Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:52:46.091Z Has data issue: false hasContentIssue false

2 - Early Photosynthetic Organisms

from Part I - Origins and Consequences of Early Photosynthetic Organisms

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Photosynthesis evolved in the Archean. Before the Great Oxidation Event, the dominant form of photosynthesis was anoxygenic bacterial photosynthesis, although there is molecular phylogenetic evidence of the occurrence of oxygenic cyanobacteria (or their ancestors) in the Archean, explaining the occurrence of ‘whiffs of oxygen’ in the Archean. Recent molecular genetic evidence shows that phototrophy is a synapomorphy of only one of the six clades of anoxygenic phototrophs (the Chlorobi) and of the oxygenic cyanobacteria, so the occurrence of phototrophy in the other five clades of anoxygenic phototrophy involves horizontal gene transfer. Photolithotrophy only occurs in three clades of anoxygenic bacteria, that is, the Chlorobi with reaction centre I for photochemistry and the reverse tricarboxylic acid cycle for CO2 fixation, the Chloroflexi with reaction centre II for photochemistry and the 3-hydroxypropionate bi-cycle or the Benson–Calvin–Bassham cycle for CO2 fixation, and the γ-proteobacteria with reaction centre 2 for photochemistry and the Benson–Calvin–Bassham cycle for CO2 fixation. The oxygenic cyanobacteria have photosystem I (homologue of reaction centre I) and photosystem II (homologue of reaction centre II) in linear electron flow, and photosystem I in cyclic electron flow, and the Benson–Calvin–Bassham cycle for CO2 fixation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aivaliotis, M., Karas, M. & Tsiotid, G. (2007). Alternative strategy for the membrane proteome analysis of the green sulfur bacterium Chlorobium tepidum using blue native page and 2-D page on purified membranes. Journal of Proteome Research 6: 10481058.CrossRefGoogle ScholarPubMed
Algeo, T. J. & Scheckler, S. E. (1998). Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London B 353: 113130.CrossRefGoogle Scholar
Arp, T. B., Kistner-Morris, J., Aji, V. et al. (2020). Quieting a noisy antenna reproduces photosynthetic light harvesting spectra. Science 368: 14901495.CrossRefGoogle ScholarPubMed
Bach, L. T., Tamsitt, V., Gower, J. et al. (2021). Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications 12: 2556.CrossRefGoogle ScholarPubMed
Bar-Even, A., Noor, E. & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany 63: 23252342.CrossRefGoogle ScholarPubMed
Behrendt, L., Trampe, E. L., Nord, N. B. et al. (2020). Life in the dark: Far-red absorbing cyanobacteria extend photic zone deep into terrestrial caves. Environmental Microbiology 22: 952963.CrossRefGoogle Scholar
Bengtson, S., Sallstedt, T., Belivanova, V. et al. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLOS Biology 15: e2000735.CrossRefGoogle ScholarPubMed
Blank, C. E. (2013). Origin and early evolution of photosynthetic eukaryotes in freshwater habitats: Reinterpreting Proterozoic palaeobiology and biogeochemical process in light of trait evolution, Journal of Phycology 49: 10401055,CrossRefGoogle Scholar
Blank, C. E. & Sánchez-Baracaldo, P. (2010). Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise of atmospheric oxygen. Geobiology 8: 123.CrossRefGoogle ScholarPubMed
Brown, J. W. & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenoplies (Ochrophyta): Substantial underestimation of putative fossil dates. PLOS ONE 5: 12759.CrossRefGoogle Scholar
Bryant, D. A., Liu, Z., Li, T. et al. (2012). Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexus and Acidobacteria, In: Burnap, R. & Viersma, W. (eds.), Functional Genomics and Evolution of Photosynthetic Systems. Springer, Berlin, pp. 47102.CrossRefGoogle Scholar
Burki, F., Roger, A. J., Brown, M. W. et al. (2019). The new tree of eukaryotes. Trends in Ecology and Evolution 35: 1055.Google ScholarPubMed
