Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-b4m5d Total loading time: 0 Render date: 2025-02-20T10:43:10.419Z Has data issue: false hasContentIssue false

Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 15 - 660
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abuziarova, R.Y. 1966. Neogene floras of the mountain regions of central Asia and southern Kazakhstan (palynological data of the Tien Shan and the Pamirs). Review of Palaeobotany and Palynology 5: 269277.CrossRefGoogle Scholar
Ahlemeyer, B. & Kriegstein, J. 2003. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry 36 (suppl.): 814.Google ScholarPubMed
Anderson, J.M. & Anderson, H.M. 1989. Paleoflora of Southern Africa, Molteno Formation (Triassic). 2. Gymnosperms (Excluding Dicroidium). Rotterdam: A.A. Balkema.Google Scholar
Anderson, J.M. & Anderson, H.M. 2003. Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Strelizia 15: 1398.Google Scholar
Archangelsky, S. 1965. Fossil Ginkgoales from the Tico flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 10: 121137.CrossRefGoogle Scholar
Archangelsky, S. 1996. Aspects of Gondwanan paleobotany: gymnosperms of the Paleozoic–Mesozoic transition. Review of Palaeobotany and Palynology 90: 287302.CrossRefGoogle Scholar
Arenz, A., Klein, M. & Fiehe, K. 1996. Occurrence of neurotoxic 4’-O-methylpyridoxine in Ginkgo biloba leaves, Ginkgo medications, and Japanese gingko food. Planta Medica 62: 548551.CrossRefGoogle Scholar
Arnold, C.A. 1947. An Introduction to Paleobotany. New York: McGraw-Hill.Google Scholar
Arnold, C.A. 1948. Classification of gymnosperms from the viewpoint of palaeobotany. Botanical Gazette 110: 212.CrossRefGoogle Scholar
Arora, V.K. & Boer, G.J. 2005. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11: 3959.CrossRefGoogle Scholar
Bajpai, U. 1991. On Ginkoites leaves from the Early Permian of Rajmahal Hills, Bihar, India. Ameghiniana 28: 145148.Google Scholar
Barbacka, M. 2002. The Jurassic Ginkgoales from the Mecsek Mountains, Hungary. Review of Paleobiology 21: 697715.Google Scholar
Barboni, R., & Dutra, T.L. 2015. First record of Ginkgo-related fertile organs (Hamshawvia, Stachyopitys) and leaves (Baiera, Sphenobaiera) in the Triassic of Brazil, Santa Maria formation. Journal of South American Earth Sciences 63: 417435.CrossRefGoogle Scholar
Barnabas, S., Krishnan, S. & Barnabas, J. 1995. The branching pattern of major groups of land plants inferred from parsimony analysis of ribosomal RNA sequences. Journal of Biosciences 20: 259272.CrossRefGoogle Scholar
Barth, S.A., Inselmann, G., Engelmann, R., & Heidemann, H.T. 1991. Influences of Ginkgo biloba on cyclosporin A induced lipid peroxidation in human liver microsomes in comparison to vitamin E, glutathione and N-acetylcysteine. Biochemical Pharmacology 41: 15211526.CrossRefGoogle Scholar
Beerling, D.J. 1999. Long-term responses of boreal vegetation to global change: an experimental and modelling investigation. Global Change Biology 5: 5574.CrossRefGoogle Scholar
Beerling, D.J. & Osborne, C.P. 2002. Physiological ecology of Mesozoic polar forests in a high CO2 environment. Annals of Botany 89: 329339.CrossRefGoogle Scholar
Beerling, D.J. & Royer, D.L. 2002. Reading a CO2 signal from fossil stomata. New Phytologist 153: 387397.CrossRefGoogle Scholar
Beerling, D.J., McElwain, J.C. & Osborne, C.P. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49: 16031607.Google Scholar
Beerling, D.J., Lomax, B.H., Royer, D.L., Upchurch, G.R. & Kump, L.R. 2002. An atmospheric pCO2 reconstruction across the Cretaceous–Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Science of the United States of America 99: 78367840.CrossRefGoogle ScholarPubMed
Berner, R.A. 1994. GEOCARB II: a revisited model of atmospheric carbon dioxide over Phanerozoic time. American Journal of Science 294: 5691.CrossRefGoogle Scholar
Bierhorst, D.W. 1971. Morphology of Vascular Plants. New York: Macmillan.Google Scholar
Boonkaew, T. & Camper, N.D. 2005. Biological activities of Ginkgo extracts. Phytomedicine 12: 318323.CrossRefGoogle ScholarPubMed
Bose, M.N. & Dev, S. 1958. Studies on the fossil flora of the Jabulpur Series from the South Rewa Gondwanan Basin. 1. Cycadopteris, Nipaphyllum and Ginkgoites. Palaeobotanist 7: 143154.Google Scholar
Boulter, M.C. & Kvacek, Z. 1989. The Paleocene flora of the Isle of Mull. Special Papers in Palaeontology 42: 1149.Google Scholar
Braquet, P. 1989. The Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives. Barcelona: J.R. Prous Science Publishers.Google Scholar
Brown, J.T. 1975. Upper Jurassic and Lower Cretaceous ginkgophytes from Montana. Journal of Paleontology 49: 724730.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chaloner, W.G. & Creber, G.T. 1973. Growth rings in fossil woods as evidence of past climates. Pp 425437 in Tarling, D.H. & Runcorn, S.K. (eds.), Implications of Continental Drift to Earth Sciences. London: Academic Press.Google Scholar
Chen, L.Q., Li, C.S., Chaloner, W.G., et al. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany 88: 13091315.CrossRefGoogle ScholarPubMed
Chung, K.F., McCuster, M., Page, C.P., et al. 1987. Effect of ginkgolide mixture (BN 52063) in antagonizing skin and platelet responses to platelet activating factor in man. Lancet 1: 248251.CrossRefGoogle ScholarPubMed
Cohen-Salmon, Ch., Vernaault, P., Martin, B., et al. 1997. Effects of Ginkgo biloba extract (Egb 761) on learning and possible actions on ageing. Journal of Physiology Paris 91: 291300.CrossRefGoogle Scholar
Corey, E.J. 1988. Retrosynthetic thinking: essentials and examples. Chemical Society Reviews 17: 111153.CrossRefGoogle Scholar
Corey, E.J. & Su, W.G. 1987. Total synthesis of a c-15 ginkgolide, bilobalide. Journal of the American Chemical Society 109: 75347536.CrossRefGoogle Scholar
Corey, E.J., Kang, M., Desai, M.C., Ghosh, A.K. & Houpis, J.N. 1988. Total synthesis of ginkgolide B. Journal of the American Chemical Society 110: 649651.CrossRefGoogle ScholarPubMed
Craggs, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney Range Flora of northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 217: 2546.CrossRefGoogle Scholar
Crane, P. 2013. Ginkgo: The Tree That Time Forgot. New Haven, CT: Yale University Press.Google Scholar
Crane, P., Manchester, S.R. & Dilcher, D.L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte formation (Paleocene) near Almont, North Dakota. Fieldiana Geology New Series 20: 163.Google Scholar
Creber, G.T. 1977. Tree rings: a natural data storage system. Biological Review 52: 349383.CrossRefGoogle Scholar
Creber, G.T. & Chaloner, W.G. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Botanical Review 50: 357448.CrossRefGoogle Scholar
Creber, G.T. & Francis, J.E. 1999. Fossil tree-ring analysis: palaeodendrology. Pp 245250 in Jones, T.P. & Rowe, N.P. (eds.), Fossil Plants and Spores Modern Techniques. London: Geological Society of London.Google Scholar
Czier, Z. 1998. Ginkgo foliage from the Jurassic of the Carpathian Basin. Palaeontology 41: 349381.Google Scholar
De Franceschi, D & Vozenin-Serra, C. 2000. Origine du Ginkgo biloba L. Approche phylogenetique. Comptes Rendus de l’Academie des Sciences Paris, Series III Science de la Vie 323: 583592.Google Scholar
Del Fuyuo, G.M., Villar de Seone, L., Archangelsky, S. & Guinard, G. 2006. Estudios cuticulares de Ginkgoites Seward del Cretacico Inferior de Patagonia. Revue Museum Argentino Ciencia Natural n.s. 8: 143149.CrossRefGoogle Scholar
Del Tredici, P. 1989. Ginkgos and multituberculates: evolutionary interpretations in the Tertiary. Biosystems 22: 327339.CrossRefGoogle Scholar
Del Tredici, P. 1991. Ginkgos and people: a thousand years of interaction. Arnoldia 51: 215.CrossRefGoogle Scholar
Del Tredici, P. 1992. Natural regeneration of Ginkgo biloba from downward growing cotyledonary buds (basal chichi). American Journal of Botany 79: 522530.CrossRefGoogle Scholar
Del Tredici, P. 2007. The phenology of sexual reproduction in Ginkgo biloba: ecological and evolutionary implications. Botanical Review 73: 267278.CrossRefGoogle Scholar
Del Tredici, P., Lin, P. & Yuang, Y. 1992. The Ginkgos of Tian Mu Shan. Conservation Biology 6: 202210.CrossRefGoogle Scholar
Deng, S.H., Yang, X.J., & Zhou, Z.Y. 2004. An early Cretaceous Ginkgo ovule-bearing organ fossil from Liaoning, Northeast China and its evolutionary implications. China Science Bulletin 49: 17741776.Google Scholar
Deng, S.H., Yang, X.J. & Zhou, Z.Y. 2020. A new Ginkgo from the Lower Cretaceous of Lionang, northeastern China. Review of Palaeobotany and Palynology. art. 104315.Google Scholar
Denk, T. & Velitzelos, D. 2002. First evidence of epidermal structures of Ginkgo from the Mediterranean Tertiary. Review of Palaeobotany and Palynology 120: 115.CrossRefGoogle Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Doi, H. & Takahashi, M. 2008. Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecology and Biogeography 17: 556561.CrossRefGoogle Scholar
Doludenko, M.P. & Rasskazova, E.S. 1972. Ginkgoales and Czekanowskiales of the Irkutsk basin. Pp 743 in Mesozoic Plants (Ginkgoales and Czekanowskiales) of East Siberia. Moscow: Nauka (in Russian).Google Scholar
Donnadieu, Y., Godderis, Y. & Bouttes, N. 2009. Exploring the climatic impact of the continental vegetation on the Mesozoic atmospheric CO2 and climate history. Climate of the Past 5: 8596.CrossRefGoogle Scholar
Dorf, E. 1958. The geological distribution of the Ginkgo family. Bulletin of the Wagner Free Institute of Science 33: 110.Google Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria. Memoires of the Geological Survey of Victoria 28: 3310.Google Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern Polar forests: the early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Doyle, J.A. 1996. Seed plant phylogeny and the relationship of the gnetales. International Journal of Plant Science 157: S3S39.CrossRefGoogle Scholar
Doyle, J.A. & Donoghue, M.J. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52: 321431.CrossRefGoogle Scholar
Doyle, J.A. & Donoghue, M.J. 1987. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52: 321431.CrossRefGoogle Scholar
Drinan, A.N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Pp 175 in Jell., P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Vol. 3. Melbourne: Memoirs of the Association of Australian Palaeontologists.Google Scholar
Duche, J.C., Barre, J., Guinot, P., et al. 1989. Effect of Ginkgo biloba extract on microsomal enzyme induction. International Journal of Clinical Pharmacological Research 9: 165168.Google Scholar
Engelhardt, H. & Kinkelin, F. 1908. Oberpliocene Flora und Fauna des Untermainstales, insbesondere des Frankfurter Klarbeckens. Abh. Senkenburg Naturforsch. Ges. 250: 1156.Google Scholar
Esapa, I.H., Taylor, E.L., Cúneo, R., et al. 2011. Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. Palaios 26: 522544.CrossRefGoogle Scholar
Falcon-Lang, H.J. 2000a. The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies. Palaeogeography, Palaeoclimatology, Palaeoecology 160: 317328.CrossRefGoogle Scholar
Falcon-Lang, H.J. 2000b. A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: a new palaeoecological tool. Palaeontology 43: 785793.CrossRefGoogle Scholar
Falcon-Lang, H.J. 2004. A new anatomically preserved ginkgoalean genus from the Upper Cretaceous (Cenomanian) of the Czech Republic. Palaeontology 47: 349366.CrossRefGoogle Scholar
