Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T23:02:31.093Z Has data issue: false hasContentIssue false

8 - Emissions from Oxyfueled or High-Exhaust Gas Recirculation Turbines

from Part 2 - Fundamentals and Modeling: Production and Control

Published online by Cambridge University Press:  05 June 2013

Tim C. Lieuwen
Affiliation:
Georgia Institute of Technology
Vigor Yang
Affiliation:
Georgia Institute of Technology
Get access

Summary

Introduction

This chapter discusses emissions from systems with extensive levels of exhaust gas recirculation (EGR) or that use oxygen rather than air as a reactant (referred to here as oxyfuel combustion). Such systems have unique attributes that warrant a dedicated chapter in this treatment. First, the systems in which EGR or oxyfuel would be deployed have different degrees of freedom and requirements. For example, both are prominent candidates for carbon capture and storage (CCS) (Griffin et al., 2008; Budzianowski, 2010), where emissions requirements are driven by pipeline or geologic reservoir constraints rather than by atmospheric pollution considerations. Second, while CO2 and H2O dilution have been discussed in Chapters 5 and 7, their presence at very high levels in systems with EGR can provide a significant perturbation of the nominal reactant kinetics (such as in the radical pool) and requires a focused treatment.

As noted earlier, EGR and oxyfuel combustion for gas turbine applications are promising approaches to implement CCS in gas turbine power plants. EGR has also been proposed as a means of promoting fuel flexibility (enabling use of fuels with low heating value (Danon et al., 2010) and high hydrogen content (Lückerath et al., 2008)), and for increasing static stability (resistance to flashback/blowout) (Kalb and Sattelmayer, 2004) and dynamic stability (ElKady et al., 2009) relative to lean premixed combustors, while enabling low levels of pollutant emissions.

