Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-02-12T07:00:39.171Z Has data issue: false hasContentIssue false

3 - Quantum transport via evanescent waves

Published online by Cambridge University Press:  05 May 2012

Mikhail I. Katsnelson
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

Zitterbewegung as an intrinsic disorder

The Berry phase, the existence of a topologically protected zero-energy level and the anomalous quantum Hall effect are striking manifestations of the peculiar, ‘ultrarelativistic’ character of charge carriers in graphene.

Another amazing property of graphene is the finite minimal conductivity, which is of the order of the conductance quantum e2/h per valley per spin (Novoselov et al., 2005a; Zhang et al., 2005). Numerous considerations of the conductivity of a two-dimensional massless Dirac fermion gas do give us this value of the minimal conductivity with an accuracy of some factor of the order of one (Fradkin, 1986; Lee, 1993; Ludwig et al., 1994; Nersesyan, Tsvelik & Wenger, 1994; Ziegler, 1998; Shon & Ando, 1998; Gorbar et al., 2002; Yang & Nayak, 2002; Katsnelson, 2006a; Tworzydlo et al., 2006; Ryu et al., 2007).

It is really surprising that in the case of massless two-dimentional Dirac fermions there is a finite conductivity for an ideal crystal, that is, in the absence of any scattering processes (Ludwig et al., 1994; Katsnelson, 2006a; Tworzydlo et al., 2006; Ryu et al., 2007). This was first noticed by Ludwig et al. (1994) using a quite complicated formalism of conformal field theory (see also a more detailed and complete discussion in Ryu et al., 2007). After the discovery of the minimal conductivity in graphene (Novoselov et al., 2005a; Zhang et al., 2005) I was pushed by my experimentalist colleagues to give a more transparent physical explanation of this fact, which has been done in Katsnelson (2006a) on the basis of the concept of Zitterbewegung (Schrödinger, 1930) and the Landauer formula (Beenakker & van Houten, 1991; Blanter & Büttiker, 2000).

Type
Chapter
Information
Graphene
Carbon in Two Dimensions
, pp. 63 - 76
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×