Published online by Cambridge University Press: 05 June 2012
INTRODUCTION
The Fourier transform is one of the most important tools in the study of the transfer of signals in control and communication systems. In chapter 1 we have already discussed signals and systems in general terms. Now that we have the Fourier integral available, and are familiar with the delta function and other distributions, we are able to get a better understanding of the transfer of signals in linear time-invariant systems. The Fourier integral plays an important role in continuous-time systems which, moreover, are linear and time-invariant. These have been introduced in chapter 1 and will be denoted here by LTC-systems for short, just as in chapter 5.
Systems can be described by giving the relation between the input u(t) and the corresponding output or response y(t). This can be done in several ways. For example, by a description in the time domain (in such a description the variable t occurs), or by a description in the frequency domain. The latter means that a relation is given between the spectra (the Fourier transforms) U(ω) and Y(ω) of, respectively, the input u(t) and the response y(t).
In section 10.1 we will see that for LTC-systems the relation between u(t) and y(t) can be expressed in the time domain by means of a convolution product. Here the response h(t) to the unit pulse, or delta function, δ(t) plays a central role.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.