Type
Chapter
Information
Gas Turbine Emissions , pp. 209 - 234
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, D., and Tsouris, C. (2005). “Separation of CO2 from Flue Gas: A Review.”Separation Science and Technology 40(1): 321–48.CrossRefGoogle Scholar
Amato, A., Hudak, B., D’Souza, P., D’Carlo, P., Noble, D., Scarborough, D., Seitzman, J., and Lieuwen, T. (2011a). “Measurements and Analysis of CO and O2 Emissions in CH4/CO2/O2 Flames.”Proceedings of the Combustion Institute 33(2): 3399–405.CrossRefGoogle Scholar
Amato, A., Hudak, B., D’Carlo, P., Noble, D., Scarborough, D., Seitzman, J., and Lieuwen, T. (2011b). “Methane Oxycombustion for Low CO2 Cycles: Blowoff Measurements and Analysis.”Journal of Engineering for Gas Turbines and Power 133(6): 61503.CrossRefGoogle Scholar
Anderlohr, J. M., da Cruz, A. P., Bounaceur, R., and Battin-Leclerc, F. (2010). “Thermal and Kinetic Impact of CO, CO2, and H2O on the Postoxidation of IC-Engine Exhaust Gases.”Combustion Science and Technology, 182(1): 39–59.CrossRefGoogle Scholar
Anderson, R. E., MacAdam, S., Vitieri, F., Davies, D. O., Downs, J. P., and Paliszewski, A. (2008). “Adapting Gas Turbines to Zero Emission Oxy-fuel Power Plants.” ASME TurboExpo, Berlin, Germany.CrossRefGoogle Scholar
Andersson, K., and Johnsson, F. (2007). “Flame and Radiation Characteristics of Gas-fired O2/CO2 Combustion.”Fuel 86(5–6): 656–68.CrossRefGoogle Scholar
Anhenden, M., Rydberg, S., and Yan, J. (2008). “Consideration for Removal of Non-CO2 Components from CO2 Rich Flue Gas of Oxy-fuel Combustion.” IEA Oxyfuel Workshop, Yokohama.Google Scholar
Aspelund, A., and Jordal, K. (2007). “Gas Conditioning – The Interface between CO2 Capture and Transport.”International Journal of Greenhouse Gas Control 1(3): 343–54.CrossRefGoogle Scholar
Bobba, M. K., Gopalakrishnan, P., Periagaram, K., and Seitzman, J.Flame Structure and Stabilization Mechanisms in a Stagnation-point reverse-flow Combustor.” Journal of Engineering for Gas Turbines and Power 130: 031505.CrossRef
Bolland, O., and Mathieu, P. (1998). “Comparison of Two CO2 Removal Options in Combined Cycle Power Plants.”Energy Conversion and Management 39(16): 1653–63.CrossRefGoogle Scholar
Budzianowski, W. M. (2010). “Mass-recirculating Systems in CO2 Capture Technologies: A Review.”Recent Patents on Engineering 4(1): 15–43.CrossRefGoogle Scholar
Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P., and Wall, T. F. (2005). “Oxy-fuel Combustion Technology for Coal-fired Power Generation.”Progress in Energy and Combustion Science 31(4): 283–307.CrossRefGoogle Scholar
Burdet, A., Lachaux, T., de la Cruz Garcia, M., and Winkler, D. (2010). “Combustion under Flue Gas Recirculation Conditions in a Gas Turbine Lean Premix Burner.” ASME Turbo Expo, Glasgow, United Kingdom.CrossRefGoogle Scholar
Casleton, K. H., Breault, R. W., and Richards, G. A. (2008). “System Issues and Tradeoffs Associated with Syngas Production and Combustion.”Combustion Science and Technology 180(6): 1013–52.CrossRefGoogle Scholar
Cavaliere, A., and de Joannon, M. (2004). “Mild Combustion.”Progress in Energy and Combustion Science 30(4): 329–66.CrossRefGoogle Scholar
Chakravarti, S., Gupta, A., and Hunek, B. (2001). “Advanced Technology for the Capture of Carbon Dioxide from Flue Gases.” First National Conference on Carbon Sequestration, Washington, DC.Google Scholar
Chen, Z., Qin, X., Xu, B., Ju, Y., and Liu, F. (2007). “Studies of Radiation Absorption on Flame Speed and Flammability Limit on CO2 Diluted Methane Flames at Elevated Pressures.”Proceedings of the Combustion Institute 31(2): 2693–700.CrossRefGoogle Scholar
Chorpening, B. T., Casleton, K. H., Richards, G. A., Woike, M., and Willis, B. (2003). “Stoichiometric Oxy-fuel Combustion for Power Cycles with CO2 Sequestration.” Third Joint Meeting of the U.S. Sections of The Combustion Institute, Chicago, IL.Google Scholar
Chorpening, B. T., Richards, G. A., Casleton, K. H., Woike, M., Willis, B., and Hoffman, L. (2005). “Demonstration of a Reheat Combustor for Power Production with CO2 Sequestration.”Journal of Engineering for Gas Turbines and Power 127(4): 740–7.CrossRefGoogle Scholar
Danon, B., De Jong, W., and Roekaerts, D. (2010). “Experimental and Numerical Investigation of a FLOX Combustor Firing Low Calorific Value Gases.”Combustion Science and Technology 182(9): 1261–78.CrossRefGoogle Scholar
