Book contents
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Preface
Published online by Cambridge University Press: 07 May 2010
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Summary
This book reflects the work of a great number of researchers as well as our own experience from research and teaching of hydrodynamics and ship-propeller theory over a combined span of more than 60 years. Its development began in 1983–84 during the senior author's tenure as visiting professor in the Department of Ocean Engineering, The Technical University of Denmark, by invitation from Professor Sv. Aa. Harvald. During this sabbatical year he taught a course based on his knowledge of propeller theory garnered over many years as a researcher at Davidson Laboratory and professor at Stevens Institute of Technology. Written lecture notes were required, so we were soon heavily engaged in collecting material and writing a serial story of propeller hydrodynamics with weekly publications. As that large audience consisted of relatively few masters and doctoral students but many experienced naval architects, it was necessary to show mathematical developments in greater detail and, in addition, to display correlations between theory and practical results.
Encouraged by Professor P. Terndrup Pedersen, Department of Ocean Engineering, The Technical University of Denmark, we afterwards started expanding, modifying and improving the notes into what has now become this book. In the spirit of the original lecture notes it has been written primarily for two groups of readers, viz. students of naval architecture and ship and propeller hydrodynamics, at late undergraduate and graduate levels, and practicing naval architects dealing with advanced propulsion problems. It is our goal that such readers, upon completion of the book, will be able to understand the physical problems of ship-propeller hydrodynamics, comprehend the mathematics used, read past and current literature, interpret calculation and experimental findings and correlate theory with their own practical experiences.
- Type
- Chapter
- Information
- Hydrodynamics of Ship Propellers , pp. xi - xiiiPublisher: Cambridge University PressPrint publication year: 1993