Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Möbius Transformations
- 2 Möbius Self-Maps of the Unit Ball
- 3 The Invariant Laplacian, Gradient, and Measure
- 4 H-Harmonic and H-Subharmonic Functions
- 5 The Poisson Kernel and Poisson Integrals
- 6 Spherical Harmonic Expansions
- 7 Hardy-Type Spaces of H-Subharmonic Functions
- 8 Boundary Behavior of Poisson Integrals
- 9 The Riesz Decomposition Theorem for H-Subharmonic Functions
- 10 Bergman and Dirichlet Spaces of H-Harmonic Functions
- References
- Index of Symbols
- Index
10 - Bergman and Dirichlet Spaces of H-Harmonic Functions
Published online by Cambridge University Press: 05 June 2016
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Möbius Transformations
- 2 Möbius Self-Maps of the Unit Ball
- 3 The Invariant Laplacian, Gradient, and Measure
- 4 H-Harmonic and H-Subharmonic Functions
- 5 The Poisson Kernel and Poisson Integrals
- 6 Spherical Harmonic Expansions
- 7 Hardy-Type Spaces of H-Subharmonic Functions
- 8 Boundary Behavior of Poisson Integrals
- 9 The Riesz Decomposition Theorem for H-Subharmonic Functions
- 10 Bergman and Dirichlet Spaces of H-Harmonic Functions
- References
- Index of Symbols
- Index
Summary
- Type
- Chapter
- Information
- Harmonic and Subharmonic Function Theory on the Hyperbolic Ball , pp. 173 - 215Publisher: Cambridge University PressPrint publication year: 2016