Camacho, A., Walter, X. A., Picazo, A. et al. (2017) Photoferrotrophy: Remains of ancient photosynthesis in modern environments. Frontiers in Microbiology 8 : 323.CrossRefGoogle ScholarPubMed
Carlisle, E. M., Jobbins, M., Pankjhania, V. et al. (2021). Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Science Advances 7: eabe9487.CrossRefGoogle ScholarPubMed
Cheuk, A. & Meier, T. (2021). Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Biochemical Transactions 49: 541550.CrossRefGoogle ScholarPubMed
Chrismas, N. A. M., Allen, R., Hollingsworth, A. L. et al. (2021). Complex photobiont diversity in the marine lichen Lichina pygmaea. Journal of the Marine Biological Association 101: 667674.CrossRefGoogle Scholar
Choubeh, R. R., Koehorst, R. B. M., Bina, R. et al. (2019). Efficiency of excitation trapping in the green photosynthetic bacterium Chlorobaculum tepidum. Biochimica et Biophysica Acta Bioenergetics 1860: 147154.CrossRefGoogle Scholar
Cleland, R. E., Rees, D., Walker, D. A. et al. (1990). Photoinhibition of photosynthetic bacteria. In: Baltscheffsky, M. (ed.) Current Research in Photosynthesis. Springer, Dordrecht, pp. 14671470.CrossRefGoogle Scholar
Crowe, S. A., Jones, C., Katsev, S. et al. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Science USA 105: 1593815943.CrossRefGoogle Scholar
Danza, F., Torelli, N., Roman, S. et al. (2017). Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PLOS ONE 12: e0189510.CrossRefGoogle ScholarPubMed
DasSarma, S. & Schwieterman, E. W. (2018). Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. International Journal of Astrobiology 20: 241250.CrossRefGoogle Scholar
Davis, G. A. & Kramer, D. M. (2020). Optimization of ATP synthase c-rings for oxygenic photosynthesis. Frontiers in Plant Science 10: article 1778.CrossRefGoogle ScholarPubMed
Del Cortona, A., Jackson, C. J., Bucchini, F. et al. (2020). Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences USA 117: 25512559.CrossRefGoogle ScholarPubMed
Eisen, J. A., Nelson, K. E., Paulsen, I. T. et al. (2002). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proceedings of the National Academy of Sciences USA 99: 95019514.CrossRefGoogle ScholarPubMed
Falkowski, P. G. & Raven, J. A. (2007). Aquatic Photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, p. 488.CrossRefGoogle Scholar
Falkowski, P. G. & Godfrey, L. V. (2008). Electrons, life and the evolution of Earth’s oxygen cycle. Philosophical Transactions of the Royal Society B 363: 27052716.CrossRefGoogle ScholarPubMed
Falkowski, P. G., Katz, M. E., Knoll, A. H. et al. (2004). The evolution of modern eukaryotic phytoplankton. Science 305: 354360.CrossRefGoogle ScholarPubMed
Frankenberg, N., Hagen-Braun, C., Feller, U. et al. (1996). P840-reaction centers from Chlorobium tepidum –quinone analysis and reconstitution into lipid vesicles. Photochemistry and Photobiology 64: 1419.CrossRefGoogle Scholar
Frigaard, N.-U., Chew, A. G. M., Li, H. et al. (2003). Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium, derived from the complete genome sequence. Photosynthesis Research 78: 93117.CrossRefGoogle Scholar
Gabr, A., Grossman, A. R. & Bhattacharya, D. (2020). Paulinella, a model for understanding plastid primary endosymbiosis. Journal of Phycology 56: 837843.CrossRefGoogle Scholar
Gao, X., Xin, Y. & Blankenship, R. E. (2009). Enzymatic activity of the alternative complex III as a menaquinne: aurocyanin oxidoreductase in the electron transport chain of Chloroflexus aurantiacus. FEBS Letters 583: 32753279.CrossRefGoogle ScholarPubMed
Gibson, T. M., Shih, P. M., Cumming, V. M. et al. (2018). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46: 135138.CrossRefGoogle Scholar
Gomez-Consarneau, L., Raven, J. A., Levine, N. M. et al. (2019). Microbial rhodopsins are major contributors to solar energy capture in the sea. Science Advances 8: eaaw8855.Google Scholar
