Published online by Cambridge University Press: 01 July 2009
In this section we investigate photonic bandgaps in two-dimensional photonic crystal lattices. We start by plotting a band diagram for a periodic lattice with negligible refractive-index-contrast. We then introduce a plane-wave expansion method for calculating the eigenmodes of a general 2D photonic crystal, and then develop a perturbation approach to describe bandgap formation in the case of photonic crystal lattices with small refractive index contrast. Next, we introduce a modified plane-wave expansion method to treat line and point defects in photonic crystal lattices. [1,2] Finally, we introduce perturbation formulation to describe bifurcation of the defect states from the bandgap edges in lattices with weak defects.
The two-dimensional dielectric profiles considered in this section exhibit discrete translational symmetry in the plane of a photonic crystal, and continuous translational symmetry perpendicular to the photonic crystal plane direction (Fig. 6.1). The mirror symmetry described in Section 2.4.7 suggests that the eigenmodes propagating strictly in the plane of a crystal can be classified as either TE or TM, depending on whether the vector of a modal magnetic or electric field is directed along the ẑ axis.
Two-dimensional photonic crystals with diminishingly small index contrast
In the case of a 2D discrete translational symmetry, the dielectric profile transforms into itself ε(r + δr) = ε(r) for any translation along the lattice vector δr defined as δr = ā1N1 + ā2N2,(N1, N2) ⊂ integer.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.