De Visser, E., Hendriks, E., Barrio, M., Mølnvik, M. J., De Koeijer, G., Liljemark, S., and Le Gallo, Y. (2008). “Dynamis CO2 Quality Recommendations.”International Journal of Greenhouse Gas Control 2(4): 478–84.CrossRefGoogle Scholar
Ditaranto, M., and Hals, J. (2006). “Combustion Instabilities in Sudden Expansion Oxyfuel Flames.”Combustion and Flame 146(3): 493–512.CrossRefGoogle Scholar
Duwig, C., Stankovic, D., Fuchs, L., Li, G., and Gutmark, E. (2008). “Experimental and Numerical Study of Flameless Combustion in a Model Gas Turbine Combustor.”Combustion Science and Technology 180(2): 279–95.CrossRefGoogle Scholar
ElKady, A. M., Evulet, A. T., Brand, A., Ursin, T. P., and Lynghjem, A. (2009). “Application of Exhaust Gas Recirculation in a DLN F-class Combustion System for Postcombustion Carbon Capture.”Journal of Engineering for Gas Turbines and Power 131(3): 034505.CrossRefGoogle Scholar
Evulet, A. T., ElKady, A. M., Branda, A. R., and Chinn, D. (2009). “On the Performance and Operability of GE’s Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for Post Combustion Carbon Capture.”Energy Procedia 1(1): 3809–16.CrossRefGoogle Scholar
Fackler, K. B., Karalus, M. F., Novosselov, I. V., Kramlich, J. C., and Malte, P. C. (2011). “Experimental and Numerical Study of NOx Formation from the Lean Premixed Combustion of CH4 Mixed with CO2 and N2.”Journal of Engineering for Gas Turbines and Power 133(12): 121502.CrossRefGoogle Scholar
Glarborg, P., and Bentzen, L. (2007). “Chemical Effects of a High CO2 Concentration in Oxy-fuel Combustion of Methane.”Energy & Fuels 22(1): 291–6.CrossRefGoogle Scholar
Gopalakrishnan, P., Bobba, M., and Seitzman, J. (2007). “Controlling Mechanisms for Low NOx Emissions in a Non-premixed Stagnation Point Reverse Flow Combustor.”Proceedings of the Combustion Institute 31(2): 3401–8.CrossRefGoogle Scholar
Griffin, T., Bücker, D., and Pfeffer, A. (2008). “Technology Options for Gas Turbine Power Generation with Reduced CO2 Emission.”Journal of Engineering for Gas Turbines and Power 130(4): 041801.CrossRefGoogle Scholar
Guethe, F., Stankovic, D., Genin, F., Syed, K., and Winkler, D. (2011). “Flue Gas Recirculation of the ALSTOM Sequential Gas Turbine Combustor Tested at High Pressure.” ASME TurboExpo, Glasgow, United Kingdom.CrossRefGoogle Scholar
Guethe, F., de la Cruz García, M., and Burdet, A. (2009). “Flue Gas Recirculation in Gas Turbine: Investigation of Combustion Reactivity and NOx Emission.” ASME Turbo Expo, Orlando, FL, USA.Google Scholar
Guo, H., Ju, Y., Maruta, K., Niioka, T., and Liu, F. (1998). “Numerical Investigation of CH4/CO2/Air and CH4/CO2/O2 Counterflow Premixed Flames with Radiation Reabsorption.”Combustion Science and Technology 135(1–6): 49–64.CrossRefGoogle Scholar
Guo, H., Neill, W., and Smallwood, G. (2008). “A Numerical Study on the Effect of Water Addition on NO Formation in Counterflow CH4/Air Premixed Flames.”Journal of Engineering for Gas Turbines and Power 130(5): 054501.Google Scholar
Hwang, D. J., Choi, J. W.Park, J., Keel, S. I., Ch, C. B., and Noh, D. S. (2004). “Numerical Study on Flame Structure and NO Formation in CH4-O2-N2 Counterflow Diffusion Flame Diluted with H2O.”International Journal of Energy Research 28(14): 1255–67.CrossRefGoogle Scholar
I.E.A. (2010). International Network for CO Capture. Available from .
Ju, Y., Masuya, G., and Ronney, P. (1998). “Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames.”Proceedings of the Combustion Institute 2(27): 2619–26.CrossRefGoogle Scholar
Kalb, J., and Sattelmayer, T. (2004). “Lean Blowout Limit and NOx Production of a Premixed Sub-ppm NOx Burner with Periodic Flue Gas Recirculation.”Journal of Engineering for Gas Turbines and Power 128(2): 247–54.CrossRefGoogle Scholar
Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., and Smooke, M. D. (2007). CHEMKIN Release 4.1. 1. Reaction Design: San Diego, CA.Google Scholar
Kutne, P., Kapadia, B. K., Meier, W., and Aigner, M. (2011). “Experimental Analysis of the Combustion Behaviour of Oxyfuel Flames in a Gas Turbine Model Combustor.”Proceedings of the Combustion Institute 33(2): 3383–90.CrossRefGoogle Scholar
Kvamsdal, H., Jordal, K., and Bolland, O. (2007). “A Quantitative Comparison of Gas Turbine Cycles with CO2 Capture.”Energy 32(1): 10–24.CrossRefGoogle Scholar
