[1] M., Abramowitz and I., Stegun. Handbook of Mathematical Functions. Applied Math. Series 55. National Bureau of Standards, 1964.
[2] P., Ahern, J., Bruna, and C., Cascante. Hp-theory for generalized M-harmonic functions on the unit ball. Indiana Univ. Math. J., 45(1):103–135, 1996.
[3] P., Ahern, M., Flores, and W., Rudin. An invariant volume mean value property. J. Funct. Analysis, 111:380–397, 1993.
[4] L., Ahlfors. Möbius Transformations in Several Dimensions. University of Minnesota, School of Mathematics, 1981.
[5] L. V., Ahlfors. Hyperbolic motions. Nagoya Math. J., 29:163–166, 1967.
[6] H., Aikawa. Tangential behavior of Green potentials and contractive properties of Lp-potentials. Tokyo J. Math., 9:223–245, 1986.
[7] J., Arazy and S., Fisher. The uniqueness of the Dirichlet space among Möbius invariant function spaces. Illinois J. Math., 29:449–462, 1985.
[8] D. H., Armitage. On the global integrability of superharmonic functions. J. London Math. Soc., 4:365–373, 1971.
[9] M., Arsove and A., Huber. On the existence of non-tangential limits of subharmonic functions. J. London Math. Soc., 42:125–132, 1967.
[10] S., Axler, P., Bourdon, and W., Ramey. Harmonic Function Theory. Springer- Verlag, New York, NY, 1992.
[11] A. F., Beardon. The Geometry of Discrete Groups. Springer-Verlag, New York, NY, 1983.
[12] A. P., Calderón. Commutators of singular integral operators. Proc. Nat. Acad. Sci. U. S. A., 53:1092–1099, 1965.
[13] I., Chavel. Eigenvalues in Riemannian Geometry. Academic Press, Orlando, FL, 1984.
[14] P., Cifuentis. Hp classes on rank one symmetric spaces of noncompact type. II. Nontangential maximal function and area integral. Bull. Sci. Math., 108:355–371, 1984.
[15] P., Cifuentis. A characterization of H2 classes on rank one symmetric spaces of noncompact type. Proc. Amer. Math. Soc., 106:519–525, 1989.
[16] J. A., Cima and C. S., Stanton. Admissible limits of M-subharmonic functions. Michigan Math. J., 32:211–220, 1985.
[17] O., Djordjević and M., Pavlović. On a Littlewood–Paley type inequality. Proc. Amer. Math. Soc., 135:3607–3611, 2007.
[18] N., Dunford and J. T., Schwartz. Linear Operators Part I. Interscience Publishers, Inc., New York, NY, 1957.
[19] P., Duren. Theory of Hp Spaces. Academic Press, New York, NY, 1970.
[20] A., Erdélyi, editor. Higher Transcendental Functions, Bateman Manuscript Project, volume I. McGraw-Hill, New York, NY, 1953.
[21] C., Fefferman and E., Stein. Hp spaces of several variables. Acta Math, 129: 137–193, 1972.
[22] T. M., Flett. On some theorems of Littlewood and Paley. J. London Math. Soc., 31:336–344, 1956.
[23] T. M., Flett. On the rate of growth of mean values of holomorphic functions. Proc. London Math. Soc., 20:749–768, 1970.
[24] H., Furstenberg. A Poisson formula for semisimple Lie groups. Ann. Math., 77:335–386, 1963.
[25] S. J., Gardiner. Growth properties of potentials in the unit ball. Proc. Amer. Math. Soc., 103:861–869, 1988.
[26] L., Garding and L., Hörmander. Strongly subharmonic functions. Math. Scand., 15:93–96, 1964.
[27] J. B., Garnett. Bounded Analytic Functions. Pure and Applied Mathematics. Academic Press, New York, NY, 1981.
[28] F.W., Gehring. On the radial order of subharmonic functions. J. Math. Soc. Japan, 9:77–79, 1957.
[29] I., Graham. The radial derviative, fractional integrals, and the comparitive growth of means of holomorphic functions on the unit ball in Cn. Annals Math. Studies, 100:171–178, 1981.
[30] M. D., Greenberg. Ordinary Differential Equations. Wiley, Hoboken, NJ, 2014.
[31] S., Grellier and P., Jaming. Harmonic functions on the real hyperbolic ball II. Hardy–Sobolev and Lipschitz spaces. Math. Nachr., 268:50–73, 2004.
[32] K. T., Hahn and D., Singman. Boundary behavior of invariant Green's potentials on the unit ball of Cn. Trans. Amer. Math. Soc., 309:339–354, 1988.
