Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T01:48:25.071Z Has data issue: false hasContentIssue false

Chapter 71 - Phyllocladus

Podocarpales: Phyllocladaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Plants without distinct leaves, but the apparent function of leaves replaced by the presence of very numerous broad, flattened rhombic phylloclades (each derived from a much modified expanded and flattened branchlet), all usually of somewhat variable and often irregularly compound shape with angular margins, each phylloclade with multiple conspicuous veins and often glossy-surfaced, especially on all dorsal aspects.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 563 - 588
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Aiba, S.I., Kitayama, K. & Repin, R. 2002. Species composition and species–area relationships of trees in nine permanent plots in altitudinal sequences on different geological substrates of Mount Kinabalu. Sabah Parks National Journal 5: 769.Google Scholar
Allan, H.H. 1961. Flora of New Zealand, Vol 1. Wellington: Government Printer.Google Scholar
Andruchow-Colombo, A., Escapa, I.H., Carpenter, R.J., et al. 2019. Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina. Alcheringa 43, 127145.CrossRefGoogle Scholar
Baker, H.G. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9: 347348.Google Scholar
Barker, P.C.J. & Kirkpatrick, J.B. 1994. Phyllocladus aspleniifolius: variability in the population structure, the regeneration niche and dispersion patterns in Tasmanian forests. Australian Journal of Botany 42(2): 163190.CrossRefGoogle Scholar
Biffen, E., Brodribb, T.J., Will, R.C., Thomson, P. & Lara, A.J. 2012. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B: Biological Sciences 279: 341348.CrossRefGoogle Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Blint, A.N. 1981. An early Pliocene pollen assemblage from Lake Tay, south-western Australia, and its phytogeographic implications. Australian Journal of Botany 29: 277291.Google Scholar
Bobrov, A.V.F.C. 1996. Bitegmic seeds of representatives of orders Podocarpales, Cephalotaxales and Taxales. Pp. 23–26 in Proceedings of the IX International Congress on Plant Phylogeny, Moscow (in Russian).Google Scholar
Bobrov, A.V.F.C., Melikian, A.P. & Yembaturova, E.Y. 1999. Seed morphology, anatomy and ultrastructure of seeds of representatives of Phyllocladus L.C. & A. Rich (Phyllocladaceae (Pilg.) Bessy) in connection with generic system and phylogeny. Annals of Botany 83: 601618.CrossRefGoogle Scholar
Bobrov, A.V.F.C., Melikian, A.P., Romanov, M.S. & Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Boland, D.J., Brooker, M.I.H., Chippendale, G.M., et al. 1984. Forest Trees of Australia. Melbourne: CSIRO.Google Scholar
Bowe, L.M., Coat, G. & DePamphilis, C.W. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, USA 97(8): 40924097.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Calais, S. S. & Kirkpatrick, J.B. 1983. Tree species regeneration after logging in temperate rainforest, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 117: 7783.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chavchavadze, E.S. 1979. Wood of Conifers. Leningrad: Nauka (in Russian).Google Scholar
Chaw, S.-M., Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clifford, H.T. & Constantine, J. 1980. Ferns, Fern-Allies and Conifers of Australia. Brisbane: Queensland University Press.Google Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1953. The Tertiary occurrence and distribution of Podocarpus (section Dacrycarpus) in Australia and Tasmania. Australian Journal of Botany 1: 7182.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6068.CrossRefGoogle Scholar
Copeland, E.B. 1907. Comparative ecology of the San Ramon Polypodiaceae. Philippine Journal of Science 2c: 176.Google Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographical significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Cox, R.E., Yamamoto, S. & Otto, A. 2007. Oxygenated di- and tri-cyclic diterpenoids of southern hemisphere conifers. Biochemical Systematics and Ecology 35: 342362.CrossRefGoogle Scholar
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature, London 184: 17821785.CrossRefGoogle Scholar
Culmsee, H., Pitopang, R. & Mangopo, H. 2011. Tree diversity and phytogeographical patterns of tropical high mountain rainforests in Central Sulawesi, Indonesia. Biodiversity and Conservation 20: 11031123.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds.), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Doyle, J. 1957. Aspects and problems of conifer embryology. Advancements in Science (London) 54: 111.Google Scholar
Doyle, J.A. 1996. Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Sciences 157 (6 Suppl.): S3S39.CrossRefGoogle Scholar
Doyle, J. & Looby, W. 1939. Embryology in Saxegothaea and its relation to other podocarps. Scientific Proceedings of the Royal Dublin Society 22: 127147.Google Scholar
Druitt, D.G., Enright, N.J. & Ogden, J. 1990. Altitudinal zonation in the mountain forests of Mt. Hauhungatahi, North Island, New Zealand. Journal of Biogeography 17: 205220.CrossRefGoogle Scholar
Ettingshausen, C. von 1888. Contributions to the tertiary flora of Australia. Palaeontology 2: 1189.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Finet, C., Timme, R.E., Delwiche, C.F. & Marlétaz, F. 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 20(24): 22172222.CrossRefGoogle ScholarPubMed
