest (with definite momentum) at the bottom of the potential (a definite location). Indeed, the quantum zero point motion lifts the ground state energy to ω/2. Further, the excited states of the simple harmonic oscillator are discrete and occur at energies (n + 1/2)ω, n = 0, 1, 2, …
Just as the classical harmonic oscillator is modified by quantum effects, any classical solution to a field theory is also modified by quantum effects. Quantum effects give corrections to the classical kink energy owing to zero point quantum field fluctuations. These quantum corrections are small provided the coupling constant in the model is weak. To “quantize the kink” means to evaluate all the energy levels of the kink (first quantization) and to develop a framework for doing quantum field theory in a kink background. This involves identifying all excitations in the presence of the kink and their interactions. The field theory of the excitations in the non-trivial background of the kink is akin to second quantization. Finally, one would also like to describe the creation and annihilation of kinks themselves by suitable kink creation and annihilation operators. This would be the elusive third quantization.
Initially we calculate the leading order quantum corrections to the energy of the Z2 and sine-Gordon kinks. As these two examples illustrate, the precise value of the quantum correction depends on the exact model and kink under consideration.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.