Published online by Cambridge University Press: 05 June 2012
While the dynamic state of a single particle can be specified quantum mechanically in terms of its state function, any rigorous description of the state of a many-particle system would require the complete knowledge of the dynamic state functions of all the particles. That is not always possible. On the other hand, for a large number of particles in, or near, thermal equilibrium in a uniform sample, the principles of statistical mechanics may be invoked to describe the averaged expectation values of the physically observable properties of such a many-particle system. The basic concepts of the density-matrix formalism and the quantum mechanic analog of the classical Boltzmann equation commonly used for optical and magnetic resonance problems of many-particle quantum systems are introduced in this chapter. Applications of this approach to such specific problems as the resonant interaction of electromagnetic radiation with optical media of two-level atoms, nonlinear optics, and the laser rate equations and transient dynamics are discussed in this chapter.
Definitions of the density operator and the density matrix
Up to this point, in studying the dynamics of quantum mechanic systems, we have assumed that the state of the system can be specified in terms of a precisely known state function |Ψ〉. On the other hand, for a macroscopic medium containing many particles, it is not always possible to know the exact dynamic states of all the particles in the medium, even for physically identical particles.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.