Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T11:25:40.556Z Has data issue: false hasContentIssue false

Chapter 55 - Retrophyllum

Podocarpales: Podocarpaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Evergreen small to moderately large trees, at least one of dwarf semi-aquatic habit. Their branch systems are of moderate length and spreading, with superficially symmetric slender minor branchlets forming somewhat flattened or downcurving open foliage sprays. Their leaves are ranked but curiously inversely rotated along one side of each shoot.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 357 - 369
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100(11): 629632.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle ScholarPubMed
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. 1952. Identification of Tertiary pollen grains with those of New Guinea and New Caledonian beeches. Nature 170: 127.CrossRefGoogle Scholar
Cranwell, I.M. 1939. Southern beech pollens. Auckland Institute Museum Records 2: 175196.Google Scholar
Crisp, M.D., Trewick, S.A. & Cook, L.G. 2011. Hypothesis testing in biogeography. Trends in Ecology and Evolution 26: 6672.CrossRefGoogle Scholar
Dengo, C.A. & Covey, M.C. 1993. Structure of the Eastern Cordillera of Columbia: implications for trap styles and regional tectonics. American Association of Petroleum Geologists Bulletin 77: 13151337.Google Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Pp 150 in Travaux du Laboratoire Forestal de Toulouse Tome 2, vol 1. Paris: Faculté des Sciences.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Columbia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Gregory-Wodzicki, K.M. 2000 Uplift history of the Central and Northern Andes: a review. Bulletin of the Geological Society of America 112: 10911105.2.0.CO;2>CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hope, G. & Pask, J. 1998. Tropical vegetation change in the late Pleistocene of New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 142: 121.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Keppel, G., Tuiwana, M.V., Naikatini, A. & Rounde, I.A. 2011. Microhabitat specialization of tropical-rainforest canopy trees in the Sovi Basin, Viti Levu, Fiji Islands. Journal of Tropical Ecology 27: 491501.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Lamb, S. & Hoke, L. 1997. Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16: 623649.CrossRefGoogle Scholar
Lander, E.B. 2008. Early Clarendonian (late middle Miocene) fossil land mammal assemblages from the Lake Mathews Formation, Riverside County, southern California, and a preliminary review of Merychyus (Mammalia, Artiodactyla, Oreodontidae). Geology and Vertebrate Paleontology of Western and Southern North America 41: 181212.Google Scholar
Lee, D.E., Conran, J.G., Lindquist, J.K., Bannister, J.M & Mildenhall, P.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. Botanical Review 78: 235260.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Luyendyk, B.P. 1995. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture. Geology 23(4): 373376.2.3.CO;2>CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 1999. Towards a biogeography of the Podocarpaceae. Pp 137147 in IV International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mortimer, N., Campbell, H.J., Tulloch, A.J., et al. 2017. Zealandia: Earth’s hidden continent. GSA today 27(3): 2735.CrossRefGoogle Scholar
Page, C.N. 1988. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Pole, M. 1992. Early Miocene flora of Manuherikia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers of the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Pole, M. 2010. Was New Zealand a primary source for the New Caledonian flora? Alcheringa 34(1): 6174.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society N.S.W. 94: 166172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Silba, J. 1983. Addendum to a revision of Cupressus L. (Cupressaceae). Phytologia 52: 349361.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Torres, R. & Romero, J.H. 1988. Podocarpaceae. Pp 567 in Pinto, P. & Lozano, G. (eds.), Flora of Colombia. Bogotá: Instituto de Ciencias Naturales, Museo de Historia Natural, Faculdad de Ciencias, Universidad Nacional de Colombia.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Wilf, P., Donovan, M.P., Cúneo, N.R. & Gandolfo, M.A. 2017. The fossil flip-leaves (Retrophyllum, Podocarpaceae) of southern South America. American Journal of Botany 104: 13441369.CrossRefGoogle ScholarPubMed
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Retrophyllum
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Retrophyllum
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Retrophyllum
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.019
Available formats
×