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du Laboratoire Forestier de Toulouse 2(3).Google Scholar
Gaussen, H. 1979. Les Gymnosperms actuelles et fossils. Les Taxines. Travaux du Laboratoire Forestier de Toulouse 1: 124.Google Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Gugerli, F., Sperisen, C., Büchler, U., et al. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Molecular Phylogenetics and Evolution 21(2): 167175.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.B. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135(3): 271274.CrossRefGoogle Scholar
Hill, R.S. 1989. New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia. Alcheringa 13: 193208.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Holloway, G.T. 1937. Ovule anatomy and development and embryogeny in Phyllocladus alpinus (Hook.) and in P. glaucus (Carr.). Transactions of the Royal Society of New Zealand 67: 149165.Google Scholar
Holloway, G.T. 1938. The significance of the diterpenes of the Phyllocladeae and Podocarpeae. New Zealand Journal of Science and Technology 20B: 1620.Google Scholar
Hope, G.S. 1986. Development of present day biotic distributions in the New Guinea mountains. Pp 129145 in Barlow, B. (ed.). Flora and Fauna of Alpine Australasia. Melbourne: CSIRO.CrossRefGoogle Scholar
Hope, G.S. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 385398.CrossRefGoogle Scholar
Jackson, W.D. 1968. Fire, air, water and earth: an elemental ecology of Tasmania. Proceedings of the Ecological Society of Tasmania 3: 916.Google Scholar
Jackson, W.D. 1983. Tasmanian rainforest ecology. Pp 939 in Blackers, R & Robertson, P. (eds.), Tasmania’s Rainforest: What Future. Hobart: Conservation Foundation.Google Scholar
Jarman, S.J., Brown, M.J., & Kantvilas, G. 1987. The classification, distribution and conservation status of Tasmanian rainforests. Pp 922 in Davis, B. (ed.), The Rainforest Legacy, Vol 1. Canberra: Australian Government Publishing Service.Google Scholar
John, R., Dalling, J.W., Harms, K.E., et al. 2007. Soil nutrients influence spatial distribution of tropical tree species. Proceedings of the National Academy of Sciences, USA 104: 864869.CrossRefGoogle ScholarPubMed
Johns, R.J. 1995. Endemism in the Malesian flora. Curtis’s Botanical Magazine 12(2): 95110.CrossRefGoogle Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1973. On the family Phyllocladaceae. Taiwania 18: 142145.Google Scholar
Keng, H. 1974. The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Annals of Botany 38: 757764.CrossRefGoogle Scholar
Keng, H. 1975. A new scheme of classification of the conifers. Taxon 24: 289292.CrossRefGoogle Scholar
Keng, H. 1977. Phyllocladus and its bearing on the systematics of conifers. Pp 235251 in Kubitsky, K. (ed.), Flowering Plants: Evolution and Classification of the Higher Categories. New York: Springer.CrossRefGoogle Scholar
Keng, H. 1978. The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum 59: 249273.CrossRefGoogle Scholar
Kershaw, A.P. 1984. Late Cenozoic plant extinctions in Australia. Pp 691707 in Martin, P.S. & Llein, R.G. (eds.), Quaternary Extinctions: A Prehistoric Revolution. Tucson, AZ: University of Arizona Press.Google Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Kildahl, N.J. 1908. The morphology of Phyllocladus. Botanical Gazette 46: 339348.CrossRefGoogle Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxonomica Geobotanica 11: 227229 (in Japanese).Google Scholar
Kucera, L.J. & Butterfield, S.G. 1977. Resin canals in the bark of Phyllocladus species indigenous to New Zealand. New Zealand Journal of Botany 15: 657–633.CrossRefGoogle Scholar
Lee, D.E., Conran, J.G., Lindqvist, J.K., Bannister, J.M. & Mildenhall, D.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. The Botanical Review 78: 235260.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1939. The ovule, gametophyte and pro-embryo in Saxegothaea. The Scientific Proceedings of the Royal Dublin Society 22: 95117.Google Scholar
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Markgraf, V., Bradbury, J. & Busby, J.R. 1986. Palaeoclimates in southwestern Tasmania during the last 13,000 years. Palaeos 1: 368380.CrossRefGoogle Scholar
Markham, K.R., Webby, R.F., Whitehouse, L.A., et al. 1985. Support from flavonoid glycoside distribution for the division of Podocarpus in New Zealand. New Zealand Journal of Botany 23(1): 113.CrossRefGoogle Scholar
Martin, H.A. 1973. The palynology of some Tertiary and Pleistocene deposits, Lachlan River Valley, New South Wales. Australian Journal of Botany 6: 157.Google Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 1997. De Abstammung von supraintegumnetalen Samendecken – des Epimatiums und Samenmantels (‘arillus’) 0 bei den Vertretern der Ordnungen Taxales und Podocarpales. Scripta Botanica Belgica 15: 111.Google Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Molloy, B.J.P. 1996. A new species name in Phyllocladus (Phyllocladaceae) from New Zealand. New Zealand Journal of Botany 34: 287297.CrossRefGoogle Scholar
Moore, P.R. & Wallace, R. 2000. Petrified wood from the Miocene volcanic sequence of Coromandel Peninsula, northern New Zealand. Journal of the Royal Society of New Zealand 30: 115130.CrossRefGoogle Scholar