Green, B. R. (2019). What happened to the phycobilisome? Biomolecules 9: 748.CrossRefGoogle Scholar
Grim, S. L. & Dick, G. J. (2016). Photosynthetic versatility in the genome of Geitlerionema sp. PCC 9228 (formerly Oscillatoria limnentica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Frontiers in Microbiology 7: article 1546.CrossRefGoogle Scholar
Gupta, D., Guzman, M. S., Renazasamy, K. et al. (2021). Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodofulvum sulfidophilum. ISME Journal 15: 33843398.CrossRefGoogle ScholarPubMed
Hakkila, K., Antal, K., Antal, T. et al. (2014). Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta 1837: 217225.CrossRefGoogle Scholar
Hamilton, T. L. (2019). The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radical Biology and Medicine 140: 233249.CrossRefGoogle ScholarPubMed
Hamilton, T. L., Klatt, J. M., De Beer, D. et al. (2018). Cyanobacterial photosynthesis under sulfidic conditions: Insights from the isolate Leptolyngbya sp. strain hensonii. ISME Journal 12: 568584.CrossRefGoogle ScholarPubMed
Hauska, G., Schoerl, T., Remigy, H. et al. (2001). The reaction center of green sulfur bacteria. Biochimica et Biophysica Acta 1507: 260277.CrossRefGoogle ScholarPubMed
Hofman, P. A. G., Veldhuis, M. J. W. & van Gemerden, H. (1985). Ecological significance of acetate assimilation by Chlorobium phaeobacteroides. FEMS Microbiology Ecology 31: 271285.CrossRefGoogle Scholar
Hurd, C. L. (2000). Water movement, macroalgal physiology, and productivity. Journal of Phycology 36: 453472.CrossRefGoogle Scholar
Iñiguez, C., Capó-Bauçà, S., Niinemets, Ü. et al. (2020). Evolutionary trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant Journal 101: 897891.CrossRefGoogle Scholar
Jackson, C., Knoll, A. H., Chan, C. X. et al. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: 1523.CrossRefGoogle ScholarPubMed
Jensen, E., Clément, R., Maberly, S. C. et al. (2017). Regulation of the Calvin-Benson-Bassham cycle in the enigmatic diatoms: Biochemical and evolutionary variation on an original theme. Philosophical Transactions of the Royal Society B 372: 2016001.CrossRefGoogle Scholar
Johnston, D. T., Wolfe-Simon, F., Pearson, A. et al. (2009). Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earths middle age. Proceedings of the National Academy of Science USA 106: 1692516929.CrossRefGoogle ScholarPubMed
Kanazawa, A., Davis, G. A., Fisher, N. et al. (2020). Diversity of photoprotection and energy balancing in terrestrial and aquatic photosynthesis. In: Larkum, A. W. D., Grossman, A. R. & Raven, J. A. (eds.) Photosynthesis in Algae. Springer, Dordrecht, pp. 299327.Google Scholar
Kanno, N., Haruta, S. & Hanada, S. (2019). Sulfide-dependent photoautotrophy in the filamentous anoxygenic phototrophic bacteria, Chloroflexus aggregans. Microbes and Environment 34: 304309.CrossRefGoogle Scholar
Kanso, E. A., Lopes, R. M., Strickler, J. R. et al. (2021). Team work in the viscous oceanic microscale. Proceedings of the National Academy of Sciences USA 118: e2018193118.CrossRefGoogle Scholar
Kawai, S., Nishihara, A., Matsuura, K. et al. (2019a). Hydrogen-dependent autotrophic growth in autotrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiology Letters 366: fnz 122.CrossRefGoogle ScholarPubMed
Kawai, S., Kamiya, N., Matsuura, K. et al. (2019b). Symbiotic growth of a thermophilic sulfide-oxidising photoautotroph and an elemental sulfur – disproportionating chemlithoautotroph, and cooperative dissimilatory oxidation of sulfide to sulfate. Frontiers in Microbiology 10: article 1150.CrossRefGoogle Scholar
Larkum, A. W. D., Davey, P. A., Kuo, J. et al. (2017). Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany 68: 37733784.CrossRefGoogle ScholarPubMed
Larkum, A. W. D., Ritchie, R. J. & Raven, J. A. (2018). Living off the sun: Chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica 56: 1143.CrossRefGoogle Scholar