[33] D. J., Hallenbeck. Radial growth of subharmonic functions. Pitman Research Notes, 262:113–121, 1992.
[34] G. H., Hardy and J. E., Littlewood. Some properties of fractional integrals, II. Math. Z., 34:403–439, 1932.
[35] J. H., Hardy and J. E., Littlewood. The strong summability of Fourier series. Fund. Math., 25:162–189, 1935.
[36] H., Hedenmalm, B., Korenblum, and K., Zhu. Theory of Bergman Spaces, volume 199 of Graduate Texts in Mathematics. Springer, New York, NY, 2000.
[37] M., Heins. The minimum modulus of a bounded analytic function. Duke Math. J., 14:179–215, 1947.
[38] S., Helgason. Groups and Geometric Analysis. American Mathematical Society, Providence, RI, 2000.
[39] E., Hewitt and K., Stromberg. Real and Abstract Analysis. Springer-Verlag, New York, NY, 1965.
[40] L., Hörmander. Linear Partial Differential Operators. Springer-Verlag, New York, NY, 1963.
[41] P., Jaming. Trois problémes d'analyse harmonique. PhD thesis, Université d'Orléans, 1998.
[42] P., Jaming. Harmonic functions on the real hyperbolic ball I. Boundary values and atomic decomposition of Hardy spaces. Colloq. Math., 80:63–82, 1999.
[43] P., Jaming. Harmonic functions on classical rank one balls. Boll. Unione Mat. Italia, 8:685–702, 2001.
[44] M., Jevtić. Tangential characterizations of Hardy and mixed-norm spaces of harmonic functions on the real hyperbolic ball. Acta Math. Hungar., 113: 119–131, 2006.
[45] A. W., Knapp. Fatou's theorem for symmetric spaces, I. Ann. Math, 88(2): 106–127, 1968.
[46] A., Koranyi. Harmonic functions on Hermitian hyperbolic space. Trans. Amer. Math. Soc., 135:507–516, 1969.
[47] A., Koranyi. Harmonic functions on symmetric spaces. In W. M., Boothby and G. L., Weiss, editors, Symmetric Spaces, Marcel Dekker, Inc., New York, NY, 1972.
[48] A., Koranyi and R. P., Putz. Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. Soc., 224:157–168, 1976.
[49] Ü., Kuran. Subharmonic behavior of |h|p (p > 0, h harmonic). J. London Math. Soc., 8:529–538, 1974.
[50] N. N., Lebedev. Special Functions and their Applications. Dover Publications, New York, NY, 1972.
[51] J. E., Littlewood and R. E. A. C., Paley. Theorems on Fourier series and power series. Proc. London Math. Soc., 42:52–89, 1936.
[52] D. H., Luecking. Boundary behavior of Green potentials. Proc. Amer. Math. Soc., 96:481–488, 1986.
[53] D. H., Luecking. A new proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc., 103(3):887–893, 1988.
[54] N., Lusin. Sur une propriété des fonctions à carré sommable. Bull. Calcutta Math. Soc., 20:139–154, 1930.
[55] B. D., MacCluer. Compact composition operators of Hp(Bn). Michigan Math. J., 32:237–248, 1985.
[56] J., Marcinkiewicz and A., Zygmund. A theorem of Lusin. Duke Math. J., 4: 473–485, 1938.
[57] K., Minemura. Harmonic functions on real hyperbolic spaces. Hiroshima Math. J., 3:121–151, 1973.
[58] K., Minemura. Eigenfunctions of the Laplacian on a real hyperbolic space. J. Math. Soc. Japan, 27(1):82–105, 1975.
[59] Y., Mizuta. On the boundary limits of harmonic functions with gradient in Lp. Ann. Inst. Fourier, Grenoble, 34:99–109, 1984.
[60] Y., Mizuta. On the boundary limits of harmonic functions. Hiroshima Math. J., 18:207–217, 1988.
[61] A., Nagel, W., Rudin, and J. H., Shapiro. Tangential boundary behavior of functions in Dirichlet-type spaces. Ann. Math., 116:331–360, 1982.
[62] M., Pavlović. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Mathem., N. S., 2:89–98, 1991.
[63] M., Pavlović. On subharmonic behavior and oscillation of functions in balls in Rn. Publ. Inst. Math. (N.S.), 69:18–22, 1994.
[64] M., Pavlović. A Littlewood–Paley theorem for subharmonic functions. Publ. Inst. Math. (Beograd), 68(82):77–82, 2000.
[65] M., Pavlović. A short proof of an inequality of Littlewood and Paley. Proc. Amer. Math. Soc, 134:3625–3627, 2006.