Falcon-Lang, H.J. 2005. Global climate analysis of growth rings in woods and its implications for deep time paleoclimate studies. Paleobiology 31: 434444.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2000. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica: Part I. Wood taxonomy: a quantitative approach. Review of Palaeobotany and Palynology 111: 117.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2001. Gymnosperm woods from the Cretaceous (mid-Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc. Cretaceous Research 22: 277293.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetlands islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 491506.2.0.CO;2>CrossRefGoogle Scholar
Falcon-Lang, H.J., MacRae, R.A. & Csank, A.Z. 2004. Palaeoecology of Late Cretaceous polar vegetation preserved in the Hansen Point Volcanics, NW Ellesmere Island, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 212: 4564.CrossRefGoogle Scholar
Falcon-Lang, H.J., Kvaček, J. & Uličný, D. 2006. Mesozoic mangroves. Geoscientist 16: 46.Google Scholar
Fan, X.X., Shen, L., Zhang, X. Chen, X.Y. & Fu, C.X. 2004. Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochemical Genetics 42: 269278.CrossRefGoogle ScholarPubMed
Feng, Z, Wang, J. & Roesslei, R. 2010. Palanoginkgoxylon zhoui, a new ginkgophyte wood from the Guadalupian (Permian) of China and its evolutionary implications. Review of Palaeobotany and Palynology 162: 146158.CrossRefGoogle Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Florin, R. 1936. Die Fossilen Ginkgophyten von Franz Joseph Land. I, Spezieller Teil. Palaeontographica, 81B: 71173.Google Scholar
Florin, R. 1949. The morphology of Trichopitys heteromorpha Saporta, a seed plant of Paleozoic age, and the evolution of the female flowers in the Ginkgoinae. Acta Horticultura Bergiani 15: 79109.Google Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Foley, J.A., Prentice, I.C., Ramunkutty, N., et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10: 603628.CrossRefGoogle Scholar
Fontana, A. 1985. Vesicular-arbuscular mycorrhizas of Ginkgo biloba L. in natural and controlled conditions. New Phytologist 99: 441447.CrossRefGoogle Scholar
Fourtillan, J.B., Brisson, A.M. & Girault, J. 1995. Pharmacokinetic properties of bilobalide and ginkgolides A and B in healthy subjects after intravenous and oral administration of Ginkgo biloba extract (EGb 761). Therapie 50: 137144.Google Scholar
Francis, J.E. & Poole, I. 2002. Cretaceous and Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology 182: 4764.CrossRefGoogle Scholar
Fujii, K. 1895. On the nature and origin of so-called ‘chichi’ (nipple) of Ginkgo biloba L. Botanical Magazine (Tokyo) 9: 444450 (in Japanese).CrossRefGoogle Scholar
Gardner, J.S. 1883. A Monograph of the British Eocene Flora. 2. Gymnospermae. London: Palaeonological Society Monograph.Google Scholar
Ge, Y.-Q., Qiu, Y.Q. & Ding, B.Y. 2003. An ISSR analysis on population genetic diversity of the relict plant Ginkgo biloba. Biodiversity 11: 276287 (in Chinese with English abstract).Google Scholar
Gertz, H.-J. & Kiefer, M. 2004. Review about Ginkgo biloba special extract Egb 761 (Ginkgo). Current Pharmaceutical Design 10: 261264.CrossRefGoogle Scholar
Gifford, E. M. and Foster, A.S. 1989 Morphology and Evolution of Vascular Plants. New York: W.H. Freeman.Google Scholar
Gong, W., Zeng, Z., Chen, Y.Y., et al. 2008a. Glacial refugia of Ginkgo biloba L. and human impact on its genetic diversity: evidence from chloroplast DNA. Journal of Integrated Plant Biology 50: 368374.CrossRefGoogle ScholarPubMed
Gong, W., Chen, C., Dobes, C., Fu, C.X. & Koch, M.A. 2008b. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution 48: 10941105.CrossRefGoogle Scholar
Gong, Q.-L., Hu, A.-H., Xing, S.-Y. & Wang, F. 2009. Research on systematic evolution of Ginkgo biloba based on chemical composition of wood. Spectroscopy and Spectral Analysis 29: 15121516.Google ScholarPubMed
Gould, R.E. 1975. The succession of Australian Pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C. & Wofsy, S.C. 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271: 15761578.CrossRefGoogle Scholar
Guignard, G. & Zhou, Z.Y. 2005. Comparative studies of leaf cuticle ultrastructure between living and the oldest fossil ginkgos in China. International Journal of Plant Science 166: 145156.CrossRefGoogle Scholar
Guowen, X. 1997. Phytogeographical affinities of forest floras between China and Japan. Journal of Forestry Research 8: 8790.CrossRefGoogle Scholar
Hably, L. & Kvacek, Z. 1998. Pliocene mesophytic forests surrounding crater lakes in western Hungary. Review of Palaeobotany and Palynology. 101: 257269.CrossRefGoogle Scholar
Hably, L. & Marron, M.T.F. 2007. The first macrofossil record of Ginkgo from the Iberian Peninsula. Neues Jahrbuch fur Geologie und Palaontologie – Abhandlungen 244: 6570.CrossRefGoogle Scholar
Hajibabaei, M., Xia, J. & Drouin, G. 2006. Seed plant phylogeny: Gnetophytes are derived conifers and a sister group to the Pinaceae. Molecular Phylogenetics and Evolution 40: 208217.CrossRefGoogle Scholar
Harris, T.M. 1935. The fossil flora of Scoresby Sound, East Greenland. 4: Ginkgolaes, Coniferales, Lycopodiales, and isolated fructifications. Meddelelser om Gronland 112: 176.Google Scholar
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Harris, T.M., Millington, W. & Miller, J. 1974. The Yorkshire Jurassic Flora. IV. Ginkgolaes and Czekanowskiales. London: British Museum (Natural History).Google Scholar
Havens, T.R.H. 2020. Land of Plants in Motion: Japanese Botany and the World. Honolulu: University of Hawaii Press.Google Scholar
Heer, O. 1870. Die Miocene flora und fauna Spitzbergens. K. Svenska Vetenskaps Akademie Handl. 8: 198.Google Scholar
Heer, O. 1876. Beitrage zur Jura-Flora Ostsibiriens und Amurlandes. Memoir Academie Imperial Science Saint-Petersburg ser 7: 1122.Google Scholar
Heer, O. 1878. Miocene Flora der Insel Sachhalin. Memoir Academie Imperial Science Saint-Petersburg ser 7: 161.Google Scholar
Herman, A.B. 2002. Late early-Cretaceous floras of the North Pacific Region: florogenesis and early angiosperm invasion. Review of Palaeobotany and Palynology 122: 111.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1999. Ginkgo leaves from Palaeogene sediments in Tasmania. Australian Journal of Botany 47: 717724.Google Scholar
Hirase, S. 1896. On the spermatozoid of Ginkgo. Botanical Magazine of Tokyo 10: 325328 (In Japanese).Google Scholar
Hoeg, O.A. & Bose, M.N. 1960. The Glossopteris flora of the Belgian Congo. Annales Museum Royale Congo Belgian Science Geologique 32: 1106.Google Scholar
Hollick, A. 1930. The Upper Cretaceous floras of Alaska. US Geological Survey Professional Paper 159.Google Scholar
Holmes, W.B.K. & Anderson, H.M. 2007. The Middle Triassic megafossil flora of the Basin Creek Formation, Nymboida Coal Measures, New South Wales, Australia. Ginkgophyta. Proceedings of the Linnean Society of New South Wales 128: 155200.Google Scholar
Holt, B.F. & Rothwell, G.W. 1995. Phenology and germination history of Ginkgo biloba. American Journal of Botany 82: 20.Google Scholar
Holt, B.F. & Rothwell, G.W. 1997. Is Ginkgo biloba an oviparous plant? American Journal of Botany 84: 870872.CrossRefGoogle Scholar
Horiuchi, J. & Kimura, T. 1986. Gingko tzagajanica Samylina from the Paleocene Noda Group, northeast Japan, with special reference to its external morphology and cuticular features. Transactions and Proceedings of the Palaeontological Society of Japan 142: 341353.Google Scholar
Hsu, J., Zhu, J., Chen, Y., et al. 1974. New genera and species of the late Triassic plants from Yungjen, Yunnan. I. Acta Botanica Sinica 16: 266278 (in Chinese with English summary).Google Scholar
Huxtable, R.J. 1992. The pharmacology of extinction. Journal of Ethnopharmacology 37: 111.CrossRefGoogle ScholarPubMed
Jezova, D, Duncko, R., Lassanova, M., Kriska, M. & Moncek, F. 2000. Reduction of rise in blood pressure and cortisol release during stress by Ginkgo biloba extract (Ebg 761) in healthy volunteers. Journal of Physiological Pharmacology 53: 337348.Google Scholar
Jiang, B., Zhang, H., Liu, C., Wang, Y. & Fan, S. 2009. Extraction of water-soluble polysaccharide and the antioxidant activity from Ginkgo biloba leaves. Medical Chemistry Research. DOI: 10.1007/s00044-009-9189-5.CrossRefGoogle Scholar
Jim, C.Y. & Chen, W.Y. 2006. Recreations-amenity use and contingent valuation of urban greenspace in Guangzhou, China. Landscape and Urban Planning 75: 8196.CrossRefGoogle Scholar
Jin, J., Jiang, H., Yu, S. & Zhou, G. 2008. Sex-linked photosynthetic physiologic research and the evolutionary ecological analysis in living fossil plant, Ginkgo biloba L. Acta Ecologica Sinica 28: 11281136.Google Scholar
Kanis, A. & Karstens, W.K.H. 1963. On the occurrence of amphistomatic leaves in Ginkgo biloba L. Acta Bot. Neerl. 12: 281286.CrossRefGoogle Scholar
Karstens, W.K.H. 1945. Variability in the female reproductive organs of Ginkgo biloba L. Blumea 5: 532553.Google Scholar
Kelley, S.R., Spicer, R.A., & Hermann, A.B. 1999. New 40Ar/39Ar dates for Cretaceous Chauna Group tephra, north-eastern Russia, and their implications for the geologic history and floral evolution of the North Pacific Region. Cretaceous Research 20: 97106.CrossRefGoogle Scholar
Kennedy, D.O., Scholey, A.B. & Wesnes, K.A., 2000. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology 151: 416423.CrossRefGoogle ScholarPubMed
Kenrick, P. & Davis, P. 2004. Fossil Plants. London: Natural History Museum.Google Scholar
Khoshoo, T.N. 1962. Cytogenetical evolution in the gymnosperms: karyotype. Pp 119135 in Proceedings of the Summer School of Botany. New Delhi: Ministry of Scientific Research.Google Scholar
Kirchner, M. & Van Konijnenburg-van Cittert, J.H.A. 1994. Schmeissneria microstachys (Presl, 1833) Kirchmer et Van Konijnenburg-van Cittert, gen et sp. nov., plants with ginkgoalean affinities of Germany. Review of Palaeobotany and Palynology 83: 199215.CrossRefGoogle Scholar
Kovar-Eder, J., Givulescu, R., Hably, L., et al. 1994. Floristic changes in the areas surrounding the Paratethys during Neogene time. Pp 347369 in Boulter, M.C. & Fischer, , (eds.), Cenozoic Plants and Climate of the Arctic. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Krassilov, V.A. 1970. An approach to the classification of Mesozoic ‘Ginkgoalean’ plants from Siberia. Palaeobotanist 18: 1219.Google Scholar
Krassilov, V.A. 1972. Mesozoic Flora from the Bureja River (Ginkgoales and Czekanowskiales). Moscow: Nauka (in Russian).Google Scholar
Krassilov, V.A. 1973. Climate changes in Eastern Asia as indicated by fossil floras. I. Early Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 13: 261273.CrossRefGoogle Scholar
Krassilov, V.A. 1982. Early Cretaceous flora of Mongolia. Palaeontographica B 181: 143.Google Scholar
Krausel, R. 1943. Die Ginkgophyten der Trias von Lunz in Neider Osterreich und von Neuewelt bei Basel. Palaeontographica B 87: 5993.Google Scholar
Kumagai, H., Sweda, T., Hayashi, K., et al. 1995. Growth-ring analysis of early Tertiary conifer woods from the Canadian High Arctic and its palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 247262.CrossRefGoogle Scholar
Kurschner, W.M., Kvacek, Z. & Dilcher, D.L. 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 105: 449453.CrossRefGoogle ScholarPubMed
Kvaček, J., Falcon-Lang, H.J. & Daškovčá, J. 2005. A new Late-Cretaceous ginkgoalean reproductive structure Nehvizdyella gen. nov. from the Czech Republic and its whole-plant reconstruction. American Journal of Botany 92: 19581969.CrossRefGoogle ScholarPubMed
LaDeau, S.L. & Clark, J.S. 2001. Rising CO2 levels and the fecundity of forest trees. Science 292: 9598.CrossRefGoogle Scholar
Lee, E.L. 1954. Sex chromosomes in Ginkgo biloba. American Journal of Botany 41: 545549.CrossRefGoogle Scholar