Larsen, H., Yocum, C. S. & van Niel, C. B. (1952). On the energetics of the photosynthesis in green sulfur bacteria. Journal of General Physiology 36: 161171.CrossRefGoogle ScholarPubMed
Launay, H., Huang, W., Maberly, S. C. et al. (2020). Regulation of carbon metabolism by environmental conditions: A perspective from diatoms and other chromalveolates. Frontiers in Plant Science 11: 1033.CrossRefGoogle ScholarPubMed
Lehours, A. C., Enault, F., Boeuf, D. et al. (2018). Biogeographic patterns of aerobic anoxygenic phototrophic bacteria reveal an ecological consistency of phylogenetic clades in different oceanic biomes. Scientific Reports 8: 4105.CrossRefGoogle ScholarPubMed
Lenton, T. M., Crouch, M., Johnson, M. et al. (2012). First plants cooled the Ordovician. Nature Geoscience 5: 8689.CrossRefGoogle Scholar
Littler, M., Littler, D. S., Blair, S. M. et al. (1985). Deepest known plant life discovered on an uncharted seamount. Science 227: 5759.CrossRefGoogle Scholar
Liu, D., Zhang, J., , C. et al. (2020). Synechococcus strain PCC7002 uses sulfide: quinone oxidoreductase to detoxify exogenous sulfide and to convert endogenous sulfide to cellular sulfane. mBio 11: e03429–19.CrossRefGoogle ScholarPubMed
Liu, Z., Klatt, C. G., Ludwig, M. et al. (2012). Candidatus Thermochlorobacter aerophilum’: An aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 6: 18691892.CrossRefGoogle ScholarPubMed
Llirós, M., Garcia-Armisen, T., Darchambeau, F. et al. (2015). Phytoferrotrophy and iron cycling in a modern ferruginous basin. Scientific Reports 5: article 1383.CrossRefGoogle Scholar
Luo, G., Ono, S., Beukes, N. J. et al. (2016). Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Science Advances 2: e1600134.CrossRefGoogle ScholarPubMed
Maberly, S. C. (2014). The fitness of the environment of air and water for photosynthesis, growth, reproduction and dispersal of phototrophs: An evolutionary and biogeochemical perspective. Aquatic Botany 118: 413.CrossRefGoogle Scholar
Maberly, S. C. & Gontero, B. (2018). Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesising in aquatic environments. In: Adams III, W. W. & Terashima, I. (eds.) The Leaf: A Platform for Performing Photosynthesis, Springer, Cham, pp. 307343.CrossRefGoogle Scholar
MacFarlane, J. J. & Raven, J. A. (1990). C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, UK. Plant Cell and Environment 13: 113.CrossRefGoogle Scholar
Magdaong, N. C. M., Niedzwiedzki, D. M., Saer, R. G. et al. (2018). Excitation energy transfer kinetics of phototrophic green sulfur bacteria. Biochimica et Biophysica Acta Bioenergetics 1859: 11801190.CrossRefGoogle ScholarPubMed
Majumdar, E. L. W., King, J. D. & Blankenship, R. E. (2013). Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochimica et Biophysica Acta 1827: 13831391.CrossRefGoogle Scholar
Manske, A. K., Glaeser, K., Kuypers, M. M. M. et al. (2005). Physiology and phylogeny of green sulfur bacteria forming a monospecific assemblage at a depth of 100 m in the Black Sea. Applied and Environmental Microbiology 71: 80498060.CrossRefGoogle Scholar
Mass, T., Genin, A., Shavit, U. et al. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism by the water. Proceedings of the National Academy of Sciences USA 107: 25272531.CrossRefGoogle ScholarPubMed
Medlin, L. K. (2016). Evolution of the diatom: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55: 79103.CrossRefGoogle Scholar
Mills, D. B., Boyle, R. A., Daines, S. J. et al. (2022). Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution 6: 520532.CrossRefGoogle ScholarPubMed
Morozov, A., & Galachyants, Y. P. (2019). Diatom genes originating from red and green algae: implications for the secondary endosymbiosis models. Marine Genomics 45: 7278.CrossRefGoogle ScholarPubMed
Nagy, C. I., Vass, I., Rákherly, G. et al. (2014). Coregulated genes link sulphide: quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC 6803. Journal of Bacteriology 196: 34203440.CrossRefGoogle Scholar