Lammel, O., Schütz, H., Schmitz, G., Lückerath, R., Stöhr, M., Noll, B., Aigner, M., Hase, M., and Krebs, W. (2010). “FLOX Combustion at High Power Density and High Flame Temperatures.”Journal of Engineering for Gas Turbines and Power 132(12): 121503.CrossRefGoogle Scholar
Le Cong, T., Bedjanian, E., and Dagaut, P. (2010). “Oxidation of Ethylene and Propene in the Presence of CO2 and H2O: Experimental and Detailed Kinetic Modeling Study.”Combustion Science and Technology 182(4): 333–49.CrossRefGoogle Scholar
Le Cong, T., and Dagaut, P. (2009). “Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx.”Energy & Fuels 23(2): 725–34.CrossRefGoogle Scholar
Lefebvre, A. (2010). Gas Turbine Combustion, third edition, CRC Press, Ann Arbor, MI.CrossRefGoogle Scholar
Levy, Y., Sherbaum, V., and Arfi, P. (2004). “Basic Thermodynamics of FLOXCOM, the Low-NOx Gas Turbines Adiabatic Combustor.”Applied Thermal Engineering 24(11): 1593–605.CrossRefGoogle Scholar
Li, G., Gutmark, E. J., Stankovic, D., Overman, N., Cornwell, M., Fuchs, L., and Vladimir, M. (2006). “Experimental Study of Flameless Combustion in Gas Turbine Combustors.”AIAA Paper 546.Google Scholar
Li, H., ElKady, A. M., and Evulet, A. T. (2009). “Effect of Exhaust Gas Recirculation on NOx Formation in Premixed Combustion Systems.” 47th AIAA Aerospace Sciences Meeting, Orlando, FL.Google Scholar
Li, H., Yan, J., and Anheden, M. (2009). “Impurity Impacts on the Purification Process in Oxy-fuel Combustion Based CO2 Capture and Storage System.”Applied Energy 86(2): 202–13.CrossRefGoogle Scholar
Li, S., and Williams, F. (1999). “NOx Formation in Two-stage Methane-air Flames.”Combustion and Flame 118(3): 399–414.CrossRefGoogle Scholar
Liu, F., Guo, H., Smallwood, G. J., and Gülder, Ö. L. (2001). “The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx Formation.”Combustion and Flame 125(1–2): 778–87.CrossRefGoogle Scholar
Liu, F., Guo, H., and Smallwood, G. J. (2003). “The Chemical Effect of CO2 Replacement on N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames.”Combustion and Flame 133(4): 495–7.CrossRefGoogle Scholar
Lückerath, R., Meier, W., and Aigner, M. (2008). “FLOX Combustion at High Pressure with Different Fuel Compositions.”Journal of Engineering for Gas Turbines and Power 130: 011505.CrossRefGoogle Scholar
Lv, X., Cui, Y., Fang, A., Xu, G., Yu, B., and Nie, C. (2010). “Experimental Test on a Syngas Model Combustor with Flameless Technology.” ASME Turbo Expo, Glasgow, United Kingdom.CrossRefGoogle Scholar
Lyons, V. J. (1980). “Fuel/air Nonuniformity – Effect on Axisymmetrically Pulsed Turbulent Jet Flames.”AIAA Journal 20(5): 660–5.CrossRefGoogle Scholar
Maruta, K., Abe, K., Hasegawa, S., Maruyama, S., and Sato, J. (2007). “Extinction Characteristics of CH4/CO2 versus O2/CO2 Counterflow Non-premixed Flames at Elevated Pressures up to 0.7 MPa.”Proceedings of the Combustion Institute 31(1): 1223–30.CrossRefGoogle Scholar
Mathieu, P., and Nihart, R. (1999). “Zero-emission MATIANT Cycle.”Journal of Engineering for Gas Turbines and Power 121(1): 116–20.CrossRefGoogle Scholar
Metz, B. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York.Google Scholar
Naik, S. V., Laurendeau, N. M., Cooke, J. A., and Smooke, M. D. (2003). “Effect of Radiation on Nitric Oxide Concentration under Sooting Oxy-fuel Conditions.”Combustion and Flame 134(4): 425–31.CrossRefGoogle Scholar
Neumeier, Y., Weksler, Y., Zinn, B., Seitzman, J., Jagoda, J., and Kenny, J. (2003). “Ultra Low Emissions Combustor with Non-premixed Reactants Injection.”41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ.Google Scholar
Park, J., Kim, S. G., Lee, K. M., and Kim, T. K. (2002). “Chemical Effect of Diluents on Flame Structure and NO Emission Characteristic in Methane-air Counterflow Diffusion Flame.”International Journal of Energy Research 26(13): 1141–60.CrossRefGoogle Scholar
Park, J., Hwang, D. J., Kim, K. T., Lee, S. B., and Kell, S. I. (2004). “Evaluation of Chemical Effects of Added CO2 according to Flame Location.”International Journal of Energy Research 28(6): 551–65.CrossRefGoogle Scholar
Pipitone, G., and Bolland, O. (2009). “Power Generation with CO2 Capture: Technology for CO2 Purification.”International Journal of Greenhouse Gas Control 3(5): 528–34.CrossRefGoogle Scholar