Lele, K.M. 1962. Studies in the Indian Middle Gondwanan flora. II. Plant fossils from the South Rewa Gondwanan Basin. Palaeobotanist 10: 6983.Google Scholar
Li, H., Xiao, J., Gao, Y.Q., et al. 2014. Chaetoglobosins from Chaetomium globosum, and endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. Journal of Agriculture and Food Chemistry 62: 37343741.CrossRefGoogle ScholarPubMed
Li, H.L. 1956. A horticultural and botanical history of Ginkgo. Bulletin of the Morris Arboretum 7: 312.Google Scholar
Li, J.W., Liu, Z.Y. Tan, Y.M. & Ren, M.B. 1999. Studies on the Ginkgo at Jinfoshan Mountain. Forest Research 12: 197201 (in Chinese with English abstract).Google Scholar
Liao, L., Liu, J., Dai, Y., et al. 2009. Development and application of SCAR markers for sex identification in the dioecious species Ginkgo biloba L. Euphytica 169: 4955.CrossRefGoogle Scholar
Liu, X.Q., Li, C.S. & Wang, Y.F. 2006. The pollen cones of Ginkgo from early Cretaceous of China, and their bearing on the evolutionary significance. Botanical Journal of the Linnean Society 152: 133144.CrossRefGoogle Scholar
Lu, T., He, X., Chen, W., Yan, K. & Zhao, T. 2009. Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. Bulletin of Environmental Contamination and Toxicology 83: 9296.CrossRefGoogle ScholarPubMed
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Maheshwari, H.K. & Bajpai, U. 1992. Ginkgophyte leaves from the Permian Gondwana of the Rajmahal Basin, India. Palaeontographica B 224: 131149.Google Scholar
Maheshwari, H.K. & Banerji, J. 1978. On a ginkgoalean leaf from Triassic of Madya Pradesh. Palaeobotanist 25: 153249.Google Scholar
Mak, Y.T., Wai, M.S.M. & Yew, D.T. 2007. The neuroprotective effect on Ginkgo biloba leaf extract and its possible mechanism. Central Nervous System Agents in Medicinal Chemistry 7: 230235.CrossRefGoogle Scholar
Manum, S. 1966. Ginkgo spitzbergensis n.sp. from the Paleocene of Spitsbergen and a discussion on certain Tertiary species of Ginkgo from Europe and North America. Norsk Polarinstitut Arbeiter 1965: 4958.Google Scholar
Manum, S., Bose, M.N. & Vigran, J.O. 1991. The Jurassic flora of Andoya, northern Norway. Review of Palaeobotany and Palynology 68: 233256.CrossRefGoogle Scholar
Manum, S.B., van Konijnenburg-van Cittert, J. & Wilde, V. 2000. Tritaenia Maegdefrau et Rudolf, Mesozoic ‘Sciadopitys-like’ leaves in mass accumulations. Review of Palaeobotany and Palynology 109: 255269.CrossRefGoogle ScholarPubMed
Matsumoto, K. 2009. Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. International Journal of Climatology 30: 12801288.CrossRefGoogle Scholar
Matsumoto, K., Ohta, T., Irasawa, M. & Nakamura, T. 2003. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology 9: 16341642.CrossRefGoogle Scholar
McElwain, J.C. 1988. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philosophical Transactions of the Royal Society B 353: 8396.CrossRefGoogle Scholar
McElwain, J.C. & Chaloner, W.G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic. Annals of Botany 76: 389395.CrossRefGoogle Scholar
McElwain, J.C. & Chaloner, W.G. 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11: 376388.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaentographica Canada 10: 1167.Google Scholar
McLoughlin, S. 2013. The fossil flora of Dinmore. Claystone Textbook: Australian Age Dinosaurs Magazine 10: 4049.Google Scholar
Mehra, P.N. 1938. Some abnormalities in the female strobilus of Ginkgo biloba L. Proceedings of the Indiana Academy of Sciences B. 8: 211218.CrossRefGoogle Scholar
Meyen, S.V. 1984. Basic features of gymnosperm systematics and phylogeny as shown by the fossil record. Botanical Review 50: 1111.CrossRefGoogle Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnical Osaka City University Series D, Biology 9: 125-152.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G. & Nemani, R.R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698702.CrossRefGoogle Scholar
Napp-Zinn, K. 1966. Anatomie des blattes. i. Blattanatomie der Gymnospermen. Handb. Der Pflanzenanatomie, 2nd ed. vol. 3. Berlin: Borntrager.Google Scholar
Napryeyenko, O., Sonnik, G. & Tartakovsky, I. 2009. Efficacy and tolerability of Ginkgo biloba extract Egb761 by type of dementia: analyses of a randomised controlled trial. Journal of the Neurological Sciences 283: 224229.CrossRefGoogle ScholarPubMed
Nathorst, A.G. 1919. Ginkgo adiantiodes (Unger) Heer im tertiar Spitzbergens nebst einer kurzen Ubersicht der ubrigen fossilen Ginkgophyten desselben Landes. Geol. Foren. Stockholm Forh. 41: 233248.CrossRefGoogle Scholar
Naugolnykh, S.V. 1995. A new genus of Ginkgo-like leaves from the Kungurian of the Urals Region. Paleontologiche Zeitschift 3: 106116 (in Russian).Google Scholar
Naugolnykh, S.V. 2007. Foliar seed-bearing organs of Paleozoic and the early evolution of the Ginkgoales. Paleontological Journal 41: 815859.CrossRefGoogle Scholar
Nidzgorski, D.A. & Hobbie, S.H. 2016. Urban trees reduce leaching to groundwater. Ecological Applications 26: 15661580.CrossRefGoogle ScholarPubMed
Nordt, L., Atchley, S., & Dworkin, S.I. 2002. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous–Tertiary boundary. Geology 30: 703706.2.0.CO;2>CrossRefGoogle Scholar
Nosova, N.V. & Kritchkova, A.I. 2008. First records of the genus Mirovia Reymanowna (Miroviaceae, Coniferales) from the Lower Jurassic of Western Kazakhstan (Mangyshlak). Paleontological Journal 20: 2030.Google Scholar
Nowak, D.T., Hirabayashii, S. & Bodin, A. 2015. Tree and forest effects on air quality with human health in the United States. Environmental Pollution 178: 229236.CrossRefGoogle Scholar
Otani, M., Chatterjee, S.S., Gabard, B. & Kreutzberg, G.W. 1986. Effect of an extract of Ginkgo biloba on triethyltin-induced cerebral edema. Acta Neuropathologica 69: 5465.CrossRefGoogle ScholarPubMed
Page, C.N. 1979a. The diversity of ferns: an ecological perspective. Pp 956 in Dyer, A.F. (ed.), The Experimental Biology of Pteridophytes. London: Academic Press.Google Scholar
Page, C.N. 1979b. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1988. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 2002a. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2002b. The role of natural disturbance regimes in pteridophyte conservation management. Fern Gazette 16: 284289.Google Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 447466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology. Amsterdam: Elsevier Academic Press, for the Linnean Society of London.CrossRefGoogle Scholar
Page, C.N. 2006. Fern range determination within the Atlantic Arc by an environment of complex and interacting factors. Pp 5964 in Leach, S.J., Page, C.N., Peytoureau, Y. & Sandford, M.N. (eds.), Botanical Links in the Atlantic Arc. London: BSBI & English Heritage.Google Scholar
Page, C.N. 2007. Post-hurricane survival of Acrostichum ferns in the Cayman Islands: a modern pteridophyte analogue to palaeo-events. Pp 7985 in Gureyeva, I.I. (ed.). Proceedings of the First Russian Pteridological Conference. Tomsk: Tomsk State University Press.Google Scholar
Pan, L., Ren, L., Chen, F. & Luo, O. 2016. Antifeedant activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: mechanisms and application. PLoS One 11(5): e0155682.CrossRefGoogle Scholar
Parrish, J.T., Peterson, F. & Turner, C.E. 2004. Jurassic ‘savannah’: plant taphonomy and climate of the Morrison Formation (Upper Jurassic, Western USA). Sedimentary Geology 167: 137162.CrossRefGoogle Scholar
Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. (eds.). 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge: Cambridge University Press.Google Scholar
Peñuelas, J., Filella, I. & Comas, P. 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology 8: 531544.CrossRefGoogle Scholar
Pietta, P.G., Gardana, C. & Mauri, P.L. 1997. Identification of Ginkgo flavenol metabolites after oral administration to humans. Journal of Chromatographic Biomedical Science Applications 693: 249255.CrossRefGoogle Scholar
Pole, M.S. & Douglas, J.G. 1999. Bennettitales, Cycadales and Ginkgolaes from the mid-Cretaceous of the Eromanga Basin, Queensland, Australia. Cretaceous Research 20: 523538.CrossRefGoogle Scholar
Poole, I. & van Bergen, P.F. 2006. Physiognomic and chemical characters in wood as palaeoclimate proxies. Plant Ecology 182: 175195.Google Scholar
Poole, I., Hunt, R.J. & Cantrill, D.J. 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. Annals of Botany 88: 3354.CrossRefGoogle Scholar
Poole, I., Mennega, A.M.W. & Cantrill, D.J. 2003. Valdivian ecosystems in the late Cretaceous and early tertiary of Antarctica as evidenced from fossil wood. Review of Palaeobotany and Palynology 124: 927.CrossRefGoogle Scholar
Prakash, N. & Kumar, M. 2004. Occurrence of Ginkgo Linn. in Early Cretaceous deposits of South Rewa Basin, Madhya Pradesh. Current Science 87: 15121515.Google Scholar
Primack, D., Imbres, C., Primack, R.B., Miller-Rushing, A.J. & Del Tredici, P. 2004. Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American Journal of Botany 91: 12601264.CrossRefGoogle ScholarPubMed
Quan, C., Sun, C., Sun, Y. & Sun, G. 2009. High resolution estimates of paleo-CO2 levels throughout the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Research 30: 424428.CrossRefGoogle Scholar
Rabier, M., Damon, M., Chanez, P., et al. 1989. Platelet activation factor, neurophil chemotaxis and ginkgolides. Pp 105115 in Braquet, P. (ed.), The Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives. Barcelona: J.R.Prous Science Publishers.Google Scholar
Ray, N. & Adams, J.M. 2001. A GIS-based vegetation map of the world at the last Glacial Maximum (25,000-15,000 BP). Internet Archaeology 11.Google Scholar
Read, J. & Francis, J. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 271290.CrossRefGoogle Scholar
Retallack, G.J. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411: 287290.CrossRefGoogle ScholarPubMed
Reymanowna, M. 1985. Mirovia szaferi gen. et sp. nov. (Ginkgoales) from the Jurassic of the Krakow region, Poland. Acta Palaeobotanica 25: 312.Google Scholar
Rigby, J.F. 1985. Some Triassic (Middle Gondwana) floras from south Victoria Land, Antarctica. Pp. 7879 in Cooper, R. (ed.), Hornibrook Symposium. Christchurch: New Zealand Geological Survey.Google Scholar
Roberts, N.M. & Barnes, P.J. 1989. Evaluation of BN 52063 in man. Pp 855870 in Braquet, P. (ed.), The Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives. Barcelona: J.R.Prous Science Publishers.Google Scholar
Roth, A. & Mosbrugger, V. 1999. Architecture and function of angiosperm leaf venation systems: computer simulation studies of the interrelationships between structure and water conduction. Pp 437446 in Kurmann, M.H. & Hemsley, A.R. (eds.), The Evolution of Plant Architecture. London: Royal Botanic Garden, Kew.Google Scholar
Rothwell, G.W. 1987. The role of development in plant phylogeny: a palaeobotanic perspective. Review of Palaeobotany and Palynology 50: 97114.CrossRefGoogle Scholar
Rothwell, G.W. & Holt, B.F. 1997. Fossils and phenology in the evolution on Ginkgo biloba. Pp 223230 in Hori, T., Ridge, R.W., Tuleckee, W., et al. (eds.), Ginkgo biloba: A Global Treasure – from Biology to Medicine. Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Royer, D.L. 2001. Stomatal density and stomatal index as indicators of palaeoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114: 128.CrossRefGoogle Scholar
Royer, D.L., Hickey, L.J. & Wing, S.L. 2003. Ecological conservatism in the ‘living fossil’ Ginkgo. Paleobiology 29: 84104.2.0.CO;2>CrossRefGoogle Scholar
Sahni, B. 1915. Foreign pollen in the ovules of Ginkgo and its significance in the study of fossil plants. New Phytology 14: 149151.CrossRefGoogle Scholar