Nakov, T., Boyko, J. D., Averson, A. J. et al. (2017). Models with unequal transition rates favor marine origins of cyanobacteria and photosynthetic eukaryotes. Proceedings of the National Academy of Science USA 114: E10606E10607.CrossRefGoogle ScholarPubMed
Oberleitner, L., Poschman, C., Macorano, L. et al. (2020). The puzzle of metabolite exchange and identification of a putative octitrico peptide repeat expression regulators in the nascent photosynthetic organelles of Paulinella chromatophora. Frontiers in Microbiology 11: article 607182.CrossRefGoogle ScholarPubMed
Obornik, H., Modry, D., Lukeš, M. et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n.sp, n.gen, a novel chromerid from the Great Barrier Reef. Protist 163: 306323.CrossRefGoogle Scholar
Oliver, T., Sánchez-Baracaldo, P., Larkum, A. W. D. et al. (2021). Time-resolved comparative evolution of oxygenic photosynthesis. Biochimica et Biophysica Acta 1862: 8400.Google ScholarPubMed
Orf, G. S. & Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research 116: 316313.CrossRefGoogle ScholarPubMed
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. et al. (2011). Estimating the timing of the early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences USA 108: 1362413629.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R., Deschamps, P., López-García, P. et al. (2017). An early-branching freshwater cyanobacterium at the origin of plastids. Current Biology 27: 386391.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R. I., Moreira, D., López-García, P. et al. (2018). Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green alga ancestry. Molecular Biology and Evolution 35: 21982204.CrossRefGoogle Scholar
Puttick, M. N., Morris, J. L., Williams, T. A. et al. (2018). The interrelationships of land plants and the nature of the ancestral Embryophyte. Current Biology 28: 733745.CrossRefGoogle ScholarPubMed
Quigg, A., Irwin, A. J. & Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society B 278: 15261534.Google ScholarPubMed
Raven, J. A. (1984). A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytologist 98: 593625.CrossRefGoogle Scholar
Raven, J. A. (1996). The bigger the fewer: Size, taxonomic diversity and the range of chlorophyll(ide) pigments in oxygen-evolving marine photolithotrophs. Journal of the Marine Biological Association 76: 211217.CrossRefGoogle Scholar
Raven, J. A. (2009a). Phagotrophy in phototrophs. Limnology and Oceanography 42: 198205.CrossRefGoogle Scholar
Raven, J. A. (2009b). Contribution of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic photosynthesis. Microbial Ecology 56: 177192.CrossRefGoogle Scholar
Raven, J. A. (2011). The cost of photoinhibition. Physiologia Plantarum 152: 87104.CrossRefGoogle Scholar
Raven, J. A. (2015). Implication of mutations of organelle genomes for organelle function and evolution. Journal of Experimental Botany 66: 53395650.CrossRefGoogle ScholarPubMed
Raven, J. A. (2018). Blue carbon: Past, present and future, with emphasis on macroalgae. Biology Letters 14: 20180336.CrossRefGoogle ScholarPubMed
Raven, J. A. & Smith, F. A. (1981). H+ transport and the evolution of photosynthesis. Biosystems 14: 95111.CrossRefGoogle ScholarPubMed
Raven, J. A., Kübler, J. E. & Beardall, J. (2000). Put out the light, and then put out the light. Journal of the Marine Biological Association of the UK 80: 125.CrossRefGoogle Scholar
Raven, J. A., Beardall, J. & Sánchez-Baracaldo, P. (2017). The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany 68: 37013716.CrossRefGoogle ScholarPubMed
Raven, J. A. & Beardall, J. (2020). Energizing the plasmalemma of marine photosynthetic organisms: The role of primary active transport. Journal of the Marine Biological Association UK 100: 333346.CrossRefGoogle Scholar