Rao, A., and Rubin, E. (2002). “A Technical, Economic, and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control.”Environmental Science and Technology 36(20): 4467–75.CrossRefGoogle Scholar
Renard, C., Musick, M., Van Tiggelen, P. J., and Vandooren, J. (2003). “Effect of CO2 or H2O Addition on Hydrocarbon Intermediates in Rich C2H4/O2/Ar Flames.” European Combustion Meeting, Orleans, France.Google Scholar
Ruan, J., Kobayashi, H., Niioka, T., and Ju, Y. (2001). “Combined Effects of Nongray Radiation and Pressure on Premixed CH4/O2/CO2 Flames.”Combustion and Flame 124(1–2): 225–30.CrossRefGoogle Scholar
Rutar, T., and Malte, P. C. (2002). “NO Formation in High-Pressure Jet-Stirred Reactors with Significance to Lean-Premixed Combustion Turbines.”Journal of Engineering for Gas Turbines and Power 124(4): 776–83.CrossRefGoogle Scholar
Sadanandan, R., Lückerath, R., Meier, W., and Wahl, C. (2011). “Flame Characteristics and Emissions in Flameless Combustion under Gas Turbine Relevant Conditions.”Journal of Propulsion and Power 27(5): 970–80.CrossRefGoogle Scholar
Sanz, W., Jericha, H., Moser, M., and Heitmeir, F. (2005). “Thermodynamic and Economic Investigation of an Improved Graz Cycle Power Plant for CO2.”Journal of Engineering for Gas Turbines and Power 127(4)): 765–72.CrossRefGoogle Scholar
Sanz, W., Jericha, H., Bauer, B., and Göttlich, E. (2008). “Qualitative and Quantitative Comparison of Two Promising Oxy-fuel Power Cycles for CO2 Capture.”Journal of Engineering for Gas Turbines and Power 130(3): 031702.CrossRefGoogle Scholar
Sass, B. M., Farzan, H., Prabhakar, R., Gerst, J., Sminchak, J., Bhargava, M., Nestleroth, B., and Figueroa, J. (2009). “Considerations for Treating Impurities in Oxy-Combustion Flue Gas Prior to Sequestration.”Energy Procedia 1(1): 535–42.CrossRefGoogle Scholar
Schütz, H., Lückerath, R., Kretschmer, T., Noll, B., and Aigner, M. (2008). “Analysis of the Pollutant Formation in the FLOX® Combustion.”Journal of Engineering for Gas Turbines and Power 130(1): 011503.CrossRefGoogle Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V. V., and Qin, Z. Available from .
Staicovici, M. (2002). “Further Research Zero CO2 Emission Power Production: The ‘COOLENERG’ Process.”Energy 27(9): 831–44.CrossRefGoogle Scholar
Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., and Jensen, A. D. (2010). “Oxy-fuel Combustion of Solid Fuels.”Progress in Energy and Combustion Science 36(5): 581–625.CrossRefGoogle Scholar
Turns, S. R. (2000). An Introduction to Combustion, second edition, McGraw Hill, New York.Google Scholar
Undapalli, S., Srinivasan, S., and Menon, S. (2009). “LES of Premixed and Non-premixed Combustion in a Stagnation Point Reverse Flow Combustor.”Proceedings of the Combustion Institute 32(1): 1537–44.CrossRefGoogle Scholar
Vandenhengel, W., and Miyagishima, W. (1993). “CO2 Capture and Use for EOR in Western Canada 2. CO2 Extraction Facilities.”Energy Conversion and Management 34(9–11): 1151–6.CrossRefGoogle Scholar
Wall, T. (2007). “Combustion Processes for Carbon Capture.”Proceedings of the Combustion Institute 31(1): 31–47.CrossRefGoogle Scholar
White, V., Torrente-Murciano, L., Sturgeon, D., and Chadwick, D. (2009). “Purification of Oxyfuel-derived CO2.”Energy Procedia, 1(1): 399–406.CrossRefGoogle Scholar
Williams, T. C., Shaddix, C. R., and Schefer, R. W. (2008). “Effect of Syngas Composition and CO2-diluted Oxygen on Performance of a Premixed Swirl-stabilized Combustor.”Combustion Science and Technology 180(1): 64–88.CrossRefGoogle Scholar
Wünning, J., and Wünning, J. (1997). “Flameless Oxidation to Reduce Thermal NO-formation.”Progress in Energy and Combustion Science 23(1): 81–94.CrossRefGoogle Scholar
Yantovski, E. (1996). “Stack Downward: Zero Emission Fuel-fired Power Plants Concept.”Energy Conversion and Management 37(6): 867–77.CrossRefGoogle Scholar
Yossefi, D., Ashcroft, S. J., Hacohen, J., Belmont, M. R., and Thorpe, I. (1995). “Combustion of Methane and Ethane with CO2 Replacing N2 as a Diluent.”Fuel 74(7): 1061–71.CrossRefGoogle Scholar
Zhao, D., Yamashita, H., Kitagawa, K., Arai, N., and Furuhata, T. (2002). “Behavior and Effect on NOx Formation of OH Radical in Methane-air Diffusion Flame with Steam Addition.”Combustion and Flame 130(4): 352–60.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×