Samylina, V.A. 1967. On the final stage of the history of the genus Ginkgo L. in Eurasia. Botaniske Zhurnal 52: 303316 (in Russian).Google Scholar
Samylina, V.A. & Chelebayeva, A.I. 1986. New data on the Tertiary species of Ginkgo in Soviet eastern Asia. Paleontological Journal 20: 9196.Google Scholar
Samylina, V.A. & Shczepetov, S.V. 1991. Ginkgoaleans and Czekanovskialeans from the Upper Cretaceous Yelisseev Outcrop in the Grebenka River (right bank of the Anadyr River). Botaniske Zhurnal 7: 28-33 (in Russian, with English abstract).Google Scholar
Sastre, J., Millan, A., De La Asuncion, J.G., et al. 1998. A Ginkgo biloba extract (Egb 761) prevents mitochondrial ageing by protecting against oxidative stress. Free Radical Biology and Medicine 24: 298304.CrossRefGoogle ScholarPubMed
Sastre, J., Lioret, A., Borras, C., et al. 2002. Ginkgo biloba extract Egb 761 protects against mitochondrial aging in the brain and the liver. Cellular and Molecular Biology 48: 685692.Google ScholarPubMed
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schmidt, M. & Schneider-Poetsch, H.A.W. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms. Journal of Molecular Evolution 54: 715724.CrossRefGoogle ScholarPubMed
Schweitzer, H.J. & Kirchner, M. 1995. Die Rhato-Jurassischen Floren des Iran und Afghanistans. 8. Ginkgophyta. Palaeontographica B 237: 158.Google Scholar
Sender, L.M., Diez, J.B., Pons, D. Villanueva-Amadoz, U. & Ferrer, J. 2008. Middle Albian gymnosperms from the Rio Martin Valley (Teruel, Spain). Comptes Rendues Palevol 7: 3749.CrossRefGoogle Scholar
Serbet, R. 1996. A diverse assemblage of morphologically and anatomically preserved fossil plants from the Upper Cretaceous (Maastrichian) of Alberta, Canada. In IOP Conference V, Abstracts, Santa Barbara, CA.Google Scholar
Seward, A.C. 1919. Fossil Plants: A Text-Book for Students of Botany and Geology. Vol. IV. Ginkgolaes, Coniferales, Gnetales. Cambridge: Cambridge University Press.Google Scholar
Seward, A.C. 1933. Plant Life through the Ages: A Geological and Botanical Retrospect. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shen, L., Chen, X.Y., Zhang, X., et al. 2005. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity 94: 396401.CrossRefGoogle ScholarPubMed
Shi, C., Zhao, L., Zhu, B., et al. 2009. Protective effects of Ginkgo biloba extract (Egb761) and its constituents quercetin and ginkgolide B against b-amyloid peptide-induced toxicity in SH-SY5Y cells. Chemico-Biological Interactions 181: 115123.CrossRefGoogle Scholar
Shi, Y.J., Sun, B.N. & Zhang, C.J. 2005. Geochemical characteristics of the fossil Ginkgo huttonii cuticles from the Jurassic in Gansu, China. Acta Geologica Sinica 79: 289294.Google Scholar
Shrivastava, R.N. & Shah, S.C. 1966. Ginkgo (Ginkgoites) digitata Brong: from the Rajmahal Hills, Santhal Parganas (Bihar). Records of the Geological Survey of India 94: 309312.Google Scholar
Singh, B., Kaur, P., Singh, R.D. & Ahuja, P.S. 2008. Biology and chemistry of Ginkgo biloba. Fitoterapia 79: 401418.CrossRefGoogle ScholarPubMed
Smarda, P., Vesely, P., Smarda, A., et al. 2016. Polyploidy in a living fossil Ginkgo biloba. New Phytologist 212: 1114.CrossRefGoogle Scholar
Snigirevskaya, N.S. 1994. A unique mode of the natural propagation of Ginkgo biloba L: the key to the problem of its ‘survival’. Acta Paleobotany 34: 215223.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle Scholar
Spicer, R.A. & Herman, A.B. 2001. The Albian–Cenomanian flora of the Kukpowruk River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant communities. Cretaceous Research 22: 140.CrossRefGoogle Scholar
Spicer, R.A. & Parrish, J.T. 1990. Late Cretaceous–Early Tertiary palaeoclimates of northern high-latitudes: a quantitative view. Journal of the Geological Society of London 147: 329341.CrossRefGoogle Scholar
Spicer, R.A., Ahlberg, A., Herman, A.B., et al. 2002. Palaeoenvironment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 65105.CrossRefGoogle Scholar
Sporne, K.R. 1965. The Morphology of Gymnosperms: The Structure and Evolution of Primitive Seed Plants. London: Hutchinson & Ross.Google Scholar
Srivastava, S.C. 1983. Sidhiphyllites: a new ginkophytic leaf genus from the Triassic of Nidpur, India. Palaeobotanist 32; 2025.Google Scholar
Steinthordottir, M., Mays, C. & Stillwell, J. 2015. Implications of Ginkgoites waakensis Douglas emend for the South polar Tupuangi flora, Late Cretaceous (Cenomanian), Chatham Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 438: 308326.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Sun, B.N., Xie, S.P., Yan, D.F. & Cong, P.Y. 2008. Fossil plant evidence for Early and Middle Jurassic paleoenvironmental changes in Lanzhou area, Northwest China. Palaeoworld 17: 215221.CrossRefGoogle Scholar
Sze, H.C. & Lee, H.H. 1963. Fossil Plants from China: 2. Mesozoic Plants from China. Beijing: Science Press (in Chinese).Google Scholar
Tan, X.Y., Hivebayashi, S. & Shibata, S. 2021. Enrichment of ecosystem services provided by street trees in Kyoto, Japan. Forests 12: art. 311.CrossRefGoogle Scholar
Tang, C.Q., Yang, Y., Ohsawa, M. & Yi, S.R. 2012. Evidence for persistence of wild Ginkgo biloba (Ginkgoaceae) populations in the Dalou Mountains, southwestern China. American Journal of Botany 99: 14081414.CrossRefGoogle ScholarPubMed
Taylor, W.A., Taylor, T.N. & Archangelsky, S. 1989. Comparative ultrastructure of fossil and living gymnosperm cuticles. Review of Palaeobotany and Palynology 59: 145151.CrossRefGoogle Scholar
Terry, A.C., Quick, W.P. & Beerling, D.J. 2000. Long-term growth of Ginkgo with CO2 enrichment increases leaf ice nucleation temperatures and limits recovery of the photosynthetic system from freezing. Plant Physiology 124: 183190.CrossRefGoogle ScholarPubMed
Thomas, B.A. & Cleal, J. 1999. Abscission in the fossil record. Pp. 183203 in Kurmann, M.H. & Hemsley, A.R. (eds.), The Evolution of Plant Architecture. London: Royal Botanic Garden, Kew.Google Scholar
Thomas, B.A. & Spicer, R.A. 1987. The Evolution and Palaeobotany of Plants. London: Croom Helm.Google Scholar
Thongsandee, W., Matsuda, Y. & Ito, S. 2012. Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. Journal of Forest Research 17: 213218.CrossRefGoogle Scholar
Tracey, T.S. 2007. Ginkgo biloba. Pp 4154 in Tracey, T.S. & Kingston, R.L. (eds.), Herbal Products: Toxicology and Clinical Pharmacology, 2nd ed. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
Tralau, H. 1966. Botanical investigations in the fossil flora of Eriksdal in Fyledalen, Scania. Sverge Geolog. Unders. C611: 136.Google Scholar
Tralau, H. 1967. The phytogeographic evolution of the genus Ginkgo L. Botaniska Notiser 120: 409422.Google Scholar
Tralau, H. 1968. Evolutionary trends in the genus Ginkgo. Lethaia 1: 63101.CrossRefGoogle Scholar
Tremouilaux-Guiller, J., Rohr, T., Rohr, R. & Huss, V.A.R. 2001. Discovery of an endophytic alga in Ginkgo biloba. American Journal of Botany 8: 727733.Google Scholar
Uemura, K. 1997. Cenozoic history of Ginkgo in East Asia. Pp 207221 in Hori, T., Ridge, R.W., Tulecke, W., et al. (eds.), Ginkgo biloba: A Global Treasure – from Biology to Medicine. Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Unger, F. 1845. Synopsis Plantarum Fossilium. Leipzig: Leopold Voss.Google Scholar
Vakhrameev, V.A. 1987. Climates and the distribution of some gymnosperms in Asia during the Jurassic and Cretaceous. Review of Palaeobotany and Palynology 51: 205212.CrossRefGoogle Scholar
Vakhrameev, V.A. 1988. Yurskiye I melovyye flory: klimaty Zemli. Moscow: Nauka (in Russian).Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Van Bergen, P.F. & Poole, I. 2002. Stable carbon isotopes in wood: a clue to palaeoclimate? Palaeogeography, Palaeoclimatology, Palaeoecology 182: 3145.CrossRefGoogle Scholar
Van Dongen, M., van Rossum, E., Kessels, A., Seilhorst, H. & Knipschild, P. 2003. Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. Journal of Epidemiology 56: 367376.Google ScholarPubMed
Van Koninjnenburg-van Cittert, J.H.A. 1971. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Botanica Neerlandica 20: 196.Google Scholar
Van Koninjnenburg-van Cittert, J.H.A. 2008. The Jurassic fossil plant record of the UK area. Proceedings of the Geologists Association 119: 5972.CrossRefGoogle Scholar
Van Koninjnenburg-van Cittert, J.H.A. & Morgans, H.S. 1999. The Jurassic Flora of Yorkshire. London: The Palaeontological Association.Google Scholar
Vilar de Seoane, L. 1997. Comparative study between Ginkgoites tigrensis Archangelsky and Ginkgo biloba Linn. leaves. Palaeobotanist 46: 112.Google Scholar
von Moltke, L.L., Weemhoff, J.L. & Bedir, E. 2004. Inhibition of human cytochromes P450 by components of Ginkgo biloba. Journal of Plant Pathology 56: 10391044.Google ScholarPubMed
Vorberg, G. 1985. Ginkgo biloba extract (GBE): a long-term study of chronic insufficiency in geriatric patients. Clinical Trials 22: 149157.Google Scholar
Wang, C.-W. 1961. The Forests of China. Cambridge, MA: Harvard University, Maria Cabot Moors Foundation.Google Scholar
Wang, F.X. & Chen, Z.K. 1983. A contribution to the embryology of Ginkgo with a discussion of the affinity of the Ginkgoales. Acta Botanica Sinica 20: 199207 (in Chinese, with English abstract).Google Scholar
Watson, J. 1969. A revision of the English Wealden flora. 1. Charales-Ginkgoales. Bulletin of the Natural History Museum (Geology) 17: 207264.Google Scholar
Watson, J., Lydon, S.J., Harrison, N.A. 1999. Consideration of the genus Ginkgoites Seward and a redescription of two species from the Lower Cretaceous of Germany. Cretaceous Research 20: 719734.CrossRefGoogle Scholar
Watson, J., Lydon, S.J. & Harrison, N.A. 2001. A revision of the English Wealden flora. III. Czekanowskiales, Ginkgoales and allied Coniferales. Bulletin of the Natural History Museum (Geology) 57: 2982.Google Scholar
White, M. 1986. The Greening of Gondwana. Chatswood, NSW: Reed.Google Scholar
White, M.E. 1993. The Greening of Gondwana, 2nd ed. Chatswood, NSW: Reed.Google Scholar
Wolfe, J.A. 1987. Late Cretaceous–Cenozoic history of deciduousness and the terminal Cretaceous event. Palaeobiology 13: 215226.CrossRefGoogle Scholar
Wu, S.Q. 1999. A preliminary study of the Jehol flora from western Liaoning. Palaeoworld 11: 757 (in Chinese with English summary).Google Scholar
Wu, X.W., Yang, X.J. & Zhou, Z.Y. 2006. Ginkgoalean ovulate organs and seeds associated with Baiera furcata-type leaves from the Middle Jurassic of Quinghai province, China. Review of Palaeobotany and Palynology 138: 209225.CrossRefGoogle Scholar
Xiang, B.X., Xiang, Z., Zhao, M.S. & Wang, Z.L. 2000. A report on the natural forest with Ginkgo biloba in west Tianmu Mountain, Zhejiang Province. Guizhou Science 18: 7792 (in Chinese with English abstract).Google Scholar
Xiang, B.X., Xiang, Z. & Xiang, Y.H. 2006. Investigation of wild Ginkgo biloba in Wuchuan County of Guizhou, China: Guizhou ancient Ginkgo biloba germplasm resources investigation VII. Guizhou Science 24: 5667 (in Chinese with English abstract).Google Scholar
Xiang, B.X., Xiang, Z. & Xiang, Y.H. 2007. Report on wild Ginkgo biloba in Qianzhong Altiplano: Guizhou ancient Ginkgo biloba germplasm resources investigation VIII. Guizhou Science 25: 4755 (in Chinese with English abstract).Google Scholar
Xiang, Y.H. & Xiang, Z. 1999. Ancient Ginkgo biloba report III: investigations on ancient Ginkgo biloba remnant population in Guiyang. Guizhou Science 17: 221230 (in Chinese with English abstract).Google Scholar
Xiang, Z., Tu, C.L. & Xiang, Y.H. 2003. A report on Ginkgo resources in Panxian county, Guizhou Province. Guizhou Science 21: 159174 (in Chinese with English abstract).Google Scholar