Raven, J. A. & Sánchez-Baracaldo, P. (2021). Gloeobacter and the implications of a freshwater origin of cyanobacteria. Phycologia 60: 402418.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2022). Evolution of phytoplankton in relation their physiological traits. Journal of Marine Science and Engineering 10: 194.CrossRefGoogle Scholar
Raven, J. A. & Lavoie, M. (2023). Movement of aquatic oxygenic photosynthetic organisms. In: Luttge, U., Canovas, P. M., Risueno, M. C., Leuscher, C., Pretzsch, H. (eds.), Progress in Botany Volume 83. Springer, Heidelberg, pp. 315343.Google Scholar
Raven, J. A., Beardall, J. & Giordano, M. (2014). Energy cost of carbon dioxide concentrating mechanisms in aquatic photosynthesis. Photosynthesis Research 121: 111124.CrossRefGoogle Scholar
Raven, J. A., Knight, C. A. & Beardall, J. (2019a). Genome and cell size variation across algal taxa. Perspectives of Phycology 6: 5980.CrossRefGoogle Scholar
Raven, J. A., Knight, C. A. & Beardall, J. (2019b). Cell size has gene expression and biophysical consequences for cellular function. Perspectives of Phycology 6: 8194.CrossRefGoogle Scholar
Raven, J. A., Suggett, D. J. & Giordano, M. (2020). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology 46: 13771397. https://doi.org/10.1111/jpy.13050.CrossRefGoogle Scholar
Refojo, P. N., Sousa, F. L., Texeira, M., Pereira, M. M. (2010). The alternative complex III: A different architecture using known building modules. Biochimica et Biophysica Acta Bioenergetics 1797: 18691876.CrossRefGoogle ScholarPubMed
Rejofo, P. N., Teixeira, M. & Pereira, M. M. (2012). The alternative complex III: Properties and possible mechanisms for electron transfer and energy conservation. Biochimica et Biophysica Acta 1817: 18521859.Google Scholar
Rickaby, R. E. M. & Hubbard, M. R. E. (2019). Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radical Biology and Medicine 140: 295304.CrossRefGoogle ScholarPubMed
Ritchie, R. J. (2013). The use of solar radiation by the photosynthetic bacterium, Rhodopseudomonas palustris: Model simulation of conditions found in a shallow pond or a flatbed reactor. Photochemistry and Photobiology 89: 11431162.CrossRefGoogle ScholarPubMed
Ritchie, R. J. & Mekjinda, N. (2015). Measurements of photosynthesis using PAM technology in a purple sulfur bacterium Thermochromatium tepidum (Chromatiaceae). Photochemistry and Photobiology 91: 350358.CrossRefGoogle Scholar
Rogers, S. O. (2021). Photosynthetic systems suggest an evolutionary path to diderms. Acta Biotheoretica 69: 347358CrossRefGoogle Scholar
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. et al. (2017a). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737E7745.CrossRefGoogle ScholarPubMed
Sánchez-Baracaldo, P., Bianchi, G., Huesenbach, J. P. et al. (2017b). Model choice requires biological insight when studying the ancestral habitat of photosynthetic eukaryotes. Proceedings of the National Academy of Sciences USA 114: E10608E10609.CrossRefGoogle ScholarPubMed
Schagerl, M. & Donabaum, K. (2003). Patterns of major photosynthetic pigments of freshwater algae. I. Cyanoprokaryota, Rhodophyta and Cryptophyta. Annals of Limnology – International Journal of Limnology 39: 3547.CrossRefGoogle Scholar
Schanz, F., Fischer-Romero, C. & Bachofen, R. (1998). Photo-synthetic production and photoadaptation of phototrophic sulfur bacteria in Lake Cadagno (Switzerland). Limnology and Oceanography 43: 12621269. https://doi.org/10.4319/lo.1998.43.6.1262.CrossRefGoogle Scholar
Schoepp-Cathenet, B., Lieutaud, C., Baymann, F. et al. (2009). Menaquinone as a pool quinone in a purple bacterium. Proceedings of the National Academy of Sciences USA 106: 85498554.CrossRefGoogle Scholar
Sharoni, S. & Halevey, I. (2022). Geological controls on phytoplankton elemental composition. Proceedings of the National Academy of Sciences USA 119: e2113263118.CrossRefGoogle ScholarPubMed