Muller, J. 1966. Montane pollen from the Tertiary of northwest Borneo. Blumea 14: 231235.Google Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1990. Phyllocladaceae. Pp 317319 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Patel, R.N. 1967. Wood anatomy of Podocarpaceae indigenous to New Zealand. 3. Phyllocladus. New Zealand Journal of Botany 6: 38.CrossRefGoogle Scholar
Patel, R.N. 1968. Wood anatomy of the Podocarpaceae indigenous to New Zealand. New Zealand Journal of Botany 6: 38.CrossRefGoogle Scholar
Pilger, E. 1903. Taxaceae. In Engler, A. (ed.), Das Pflanzenreich IV. 5. Leipzig: W. Engelmann.Google Scholar
Pocknall, D.T. 1981. Pollen morphology of Phyllocladus L.C. et A. Rich. New Zealand Journal of Botany 19: 259266.CrossRefGoogle Scholar
Pole, M. 1992 Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifer. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Preest, D.S. 1963. A note on the dispersal characteristics of the seed of New Zealand podocarps and beeches and their biogeographical significance. Pp 415424 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Proctor, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2): 105124.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. 1986. Embryology of Phyllocladus. New Zealand Journal of Botany 24: 575579.CrossRefGoogle Scholar
Quinn, C.J. 1987. The Phyllocladaceae Keng: a critique. Taxon 36: 559565.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Acta Horticulturae 615: 129136.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Read, J. 1995. The importance of comparative growth rates in determining the canopy composition of Tasmanian rainforest. Australian Journal of Botany 43: 243271.CrossRefGoogle Scholar
Robertson, A. 1906. Some points in the morphology of Phyllocladus alpinus, Hook. Annals of Botany 20(79): 259265.CrossRefGoogle Scholar
Sato, S. 1961. Pollen analysis of carbonaceous matter from the Hakobuchi Group in the Enbetsu District, Northern Hokkaido, Japan: palynological study on Cretaceous sediment (I). Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy 11(1): 7793.Google Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Saxton, W.T. 1934. The morphology of Austrotaxus spicata Compton. Annals of Botany 38: 411427.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Sluiter, I.R. & Kershaw, A.P. 1982. The nature of the Late Tertiary vegetation in Australia. Alcheringa 6: 211222.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Stojanovic, K. & Zivotic, D. 2013. Comparative study of Serbian Miocene coals: insights from biomarker composition. International Journal of Coal Geology 107(S1): 323.CrossRefGoogle Scholar
Stojanovic, K., Zivotic, D. & Sanjnovic, A. 2012. Drmo lignite field (Kostolac Basin, Serbia): origin and palaeoenvironmental implications from petrological and organic geochemical studies. Journal of the Serbian Chemical Society 77: 11091127 (seen only as an abstract).CrossRefGoogle Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Berkley, CA: University of California Press.Google Scholar
Tomlinson, P.B., Takaso, T. & Rattenbury, J.A. 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Botanical Journal of the Linnean Society 99: 209221.CrossRefGoogle Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea n.s. 21: 451469.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University.Google Scholar
Wagstaff, S.J. 2004. Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). Journal of Biogeography 31: 15691577.CrossRefGoogle Scholar
Wagstaff, S.J. & Wege, J. 2002. Patterns of diversification in New Zealand Stylidiaceae. American Journal of Botany 89: 865874.CrossRefGoogle ScholarPubMed
Wardle, P. 1969. Biological flora of New Zealand. 4. Phyllocladus alpinus Hook. f. (Podocarpaceae) Mountain toatoa, Celery pine. New Zealand Journal of Botany 7: 7695.CrossRefGoogle Scholar
Wardle, P. 1978. Regeneration status of some New Zealand conifers, with particular reference to Libocedrus bidwillii in Westland National Park. New Zealand Journal of Botany 16: 471477.CrossRefGoogle Scholar
Wardle, P. 2008. New Zealand forest to alpine transitions in global context. Arctic, Antarctic, and Alpine Research 40(1): 240249.CrossRefGoogle Scholar
Webb, P.N. & Harwood, D.M. 1993. Pliocene fossil Nothofagus (southern beech) from Antarctica: phytogeography, dispersal strategies, and survival in high-latitude glacial–deglacial environments. Pp 135166 in Alden, J., Mastrantonia, J.L. & Odum, S. (eds.), Forest Development in Cold Climates. New York: Plenum Press.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Fossil imbricate-leaved Podocarpaceae from tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Whitmore, T. C. 1982. Wallace’s Line: a result of plate tectonics. Annals of the Missouri Botanical Garden 69(3): 668675.CrossRefGoogle Scholar
Winkworth, R.C., Wagstaff, S.J., Glenny, D. & Lockhart, P.J. 2005. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organisms Diversity & Evolution 5(3): 237247.CrossRefGoogle Scholar
Young, M.S. 1910. The morphology of the Podocarpineae. Botanical Gazette 50: 81100.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Phyllocladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Phyllocladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Phyllocladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.035
Available formats
×