Xiang, Z., Zhang, Z.L. & Xiang, Y.H. 2001. Investigation of natural Ginkgo biloba population on the Golden Buddha Mountains of Nanchuan, Chongquing. Guizhou Science 19: 3752 (in Chinese with English abstract).Google Scholar
Xiao, Y., Li, H.X., Li, C., et al. 2013. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiology Letters 339: 130136.CrossRefGoogle ScholarPubMed
Xu, X.-H., Yang, L.-Y. & Sin, B.-N. 2017. A new Early Cretaceous Ginkgo ovulate organ with associated leaves from Inner Mongolia, China. Review of Palaeobotany and Palynology 244: 163181.CrossRefGoogle Scholar
Yan, F.S., Evans, K.A., Stevens, L.H., Beek, T.A.V. & Schoonhaven, L.M. 1990. Deterrents extracted from the leaves of Ginkgo biloba: effects on feeding and contact chemoreceptors. Entomological Experimental Applications 54: 5764.Google Scholar
Yang, X.-J. 2004. Ginkgoites myrioneurus sp. nov. and associated shoots from the Lower Cretaceous of the Jixi Basin. Heilomgjiang. China Cretaceous Research 25: 739748.CrossRefGoogle Scholar
Yang, X.-J., Friis, E.M. & Zhou, Z.-Y. 2008. Ovule-bearing organs of Ginkgo ginkgoidea (Tralau) comb. nov., and associated leaves from the Middle Jurassic of Scania, South Sweden. Review of Palaeobotany and Palynology 149: 117.CrossRefGoogle Scholar
Zangh, T.Y., Deng, X.Y., Yu, Y., Zhang, M.Y. & Zhang, Y.X. 2016. Pseudochaetosphaeronema ginkgoensis sp. nov., an endophyte isolated from Ginkgo biloba. International Journal of Systematics and Evolutionary Biology 66: 43774381.Google Scholar
Zeba-Bano, Z., Maheshwari, H.K. & Bose, M.N. 1979. Some plant remains from Pathargama, Rajmahal Hills, Bihar. Palaeobotanist 26: 144156.Google Scholar
Zheng, S.L. & Zhou, Z.Y. 2004. A new Mesozoic Ginkgo from western Liaoning, China, and its evolutionary significance. Review of Palaeobotany and Palynology 131: 91103.CrossRefGoogle Scholar
Zhiyan, Z. 1991. Phylogeny and evolutionary trends of Mesozoic ginkgoaleans: a preliminary assessment. Review of Palaeobotany and Palynology 68: 203216.CrossRefGoogle Scholar
Zhou, W., Chai, H., Lin, P.H., et al. 2004. Clinical use and molecular mechanisms of action of extract of Ginkgo biloba leaves in cardiovascular diseases. Cardiovascular Drug Reviews 22: 309319.CrossRefGoogle ScholarPubMed
Zhou, Z.H. & Zhang, F.C. 2002. A long-tailed seed-eating bird from the early Cretaceous of China. Nature 418: 405409.CrossRefGoogle Scholar
Zhou, Z.Y. 1991. Phylogeny and evolutionary trends of Mesozoic ginkgoaleans: a preliminary assessment. Review of Palaeobotany and Palynology 68: 203216.Google Scholar
Zhou, Z.Y. 1994. Heterochronic origin of Ginkgo biloba-type ovulate organs. Acta palaeontological Sinica 33: 19 (in Chinese with English summary).Google Scholar
Zhou, Z.Y. 1997. Mesozoic Ginkgoalean megafossils: a systematic review. Pp 183206 in Hori, T., Ridge, R.W., Tulecke, W., et al. (eds.), Ginkgo biloba: A Global Treasure – from Biology to Medicine. Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Zhou, Z.Y. 2003. Mesozoic Ginkgoaleans: phylogeny, classification and evolutionary trends. Acta Botanica Yunnanica 25: 377396 (in Chinese with English abstract).Google Scholar
Zhou, Z.Y. 2009. An overview of fossil Ginkgoales. Palaeoworld 18: 122.CrossRefGoogle Scholar
Zhou, Z.Y. & Wu, X.W. 2006a. Early Mesozoic radiation and diversification of ginkgoaleans. Pp 519549 in Rong, J.Y., Fang, Z.J., Zhou, Z.H., et al. (eds.), Originations, Radiations and Biodiversity Changes: Evidences from the Chinese Fossil Record. Beijing: Science Press (in Chinese, with English summary).Google Scholar
Zhou, Z.Y. & Wu, X.W. 2006b. The rise of ginkgoalean plants in the early Mesozoic: a data analysis. Geological Journal 41 (special issue): 363375.Google Scholar
Zhou, Z.Y. & Zhang, B.L. 1988. Two new ginkgoalean female reproductive organs from the Middle Jurassic of Henan province. Science Bulletin 33: 12011203.Google Scholar
Zhou, Z.Y. & Zhang, B.L. 1989. A Middle Jurassic Ginkgo with ovulate-bearing organs from Henan, China. Palaeontographica B 211: 113133.Google Scholar
Zhou, Z.Y. & Zheng, S. 2003. The missing link in Ginkgo evolution. Nature 423: 821822.CrossRefGoogle ScholarPubMed
Zimmerman, W. 1930. Die Phylogenie der Pflanzen. Jena: Fischer.Google Scholar
Zimmerman, W. 1959. Die Phylogenie der Pflanzen. Stuttgart: Fisher Verlag.Google Scholar

References

Abbott, R.J. 2017. Plant speciation across environmental gradients and the occurrence of natural hybrid zones. Journal of Systematics and Evolution 55: 238258.CrossRefGoogle Scholar
Abbott, R.J., Bruton, N.H. & Good, J.M. 2016. Genomics of hybridisation and its evolutionary consequences. Molecular Evolution 25: 23252332.Google ScholarPubMed
Ager, T.A. 1982. Vegetational history of western Alaska during the Wisconsin glacial interval and the Holocene. Pp 7593 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Ager, T.A. & Phillips, R.L. 2008. Pollen evidence for late Pleistocene Bering land bridge environments from Norton Sound, northeastern Bering Sea, Alaska. Arctic Antarctic and Alpine Research 40(3): 451461.CrossRefGoogle Scholar
Aizawa, M., Yoshmaruth, H., Saito, H., et al. 2007. Phylogeography of a northeast Asian spruce, Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Molecular Ecology 16: 33933405.CrossRefGoogle ScholarPubMed
Akkiraz, M., Akgün, F., Örçen, S., Bruch, A., Mosbrugger, V.. 2006. Stratigraphic and palaeoenvironmental significance of Bartonian–Priabonian (Middle–Late Eocene) microfossils from the Başçeşme Formation, Denizli Province, Western Anatolia. Turkish Journal of Earth Sciences 15(2): 155180.Google Scholar
Alaback, P.B. 1982. Dynamics of understorey biomass in Sitka spruce–western Hemlock forests of southeast Alaska. Ecology 63: 19321948.CrossRefGoogle Scholar
Alexander, I.J. & Watling, R. 1987. Macrofungi of Sitka spruce in Scotland. Proceedings of the Royal Society of Edinburgh 93B: 107115.Google Scholar
Alexandrov, A. 1971. The occurrence of forms of Norway spruce based on branching habit. Silvae Genetica 8: 204208.Google Scholar
Alexandrov, A. 1985. Taxonomy and geographic distribution of the species of the genus Picea A. Dietr. Gorskostopanska Nauka 22: 2333 (in Russian).Google Scholar
Alfimov, A.V. & Berman, D.I. 2001. Beringian climate during the Late Pleistocene and Holocene. Quaternary Science Reviews 20: 127134.CrossRefGoogle Scholar
An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan plateau since Late Miocene times. Nature 411: 6266.Google Scholar
Anderson, L.L., Hu, F.S., Nelsson, R.M., Pettot, R.J. & Paige, K.M. 2006. Ice Age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences USA 103: 1244712450.CrossRefGoogle Scholar
Anderson, P.M. & Brubaker, L.B. 1994. Vegetation history of northcentral Alaska: a mapped summary of late-Quaternary pollen data. Quaternary Science Reviews 13(1): 7192.CrossRefGoogle Scholar
Anderson, P.M. & Lozhkin, A.V. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20: 93125.CrossRefGoogle Scholar
Arain, M.A., Black, T.A., Barr, A.G., et al. 2002. Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Canadian Journal of Forest Research 32(5): 878891.CrossRefGoogle Scholar
Arsenault, A. 2003. A note on the ecology and management of old-growth forests in the Montane Cordillera. The Forestry Chronicle 79(3): 441454.CrossRefGoogle Scholar
Avouac, J.P. & Burov, E.B. 1996. Erosion as a driving mechanism of intracontinental mountain growth. Journal of Geophysical Research: Solid Earth 101: 1774717769.CrossRefGoogle Scholar
Axelrod, D.I. 1944. Sonoma Floras. Washington, DC: Carnegie Institution of Washington Publications.Google Scholar
Axelrod, D.I. 1956. Mio-Pliocene Floras from West-Central Nevada. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1964 The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Sciences 51: 1148.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden, 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary Flora. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Barnard, P.L., Owen, L.A., Sharma, M.C. & Finkel, R.C. 2001. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40: 2135.CrossRefGoogle Scholar
Baumeister, D. & Callaway, R.M. 2006. Facilitation by Pinus flexilis during succession: a hierarchy of mechanisms benefits other plant species. Ecology 87(7): 18161830.CrossRefGoogle Scholar
Becker, H.F. 1969. Forest plants of the Tertiary Beaverhead Basins in southwestern Montana. Palaeontographica B 127: 1142.Google Scholar
Berry, E.W. 1905. The flora of the Cliffwood clays. New Jersey Geological Survey Annual Reports 1905: 135172.Google Scholar
Bertini, A. & Martinetto, E. 2008. Messinian to Zanclean Vegetation and Climate of Northern and Central Italy. Napoli: Bollettino della.Google Scholar
Bezrukova, E.V., Abzaeva, A.A., Letunova, P.P., et al. 2005. Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International 136(1): 4757.CrossRefGoogle Scholar
Bigelow, N.H. & Edwards, M.E. 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, central Alaska: late glacial and Holocene vegetation in the Alaska Range. Quaternary Science Reviews 20: 203215.CrossRefGoogle Scholar
Bishop, M.P., Bonk, R., Kamp, U. Jr & Shroder, J.F. Jr 2001. Terrain analysis and data modeling for alpine glacier mapping. Polar Geography 25: 182201.CrossRefGoogle Scholar
Bishop, M.P., Shroder, J.F. Jr, Bonk, R. & Olsenholler, J. 2002. Geomorphic change in high mountains: a western Himalayan perspective. Global and Planetary Change 32(4): 311329.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2007. Late glacial and Holocene vegetational history of the Altai mountains (southwestern Tuva Republic, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 245: 518534.CrossRefGoogle Scholar
Bobrov, E.G. 1970. Generis Picea historia et systematica. Nova Systematica plantae Vascularis 7: 739 (in Russian).Google Scholar
Bobrov, E.G. 1973. Introgressive hybridisation, Sippenbildung und Vegetationsanderung. Feddes Repertorium 84: 273294.CrossRefGoogle Scholar
Bonan, G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441449.CrossRefGoogle ScholarPubMed
Borgaonkar, H.P., Pant, G.B. & Kumar, R. 1994. Dendroclimatic reconstruction of summer precipitation at Srinagar, Kashmir, India, since the late-eighteenth century. The Holocene 4(3): 299306.CrossRefGoogle Scholar
Bouillé, M., Senneville, S. & Bouchet, J. 2011. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics and Genomes 7: 469484.CrossRefGoogle Scholar
Brang, P. 2001. Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. Forest Ecology and Management 145: 107119.CrossRefGoogle Scholar
Brookfield, M.E. 2008a. Evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: rivers draining north from the Pamir syntaxis. Geomorphology 100: 296311.CrossRefGoogle Scholar
Brookfield, M.E. 2008b. Principles of Stratigraphy. New York: Wiley.Google Scholar
Calder, J.A. & Taylor, R.L. 1968. Flora of the Queen Charlotte Islands. Part 1. Systematics of the Vascular Plants. Ottawa: Queen’s Printer.Google Scholar
Cannell, M.G.R. 1987. Photosynthesis, foliage development and productivity of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 6173.Google Scholar
Carter, L.D. & Ager, T.A. 1989. Late Pleistocene spruce (Picea) in northern interior basins of Alaska and the Yukon: evidence from marine deposits in northern Alaska. US Geological Survey Circular 1026: 11–14.CrossRefGoogle Scholar
Chatterjee, S. & Scotese, C.R. 1999. The break-up of Gondwana and the evolution and biogeography of the Indian plate. PINSA 64: 397425.Google Scholar
Chen, J. Käluman, T., Gyllenstrand, V. & Lascoux, M. 2010. New insights on the speciation history and radiative diversity of three broad spruce groups and a Tertiary relic. Heredity 104: 314.CrossRefGoogle Scholar