Sørensen, K. (1988). The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway. Marine Chemistry 23: 229241.CrossRefGoogle Scholar
Stoecker, D. K., Hansen, P. J., Caron, D. A. et al. (2017). Mixotrophy in the marine plankton. Annual Review of Marine Science 9: 311385.CrossRefGoogle ScholarPubMed
Swanner, E. D., Wu, W., Hao, L. et al. (2015). Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science 3: article 80.CrossRefGoogle Scholar
Swanner, E. D., Bayer, T., Wu, W. et al. (2017). Iron isotope fractionation during Fe(II) oxidation mediated by the oxygen producing cyanobacterium Synechococcus PCC7002. Environmental Science and Technology 51: 48974906.CrossRefGoogle Scholar
Takahashi, M. & Ichimura, S. E. (1970). Photosythetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnology and Oceanography 15: 929944.CrossRefGoogle Scholar
Tang, K.-H., Barry, K., Chertkov, O. et al. (2011). Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurianticus. BMC genomics 12: 334.CrossRefGoogle Scholar
Tichy, J., Gardian, Z., Bina, D. et al. (2013). Light-harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochimica et Biophysica Acta 827: 723729.CrossRefGoogle Scholar
Ting, C. S., Rocap, G., King, J. et al. (2002). Cyanobacterial photosynthesis in the oceans: The origins of divergent light-harvesting strategies. Trends in Microbiology 10: 134147.CrossRefGoogle ScholarPubMed
Van Tussenbroek, B. I. (1993). Plant and frond dynamics of the giant kelp, Macrocystis pyrifera, forming fringing zone in the Falkland Islands. European Journal of Phycology 28: 181185.CrossRefGoogle Scholar
Veldhuis, M. J. W. & van Germoden, H. (1986). Competition between purple and brown phototrophic bacteria in stratified lakes: Sulfide, acetate, and light as limiting bacteria. FEMS Microbiology Ecology 38: 3138.CrossRefGoogle Scholar
Wade, J., Byrne, D. J., Ballerfine, C. J. et al. (2021). Temporal variation of planetary iron as a driver of evolution. Proceedings of the National Academy of Sciences USA 118: e2109865118.CrossRefGoogle ScholarPubMed
Ward, L. M., Hemp, J., Shih, P. M. et al. (2018). Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Frontiers in Microbiology 9: article 260.CrossRefGoogle ScholarPubMed
Ward, L. M. & Shih, P. M. (2021). Granick revisited: Synthesising evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages. PLOS ONE 16: e0239248.CrossRefGoogle ScholarPubMed
Ward, L. M., Rasmussen, B. & Fischer, W. W. (2018). Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. Journal of Geophysical Research: Biogeosciences 124: 211226.CrossRefGoogle Scholar
Ward, L. M., Cardona, T. & Holland-Moritz, H. (2019). Evolutionary implications of anoxygenic phototrophy in the bacteria phylum Candidatus Eremiobacterota (WPS-2). Frontiers in Microbiology 10: article 1658.CrossRefGoogle Scholar
Wen, J., Zhang, H., Gross, M. L. et al. (2011). Native electrospray mass spectrometry of pigments of the FMO photosynthetic antenna protein. Biochemistry 50: 35023511.CrossRefGoogle ScholarPubMed
Westacott, S., Planavsky, N. J., Zhao, M.-Y. et al. (2021). Revisiting the sedimentary record of the rise of diatoms. Proceedings of the National Academy of Sciences USA 118: e2103517118.CrossRefGoogle ScholarPubMed
Williams, J. J., Mills, B. J. W. & Lenton, T. M. (2019). Tectonically driven Ediacaran oxygenation event. Nature Communications 10: 2690.CrossRefGoogle ScholarPubMed
Xia, M., Li, M. & Reynolds, C. S. (2018). Colony formation in the cyanobacterium Microcystis. Biological Reviews 93: 13991429.CrossRefGoogle Scholar
Yang, Y., Matsuzaki, M., Takahashi, F. et al. (2014). Phylogenetic analyses of ‘red’ genes from two divergent species of the ‘green’ secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLOS ONE 8: 10158.Google Scholar
Zapata, M., Jeffrey, S. W., Wright, S. W. et al. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology Progress Series 270: 83102.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×