Published online by Cambridge University Press: 05 June 2012
INTRODUCTION
In the previous chapter we have seen that distributions form an extension of the familiar functions. Moreover, in most cases it is not very hard to imagine a distribution intuitively as a limit of a sequence of functions. Especially when introducing new operations for distributions (such as differentiation), such an intuitive representation can be very useful. In section 8.1 we applied this method to make it plausible that the Fourier transform of the delta function is the constant function 1, and also that the reciprocity property holds in this case.
The purpose of the present chapter is to develop a rigorous Fourier theory for distributions. Of course, the theory has to be set up in such a way that for functions we recover our previous results; this is because distributions are an extension of functions. This is why we will derive the definition of the Fourier transform of a distribution from a property of the Fourier transform of functions in section 9.1. Subsequently, we will determine the spectrum of a number of standard distributions. Of course, the delta function will be treated first.
In section 9.2 we concentrate on the properties of the Fourier transform of distributions. The reciprocity property for distributions is proven. We also treat the correspondence between differentiation and multiplication. Finally, we show that the shift properties also remain valid for distributions.
It is quite problematic to give a rigorous definition of the convolution product or to state (let alone prove) a convolution theorem.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.