Cherubini, P., Piussi, P. & Schweingruber, F.H. 1996. Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Canadian Journal of Forest Research 26: 9911001.CrossRefGoogle Scholar
Chytrý, M., Danihelka, J., Kubešová, S., et al. 2008. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology 196: 6183.CrossRefGoogle Scholar
Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics 23(1).CrossRefGoogle Scholar
Colinvaux, P.A. 1964. The environment of the Bering land bridge. Ecological Monographs 34: 297329.CrossRefGoogle Scholar
Colinvaux, P.A. 1967. A long pollen record from St. Lawrence Island, Bering Sea (Alaska). Palaeogeography, Palaeoclimatology, Palaeoecology 3: 2948.CrossRefGoogle Scholar
Copeland, P., Harrison, T.M., Kidd, W.E.A., Ronghua, X. & Yuquan, Z. 1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India–Asia collision. Earth and Planetary Science Letters 86: 240252.CrossRefGoogle Scholar
Crabtree, D.R. 1983. Picea wolfei, a new species of petrified cone from the Miocene of northwestern Nevada. American Journal of Botany 70: 13501364.CrossRefGoogle Scholar
Crabtree, D.R. 1984. Botanical relationships of Upper Cretaceous dicotyledonous leaf fossils from the Two Medicine Formation, north-central Montana. Second Internatl. Organ. Paleobot. Conf. Edmonton. [Abstract.JGoogle Scholar
Cwynar, L.C. 1982. A Late‐Quaternary vegetation history from Hanging Lake, Northern Yukon: ecological archives M052–001. Ecological Monographs 52(1): 124.CrossRefGoogle Scholar
Daubenmire, R. 1968. Some geographic variation in Picea sitchensis and their ecologic interpretation. Canadian Journal of Botany 46: 787798.CrossRefGoogle Scholar
Daubenmire, R. 1974. Taxonomic and ecologic relationships between Picea glauca and P. engelmannii. Canadian Journal of Botany 52: 15451560.CrossRefGoogle Scholar
Davies, J.M. 1968. Adelgids attacking spruce and other conifers. [UK] Forestry Commission Leaflet 7: 1–12.Google Scholar
Di, H., Ma, J., He, K., Han, Y.L. & Nui, S. 2020. Phylogenetic relationships of Picea mongolica and other Picea species in the same area based on chloroplast gene variations. Journal of Forestry Research 32: 247305.Google Scholar
Ding, Y.H. & Reiter, E.R. 1980. Further study of the variability in the frequency of typhoon formation over the West Pacific ocean. Colorado State University, Fort Collins (USA).CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Du, F.K., Petit, R.J. & Liu, J.Q. 2009. More introgressions with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology 18: 13691407.CrossRefGoogle Scholar
Edman, M. & Jonsson, B.G. 2001. Spatial pattern of downed logs of wood-decaying fungi in an old-growth Picea abies forest. Journal of Vegetation Science 12: 609620.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho. USA Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Esseen, P.A., Ehnström, B., Ericson, L. & Sjöberg, K. 1992. Boreal forests: the focal habitats of Fennoscandia. Pp 252325 in Hansson, L. (ed.), Ecological Principles of Nature Conservation: Application in Temperate and Boreal Environments. New York: Springer.CrossRefGoogle Scholar
Fan, Z.X., Bräuning, A., Yang, B. & Cao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65: 111.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. 1990 Pinaceae: Drawings and Descriptions of the Genera Abies, Cedrus, Pseudolarix, Keteleerria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Lark and Picea. Königstein: Koeltz Scientific Books.Google Scholar
Faulkner, R. 1987. Genetics and breeding of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 4150.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology., 33: 73110.CrossRefGoogle Scholar
Fielding, E.J. 1996. Tibet uplift and erosion. Tectonophysics 260: 5584.CrossRefGoogle Scholar
Finlayson, D.P., Montgomery, D.R. & Hallet, B. 2002. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology 30(3): 219222.2.0.CO;2>CrossRefGoogle Scholar
Fisk, H.N., Richards, H.G., Brown, C.A. & Steere, W.C. 1938. Contributions to the Pleistocene history of the Florida parishes of Louisiana. Dept. Conservation, Louisiana Geology Survey Geology Bulletin 12.Google Scholar
Flohn, H. 1968. Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Paper 120.Google Scholar
Flohn, H. 1981. The elevated heat source of the Tibetan highlands and its role for the large scale atmospheric circulation. Geological and Ecological Studies of the Qinghai-Xizang Plateau 2: 14631469.Google Scholar
Florin, R. 1963. The distribution of conifer and taxa genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Fort, M.B. 1986. Glacial extension and catastrophic dynamics along the Annapurna Front, Nepal Himalaya. Pp 105121 in Khule, M. (ed.), Proc. Symposium uber Tibet und Hochasien, Goettinger-Geographische-Abhandlugen. Univ. de Paris Nord.Google Scholar
Foster, J.B. 1965. The evolution of the mammals of the Queen Charlotte Islands. Occasional papers of the British Columbia Provincial Museum 14.Google Scholar
Fowler, D.D. 1966. A new spruce hybrid Picea schrenkiana x P. glauca. Second genetics workshop of the Society of American Foresters. US Forest Service, North Central Experimental Station, Research paper NC-6: 44–47.Google Scholar
Fox, D.P. 1987 The chromosomes of Picea sitchensis (Bong.) Carr. and its relatives. Proceedings of the Royal Society of Edinburgh 93B: 5159.Google Scholar
Frankis, M.P. 1989. Generic inter-relationships in Pinaceae. Notes of the Royal Botanical Gardens of Edinburgh 45: 527548.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural Vegetation of Oregon and Washington. Washington, DC: US Government Printing Office.Google Scholar
Fu, C. & Wen, G. 1999. Variation of ecosystems over East Asia in association with seasonal, interannual and decadal monsoon climate variability. Climatic Change 43(2): 477494.CrossRefGoogle Scholar
Gabet, E., Burbank, D., Pratt-Sitaula, B., et al. 2008. Modem erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters 267: 482494.CrossRefGoogle Scholar
Gao, J., Zhang, P., Zhang, X. & Liu, Y.H. 2018. Multi-scale analysis on species diversity within a 40-ha old growth temperate forest. Plant Diversity 40: 4549.CrossRefGoogle Scholar
Geburek, T., Robitschek, K. & Milasowszky, N. 2008. A tree of many faces: why are there different crown types in Norway spruce (Picea abies [L.] Karst.)? Flora 203: 126133.CrossRefGoogle Scholar
Gitterman, R.E., Sher, A.V. & Mathews, J.V. 1982. Comparison of tundra–steppe environments in west and east Beringia: pollen and macrofossil evidence from key sections. Pp 4373 in Hopkins, D.M., Matthews, J., Young, S., et al. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Gordon, A.G. 1968. Ecology of Picea chihuahuana Martinez. Ecology 49: 880896.CrossRefGoogle Scholar
Graham, A. 1998. Studies in neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio‐Pliocene Padre Miguel Group and the Pliocene Herreria Formation. American Journal of Botany 85(10): 14091425.CrossRefGoogle Scholar
Graham, A. 1999. Studies in neotropical paleobotany. XIII. An Oligo-Miocene Palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86: 1731.CrossRefGoogle ScholarPubMed
Hahn, D.G. & Manabe, S. 1975. The role of mountains in the south Asian monsoon circulation. Journal of the Atmospheric Sciences 32(8): 15151541.2.0.CO;2>CrossRefGoogle Scholar
Harley, J.L. & Smith, S.E. 1983. Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Harris, J.A., Hobbs, R.J., Higgs, E. & Aronson, J. 2006. Ecological restoration and global climate change. Restoration Ecology 14(2): 170176.CrossRefGoogle Scholar
Harris, N. 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 241(1): 415.CrossRefGoogle Scholar
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heusser, C.J. 1954. Alpine fir at Taku Glacier, Alaska with notes on its postglacial migration to the territory. Bulletin of the Torrey Botanical Club 81(1): 8386.CrossRefGoogle Scholar
Heusser, C.J. 1965. Climates of the Past: An Introduction to Paleoclimatology. New York: Van Nostrand.Google Scholar
Heusser, L. 1983. Contemporary pollen distribution in coastal California and Oregon. Palynology 7: 1942.CrossRefGoogle Scholar
Hewitt, K., Clague, J.J. & Orwin, J.F. 2008. Legacies of catastrophic rock slope failures in mountain landscape. Earth-Science Reviews 87: 138.CrossRefGoogle Scholar
Hills, L.V. & Ogilvie, R.T. 1970. Picea banksii n.sp., from the Beaufort formation (Tertiary), northwestern Banks Island, Arctic Canada. Canadian Journal of Botany 48: 457464.CrossRefGoogle Scholar
Hodges, K.V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth and Planetary Science Letters 220: 379389.CrossRefGoogle Scholar
Höfle, C. & Ping, C.L. 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71: 219243.CrossRefGoogle Scholar
Hopkins, D.M. 1982. Aspects of the paleogeography of Beringia during the late Pleistocene. Pp 328 in Hopkins, D.M., Matthews, J., Young, S., et al. (eds.), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B. & Anderson, P.M. 1993. A 12 000 year record of vegetation change and soil development from Wien Lake, central Alaska. Canadian Journal of Botany 71(9): 11331142.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B. & Anderson, P.M. 1996. Boreal ecosystem development in the northwestern Alaska range since 11,000 yr BP. Quaternary Research 45(2): 188201.CrossRefGoogle Scholar
Hulten, E. 1937. Outline of the History of Arctic and Boreal Biota during the Quaternary Period. Stockholm: Bok Forlagsaktiebologet Thule.Google Scholar
Hustich, I. 1953. The boreal forest limit of conifers. Arctic 6: 149160.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Iwatsuki, Z. 1972. Distribution of bryophytes common to Japan and the United States. Pp 107137 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Iwatsuki, Z. & Sharp, A.J. 1968. The bryogeographical relationships between Eastern Asia and North America, II. Journal of the Hattori Botanical Laboratory 31: 55-58.Google Scholar
Jackson, S.T. & Weng, C. 1999. Late quaternary extinction of a tree species in eastern North America. PNAS 23(24).Google Scholar
Jeong, E.K., Kim, K., Kim, J.H. & Suzuki, M. 2004. Fossil woods from Janggi Group (Early Miocene) in Pohang Basin, Korea. Journal of Plant Research 117: 183189.CrossRefGoogle Scholar
Jia, G., Peng, P.A., Zhao, Q. & Jian, Z. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology 31(12): 10931096.CrossRefGoogle Scholar
Jia, R.J., Wang, J.H. & Zhang, S.G. 2013. Pollen morphology and its phylogenetic implications in the genus Picea. Plant Systematics and Evolution 300: 461473.CrossRefGoogle Scholar
Jiang, H. & Ding, Z. 2008. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 3038.CrossRefGoogle Scholar
Jiménez-Moreno, G., Fauquette, S. & Suc, J.-P. 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography 35: 16381649.CrossRefGoogle Scholar
Jonsson, B.G. 2000. Availability of coarse woody debris in a boreal old-growth Picea abies forest. Journal of Vegetation Science 11: 5156.CrossRefGoogle Scholar
Kan, X.-Z., Wang, S.-S., Ding, X. & Wang, X.-Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44: 765777.CrossRefGoogle ScholarPubMed
Kane, R.L. & Klein, D.E. 2005. Carbon sequestration. Pp 97112 in Wang, L., Pereira, N. & Hung, Y.-T. (eds), Advanced Air and Noise Pollution Control. New York: Springer.CrossRefGoogle Scholar
Katamura, F., Fukuda, M., Bosikov, N.P., et al. 2006. Thermokarst formation and vegetation dynamics inferred from a palynological study in Central Yakutia, Eastern Siberia, Russia. Arctic Antarctic and Alpine Research 38(4): 561570.CrossRefGoogle Scholar