[66] M., Pavlović and J., Riihentaus. Classes of quasi-nearly subharmonic functions. Potential Analysis, 29:89–104, 2008.
[67] Marco M., Peloso. Möbius invariant spaces on the unit ball. Michigan Math. J, 39:509–536, 1992.
[68] I., Privalov. Sur une généralization du théorème de Fatou. Rec. Math. (Mat. Sbornik), 31:232–235, 1923.
[69] T., Ransford. Potential Theory in the Complex Plane. London Math. Soc. Student Texts 28, Cambridge University Press, 1995.
[70] J., Riihentaus. On a theorem of Avanissian–Arsove. Exposition. Math., 7:69–72, 1989.
[71] H. L., Royden. Real Analysis. Macmillan Publishing Co., New York, NY, third edition, 1988.
[72] W., Rudin. Function Theory in the Unit Ball of Cn. Springer-Verlag, New York, NY, 1980.
[73] H., Samii. Les transformations de Poisson dans le boule hyperbolic. PhD thesis, Université Nancy 1, 1982.
[74] I., Sokolnikoff. Tensor Analysis. Wiley, New York, NY, 1964.
[75] E. M., Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ, 1970.
[76] E. M., Stein and G., Weiss. Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ, 1971.
[77] S., Stević. A Littlewood–Paley type inequality. Bull. Braz. Math. Soc., 34:1–7, 2003.
[78] M., Stoll. Hardy-type spaces of harmonic functions on symmetric spaces of noncompact type. J. Reine Angew. Math., 271:63–76, 1974.
[79] M., Stoll. Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains. J. Reine Angew. Math., 290:191–198, 1977.
[80] M., Stoll. Boundary limits of Green potentials in the unit disc. Arch. Math., 44:451–455, 1985.
[81] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn. J. Math. Analysis & Appl., 143:480–499, 1989.
[82] M., Stoll. Rate of growth of pth means of invariant potentials in the unit ball of Cn, II. J. Math. Analysis & Appl., 165:374–398, 1992.
[83] M., Stoll. Tangential boundary limits of invariant potentials in the unit ball of Cn. J. Math. Anal. Appl., 177(2):553–571, 1993.
[84] M., Stoll. Invariant potential theory in the unit ball of Cn, volume 199 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
[85] M., Stoll. Boundary limits and non-integrability ofM-subharmonic functions in the unit ball of Cn (n ≥ 1). Trans. Amer. Math. Soc., 349(9):3773–3785, 1997.
[86] M., Stoll. Weighted tangential boundary limits of subharmonic functions on domains in RnM (n ≥ 1). Math. Scand., 83(2):300–308, 1998.
[87] M., Stoll. On generalizations of the Littlewood–Paley inequalities to domains in Rn (n ≥ 2). Unpublished manuscript, 2004. www.researchgate.net/profile/Manfred Stoll/publications.
[88] M., Stoll. The Littlewood–Paley inequalities for Hardy–Orlicz spaces of harmonic function on domains in Rn. Advanced Studies in Pure Mathematics, 44:363–376, 2006.
[89] M., Stoll. Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball. Complex Var. and Elliptic Equ., 57(1):63–89, 2012.
[90] M., Stoll. On the Littlewood–Paley inequalities for subharmonic functions on domains in Rn. In Recent Advances in Harmonic Analysis and Applications, pages 357–383. Springer–Verlag, New York, NY, 2013.
[91] M., Stoll. Littlewood–Paley theory for subharmonic functions on the unit ball in Rn. J. Math. Analysis & Appl., 420:483–514, 2014.
[92] N., Suzuki. Nonintegrability of harmonic functions in a domain. Japan J. Math., 16:269–278, 1990.
[93] D., Ullrich. Möbius-invariant potential theory in the unit ball of Cn. PhD thesis, University of Wisconsin, 1981.
[94] D., Ullrich. Radial limits ofM-subharmonic functions. Trans. Amer. Math. Soc., 292:501–518, 1985.
[95] J.-M. G., Wu. Lp densities and boundary behavior of Green potentials. Indiana Univ. Math. J., 28:895–911, 1979.
[96] S., Zhao. On the weighted Lp-integrability of nonnegative M-superharmonic functions. Proc. Amer. Math. Soc, 113:677–685, 1992.
[97] K., Zhu. Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of Cn. Trans. Amer. Math. Soc., 323:823–842, 1991.
[98] L., Ziomek. On the boundary behavior in the metric Lp of subharmonic functions. Studia Math., 29:97–105, 1967.
[99] A., Zygmund. Trigonometric Series. Cambridge University Press, London, 1968.