Published online by Cambridge University Press: 14 August 2009
Decoding simultaneously recorded spike trains
Pioneering studies of motor cortex by Georgopoulos and colleagues (e.g. Georgopoulos et al., 1982) established that “population vectors,” constructed from weighted averages of the responses of single neurons, can accurately predict behavioral variables, such as movement direction. This approach has been used to study population coding in a number of cortical systems and has led to the view that cortical neurons act as independent processors of information (e.g. Gochin et al., 1994). However, some recent work has challenged this interpretation of neural population activity. For example, Schneidman et al. (2003) proposed interpreting neural ensemble activity by comparing ensemble information with information represented by the single neurons that comprise the ensemble. In a synergistic coding scheme, ensembles encode more than the sum of the component neurons. The advantage of synergy is that there can be a massive gain in information from the activity of multiple neurons. In a redundant coding scheme, the removal of individual neurons has little effect on encoding and thus the ensembles can be less noisy and less prone to errors. In Narayanan et al. (2005), we adapted the information-theoretical framework proposed by Schneidman et al. (2003) to measures of decoding of the performance of a delayed response task with activity from the rodent motor cortex. The predictive relationship between neural firing rates and a categorical measure of behavior, e.g. correct vs. error performance of a reaction time task, was quantified using statistical classifiers.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.