Klymiuk, A.A. & Stockey, R.A. 2012. A Lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae). American Journal of Botany 99: 10691082.CrossRefGoogle ScholarPubMed
Kolchugina, T.P. & Vinson, T.S. 1993. Carbon sources and sinks in forest biomes of the former Soviet Union. Global Biogeochemical Cycles 7(2): 291304.CrossRefGoogle Scholar
Kotlia, B.S., Sharma, C., Bhalla, M.S., et al. 2000. Palaeoclimatic conditions in the late Pleistocene Wadda lake, eastern Kumaun Himalaya (India). Palaeogeography, Palaeoclimatology, Palaeoecology 162: 105118.CrossRefGoogle Scholar
Krajina, V.J., Klinka, K. & Worrall, J. 1982. Distribution and Ecological Characteristics of Trees and Shrubs in British Columbia. Vancouver: University Of British Columbia, Faculty of Forestry.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of coniferae in Sichuan. Acta Phytotax. Sinica 14: 407420 (in Chinese).Google Scholar
Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F. & Prell, W.L. 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments. Journal of Geophysical Research 94: 18393.CrossRefGoogle Scholar
Kuzmina, S., Elias, S., Matheus, P., Storer, J.E. & Sher, A. 2008. Paleoenvironmental reconstruction of the Last Glacial Maximum, inferred from insect fossils from a tephra buried soil at Tempest Lake, Seward Peninsula, Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology 267: 245255.CrossRefGoogle Scholar
La Motte, R.S. 1935. An Upper Oligocene florule from Vancouver Island. Carnegie Institution of Washington Publications 455: 5156.Google Scholar
Lavé, J. & Avouac, J.P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth 106: 2656126591.CrossRefGoogle Scholar
Ledig, F.T., Hodgskiss, P.D., Krutovskii, K.V. Neale, D.B. & Eguiluz-Piedra, T. 2004. Relationships among species of Picea (Pinaceae) of southwestern North America. Systematic Botany 29: 275295.CrossRefGoogle Scholar
Ledig, F.T., Hodgskiss, P.D. & Johnson, D.R. 2005. Genic diversity, genetic structure and mating system of Brewer spruce (Pinaceae), a relict of the Arcto-Tertiary forest. American Journal of Botany 92: 19751986.CrossRefGoogle ScholarPubMed
Leopold, A.S. 1950. Vegetation zones of Mexico. Ecology 31(4): 507518.CrossRefGoogle Scholar
LePage, B.A. 2001. New species of Picea A. Dietrich (Pinaceae) from the middle Eocene of Axel Heiburg Island, Arctic Canada. Botanical Journal of the Linnean Society 135: 137167.CrossRefGoogle Scholar
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives.Acta Hort 615: 2952.CrossRefGoogle Scholar
LePage, B.A. & Basinger, J.F. 1991a. Early Tertiary Larix from the Buchanan Lake Formation, Canadian Arctic Archipelago, and a consideration of the phytogeography of the genus. Geological Survey of Canada Bulletin 403: 6782.Google Scholar
LePage, B.A. & Basinger, J.F. 1991b. A new species of Larix (Pinaceae) from the early Tertiary of Axel Heiberg Island, Arctic Canada. Review of Palaeobotany and Palynology 70: 89111.CrossRefGoogle Scholar
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Liang, E., Shao, X., Eckstein, D., Huang, L. & Liu, X. 2006. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management 236: 268277.CrossRefGoogle Scholar
Lie, M.H., Arup, U., Grytnes, J.A. & Ohlson, M. 2009. The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodiversity and Conservation 18: 35793596.CrossRefGoogle Scholar
Lines, R. 1987. Seed origin variation in Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 2539.Google Scholar
Liu, T.S. 1982. A new proposal for the classification of the genus Picea. Acta Phytotaxonomica Geobotanica 33: 227244.Google Scholar
Liu, X. & Yin, Z.Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 183: 223245.CrossRefGoogle Scholar
Lockwood, J.D., Aleksić, J.M., Zou, J., et al. 2013. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution 69: 717727.CrossRefGoogle ScholarPubMed
Lopatina, D.A. 2003. Comparative analysis of the Eocene-Miocene micro- and macrofloras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation, 11: 7490.Google Scholar
Lozhkin, A.V. & Anderson, P.M. 1995. The last interglaciation in northeast Siberia. Quaternary Research 43(2): 147158.CrossRefGoogle Scholar
Lozhkin, A.V., Anderson, P.M., Vartanyan, S.L., et al. 2001. Late Quaternary paleoenvironments and modern pollen data from Wrangel Island (Northern Chukotka). Quaternary Science Reviews 20: 217233.CrossRefGoogle Scholar
MacGintie, H.D. 1933. The trout creek flora of southeastern Oregon. Carnegie Institution of Washington Publications 416: 2168.Google Scholar
Malcolm, D.C. 1987. Some ecological aspects of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 8592.Google Scholar
Mandryk, C.A., Josenhans, H., Fedje, D.W. & Mathewes, R.W. 2001. Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes. Quaternary Science Reviews 20: 301314.CrossRefGoogle Scholar
Matthews, J.V. Jr 1982. East Beringia during Late Wisconsin time: a review of the biotic evidence. Pp. 127150 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Mehrotra, R., Liu, X.Q., Li, C.S., Wang, Y.F. & Chauhan, M. 2005 Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 145163.CrossRefGoogle Scholar
Mellert, K.H. & Wald, J. 2014. Nutrient formation and site-related growth potential of Norway spruce (Picea abies (L.) Karst.) in the Bavarian Alps. European Journal of Forest Science 133: 433–451.CrossRefGoogle Scholar
Miller, C.N. 1969. Pinus avonensis, a new species of petrified cones from the Oligocene of Western Montana. American Journal of Botany 56: 972978.CrossRefGoogle Scholar
Miller, C.N. 1970. Picea diettertiana, a new species of petrified cones from the Oligocene of Western Montana. American Journal of Botany 57(5): 579589.CrossRefGoogle Scholar
Miller, C.N. 1972. Pityostrobus palmeri, a new species of petrified conifer cones from the late Cretaceous of New Jersey. American Journal of Botany 59: 352358.CrossRefGoogle Scholar
Miller, C.N. 1974. Pityostrobus hallii, a new species of structurally preserved conifer cones from the late Cretaceous of Maryland. American Journal of Botany 61: 798804.CrossRefGoogle Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1989. A new species of Picea based on silicified seed cones from the Oligocene of Washington. American Journal of Botany 76: 747754.CrossRefGoogle Scholar
Miller, H.G & Miller, J.D. 1987. Nutritional requirements of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 7583.Google Scholar
Mimura, M. & Aitken, S.N. 2007. Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99: 224232.CrossRefGoogle ScholarPubMed
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: HMSO.Google Scholar
Mizushima, M. 1972. Taxonomic comparison of vascular plants found in western North America and Japan. Pp. 8391 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Molina, R. & Trappe, J.M. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Science 28(3): 423458.Google Scholar
Molnar, P. & England, P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346: 2934.CrossRefGoogle Scholar
Molnar, P. & Tapponnier, P. 1975. Cenozoic tectonics of Asia: effects of a continental collision – features of recent continental tectonics in Asia can be interpreted as results of the India–Eurasia collision. Science 189: 419426.CrossRefGoogle ScholarPubMed
Molnar, P., England, P. & Martinod, J. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Reviews in Geophysics 31: 357396.CrossRefGoogle Scholar
Morgenstern, E.K. & Farrar, J.L. 1964. Introgressive hybridisation in red spruce and black spruce. University of Toronto Faculty of Forestry Technical Report 4.Google Scholar
Muhs, D.R., Ager, T.A. & Begét, J.E. 2001. Vegetation and paleoclimate of the last interglacial period, central Alaska. Quaternary Science Reviews 20: 4161.CrossRefGoogle Scholar
Nascimbene, J., Marini, L., Motta, R. & Nimis, P.L. 2009. Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodiversity and Conservation 18: 15091522.CrossRefGoogle Scholar
Nascimbene, J., Marini, L. & Ódor, P. 2012. Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecology & Diversity 5(3): 355363.CrossRefGoogle Scholar
Ogilvie, R. & von Rudolff, E. 1968. Chemosystematic studies in the genus Picea (Pinaceae). IV. The introgression of White and Engelmann spruce along the Bow River, Canada. Canadian Journal of Botany 46: 901908.CrossRefGoogle Scholar
Page, C.N. 1979a. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1979b. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1979c. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1988. New and maintained genera in the conifer families Podocarpaceae and Pinaceae. Notes from the Royal Botanic Garden Edinburgh 45: 377395.Google Scholar
Page, C.N. 1997. The ex-situ cultivation of conifers, its limitations and potential role. International Dendrology Society Bulletin 1997: 5153.Google Scholar
Page, C.N. & Hollands, R.C. 1987. The taxonomic and biogeographic position of Sitka spruce. Proceedings of the Royal Society of Edinburgh B 93: 1324.Google Scholar
Page, C.N. & Rushforth, K.D. 1980. Picea farreri, a new temperate conifer from Upper Burma. Notes from the Royal Botanic Garden Edinburgh 38: 129136.Google Scholar
Passey, B.H., Ayliffe, L.K., Kaakinen, A., et al. 2009. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters 277: 443452.CrossRefGoogle Scholar
Passmore, D.G., Harrison, S., Winchester, V., et al. 2008. Late Holocene debris flows and valley floor development in the northern Zailiiskiy Alatau, Tien Shan mountains, Kazakhstan. Arctic Antarctic and Alpine Research 40(3): 548560.CrossRefGoogle Scholar
Penny, J.S. 1947. Studies on conifers of the Magothy flora. American Journal of Botany 34: 281296.CrossRefGoogle Scholar
Péwé, T. L. (ed.) 1997. Eva Interglaciation Forest Bed, Unglaciated East-Central Alaska: Global Warming 125,000 Years Ago. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Pisaric, M.F., MacDonald, G.M., Cwynar, L.C. & Velichko, A.A. 2001. Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting late Quaternary fossil pollen assemblages. Arctic Antarctic and Alpine Research 33(1): 1927.CrossRefGoogle Scholar
Poage, N.J. & Tappeiner, J.C. II 2005. Tree species and size structure of old-growth Douglas-fir forests in central western Oregon, USA. Forest Ecology and Management 204: 329343.CrossRefGoogle Scholar
Potzger, J.E. & Tharp, B.C. 1943. Pollen record of Canadian spruce and fir from a Texas bog. Science 98: 584.CrossRefGoogle Scholar
Prunier, J., Verta, J.-P. & Mackay, J.J. 2016. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist 209: 4262.CrossRefGoogle Scholar
Qian, H., Ricklefs, R.E. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407: 180182.CrossRefGoogle ScholarPubMed
Ran, S.H., Wei, X.X. & Wang, X.Q. 2006. Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographic studies using cytoplasmic cytotypes. Molecular Phylogenetics and Evolution 41: 405419.CrossRefGoogle Scholar
Ravazzi, C. 2002. Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and Palynology 120: 131177.CrossRefGoogle Scholar
Ritchie, J.C. 1984. Past and Present Vegetations of the Far Northwest of Canada. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Ritchie, J.C. & Yarranton, G.A. 1978. The Late-Quaternary history of the boreal forest of central Canada, based on standard pollen stratigraphy and principal components analysis. Journal of Ecology 66: 199212.CrossRefGoogle Scholar
Roche, L. 1969. A genecological study of the genus Picea in British Columbia. New Phytologist 68: 505554.CrossRefGoogle Scholar
Ruddiman, W.F. & Kutzbach, J.E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. Journal of Geophysical Research: Atmospheres 94: 1840918427.CrossRefGoogle Scholar
Rushforth, K. 1986. Mexico’s spruces: rare members of an important genus. Kew Magazine 3: 119124.Google Scholar
Rushforth, K. 2007. Spruces (Picea: Pinaceae) in the Yarlung Tsangpo drainage of southeast Tibet (Xizang, China). International Dendrological Society Yearbook 2007: 4253.Google Scholar
Russell, R.E., Saab, V.A., Dudley, J.G. & Rotella, J.J. 2006. Snag longevity in relation to wildfire and postfire salvage logging. Forest Ecology and Management 232: 179187.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schofield, W.B. 1969. Phytogeography of northwestern north America: bryophytes and vascular plants. Madrono 20: 155207.Google Scholar
Schulze, E.D., Lloyd, J., Kelliher, F.M., et al. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink: a synthesis. Global Change Biology 5(6): 703722.CrossRefGoogle Scholar
Sea, D.S. & Whitlock, C. 1995. Postglacial vegetation and climate of the Cascade Range, central Oregon. Quaternary Research 43(3): 370381.CrossRefGoogle Scholar
Sears, P.B. & Clisby, K.H. 1955. Palynology in southern North America: Part IV: Pleistocene climate in Mexico. Geological Society of America Bulletin 66(5): 521530.CrossRefGoogle Scholar
Seeber, L. & Gornitz, V. 1983. River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92(4): 335367.CrossRefGoogle Scholar
Seely, B., Welham, C. & Kimmins, H. 2002. Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. Forest Ecology and Management 169: 123135.CrossRefGoogle Scholar
Serebryany, L.R., Tishkov, A.A., Solomina, O.N., Malyasova, E.S., & Ilves, E.O. 1984. A reconstruction of the development of vegetation in the High Arctic. Izvestiya Akademii Nauk USSR Geographic Series 6: 7584.Google Scholar
Sharp, A.J. 1972. The possible significance of some exotic disturbances of plants occurring in Japan and far North America. Pp 6164 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Shi, Y., Yu, G., Liu, X., Li, B. & Yao, T. 2001. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169: 6983.CrossRefGoogle Scholar
Shichi, K., Kawamuro, K., Takahara, H., et al. 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 248: 357375.CrossRefGoogle Scholar
Shilo, N.A., Lozhkin, A.V., Titov, E.E. & Shumilov, Y.u. V. 1983. The Kirgilyakh Mammoth (Paleogeographic Aspect). Moscow: Nauka.Google Scholar
Shreve, F. 1944. Rainfall of northern Mexico. Ecology 25: 105111.CrossRefGoogle Scholar
Shroder, J.F. Jr & Bishop, M.P. 1998. Mass movement in the Himalaya: new insights and research directions. Geomorphology 26: 1335.CrossRefGoogle Scholar
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Simakova, A.N. 2006. The vegetation of the Russian Plain during the second part of the Late Pleistocene (33–18 ka). Quaternary International 149(1): 110114.CrossRefGoogle Scholar
Siqqurgeirsson, A. & Szmidt, A.E. 1993. Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nordic Journal of Botany 13: 233246.CrossRefGoogle Scholar
Sladkov, A.N. 1967. Introduction to Spore-Pollen Analysis. Moscow: Nauka.Google Scholar
Spicer, R.A., Harris, N.B.W., Widdowson, M., et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature 421: 622624.CrossRefGoogle ScholarPubMed
Staplin, F.L., Pocock, S.J. & Jansonius, J. 1967. Relationship among gymnosperrnous pollen. Review of Paleobotany and Palynology 3: 297310.CrossRefGoogle Scholar
Stebich, M., Mingram, J., Han, J. & Liu, J. 2009. Late Pleistocene spread of (cool-) temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Global and Planetary Change 65: 5670.CrossRefGoogle Scholar
Stockey, R.A. & Wiebe, N.J.P. 2008. Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov. (Pinaceae). Botany Botanique 86: 649657.CrossRefGoogle Scholar
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 181222.CrossRefGoogle Scholar
Sun, Y., Abbott, R.J., Lu, Z., et al. 2018. Reticulate evolution within a spruce (Piceae) species complex revealed by population genomic analysis. Evolution 72: 26692681.CrossRefGoogle ScholarPubMed
Svensson, M., Jansson, P.E., Gustafsson, D., et al. 2008. Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand. Ecological Modelling 213: 331344.CrossRefGoogle Scholar
Szeicz, J.M. & MacDonald, G.M. 1995. Recent white spruce dynamics at the subarctic treeline of northwestern Canada. Journal of Ecology 83: 873885.CrossRefGoogle Scholar
Szeicz, J.M. & MacDonald, G.M. 2001. Montane climate and vegetation dynamics in easternmost Beringia during the Late Quaternary. Quaternary Science Reviews 20: 247257.CrossRefGoogle Scholar
Taggart, R.E. & Cross, A.T. 2009. Global greenhouse to icehouse and back again: the origin and future of the boreal forest biome. Global and Planetary Change 65: 115121.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Tapponnier, P., Zhiqin, X., Roger, F., et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294: 16711677.CrossRefGoogle Scholar
Tarasov, P.E., Webb, T. III, Andreev, A.A., et al. 1998. Present‐day and mid‐Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25(6): 10291053.CrossRefGoogle Scholar
Tatewaki, M. & Igarashi, T. 1971. Forest vegetation in the Teshio and the Nakagawa district experimental forests of Hokkaido University. Research Bulletin of Hokkaido University 28: 1192.Google Scholar
Teoh, S.B. & Rees, H. 1977. B chromosomes in white spruce. Proceedings of the Royal Society of London 198: 325344.Google Scholar
Tomirdiaro, S.V. 1980. Loess-ice Formation in Eastern Siberia during the Late Pleistocene and the Neoholocene. Moscow: Nauka.Google Scholar
Tomirdiaro, S.V. 1982. Evolution of lowland landscapes in northeastern Asia during late Quaternary time. Pp 2937 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Trappe, J.M. 1962. Fungus associates of ectotrophic mycorrhizae. The Botanical Review 28(4): 538606.CrossRefGoogle Scholar
Tryon, R. 1969. Taxonomic problems in the geography of North American ferns. Bioscience 19: 790795.CrossRefGoogle Scholar
Tsukada, M. 1985. Map of vegetation during the last glacial maximum in Japan. Quaternary Research 23(3): 369381.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Van Alstine, R.E. 1969. Geology and mineral deposits of the Poncha Springs NE quadrangle, Chaffee Country, Colorado. US Geological Survey Professional. Paper 626: 1–52.Google Scholar
Van Pelt, R., O’Keefe, T.C., Latterell, J.J. & Naiman, R.J. 2006. Riparian forest stand development along the Queets river in Olympic National Park, Washington. Ecological Monographs 76(2): 277298.CrossRefGoogle Scholar
Vance, D., Bickle, M., Ivy-Ochs, S. & Kubik, P.W. 2003. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters 206(3–4): 273288.CrossRefGoogle Scholar
Velenovský, J. 1889. Květena Českého cenomanu [Flora of the Bohemian Cenomanian]. Rozpravy Královské České Společnosti Nauk 7(3): 175.Google Scholar
Walker, D. 1986. Late Pleistocene–Early Holocene vegetational and climatic changes in Yunnan Province, southwest China. Journal of Biogeography 13: 477486.CrossRefGoogle Scholar
Wang, T., Ren, H.B. & Ma, K.P. 2005. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwest China. Trees 19: 735741.CrossRefGoogle Scholar
Wang, W.M., Saito, T. & Nakagawa, T. 2001. Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology 117(4): 281295.CrossRefGoogle Scholar
Wang, X.Q. & Tank, D. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Wang, Y., Sen, O.L. & Wang, B. 2003. A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. Journal of Climate 16(11): 17211738.2.0.CO;2>CrossRefGoogle Scholar
Waring, R.H. & Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204: 13801386.CrossRefGoogle ScholarPubMed
Warner, B.G., Mathews, R.W. & Clague, J.J. 1982. Ice-free conditions on the Queen Charlotte Islands, British Columbia, at the height of the Late Wisconsin glaciation. Science 218 (4573): 675677.CrossRefGoogle Scholar
Wasson, R.J., Juyal, N., Jaiswal, M., et al. 2008. The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment. Journal of Environmental Management 88(1): 5361.CrossRefGoogle ScholarPubMed
Wasson, R.J., Sundriyal, Y.P., Chaudhary, S., et al. 2013. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Reviews 77: 156166.CrossRefGoogle Scholar
Wetterich, S., Kuzmina, S., Andreev, A.A., et al. 2008. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, northeast Siberia, Russia. Quaternary Science Reviews 27: 15231540.CrossRefGoogle Scholar
Wheeler, E.A. & Arnette, C.G. Jr 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Whipple, K.X. 2004. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences 32: 151185.CrossRefGoogle Scholar
Whitlock, C. & Dawson, M.R. 1990. Pollen and vertebrates of the Early Neogene Haughton Formation, Devon Island, Arctic Canada. Arctic 43: 324330.CrossRefGoogle Scholar
Williams, C.J., Mendell, E., Murphy, J., et al. 2008 . Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 160176.CrossRefGoogle Scholar
Willyard, A., Syring, J., Gernandt, D.S., Liston, A. & Cronn, R. 2007. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution 24: 90101.CrossRefGoogle ScholarPubMed
Wilmking, M., Harden, J. & Tape, K. 2006. Effect of tree line advance on carbon storage in NW Alaska. Journal of Geophysical Research: Biogeosciences 111(G2).CrossRefGoogle Scholar
Woillard, G.M. 1978. Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9(1): 121.CrossRefGoogle Scholar
Wolfe, J.A. 1969. Neogene floristic and vegetational history of the Pacific Northwest. Madrono 20: 83110.Google Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary floras. Pp 201233 in Graham, A. (ed.), Floristics and Paleofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wright, J.W. 1955. Species crossability in spruce in relation to distribution and taxonomy. Forest Science 1: 319349.Google Scholar
Young, R.E. 1972. The Systematics and Areal Distribution of Pelagic Cephalopods from the Seas off Southern California. Washington, DC: US GPO.CrossRefGoogle Scholar
Yurtsev, B.A. 2001. The Pleistocene ‘Tundra-Steppe’ and the productivity paradox: the landscape approach. Quaternary Science Reviews 20: 165174.CrossRefGoogle Scholar
Zagwijn, W.H. 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15: 451469.CrossRefGoogle Scholar
Zazula, G.D., Froese, D.G., Elias, S.A., Kuzmina, S. & Mathewes, R.W. 2007. Arctic ground squirrels of the mammoth-steppe: paleoecology of Late Pleistocene middens (∼ 24 000–29 450 14C yr BP). Yukon Territory Canada Quaternary Science Reviews 26(7–8): 9791003.Google Scholar
Zhang, Z.H. & Wu, X., 1992. Utilizing two Qinghai tree-ring chronologies to reconstruct and analyze local historical precipitation. Quarterly Journal of Applied Meteorology 3: 6169.Google Scholar
Zhao, Y.-X., Luo, J.-R., Li, C.-S. & Yi, T.-M. 2008. Palaeophytochemical constituents from the Miocene-fossil wood of Picea likiangensis in Xun-dian of Yunnan, China. Bulletin of the Korean Chemical Society 29: 16131616.Google Scholar
Zhaoguang, C.A.I. (ed.). 1986. An Atlas of Rangeland and its Main Plant Resources on the Qinghai–Tibet Plateau. Qinghai: Agricultural Publishing House.Google Scholar
Zheng, H., Ouyang, Z., Xu, W., et al. 2008. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255(3–4): 11131121.CrossRefGoogle Scholar
Zhu, H. & Baker, R.G. 1995. Vegetation and climate of the last glacial–interglacial cycle in southern Illinois, USA. Journal of Paleolimnology 14: 337354.CrossRefGoogle Scholar
Zhu, H.F., Wang, L.L., Shao, X.M. & Fang, X.Q. 2004. Tree-ring width response of Picea schrenkiana to climate change. Acta Geographica Sinica 59: 863870 (in Chinese).Google Scholar
Zhu, J., Sun, L., Li, L., et al. 2013. Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Annals of Botany 112: 18291844.Google Scholar

References

Akkiraz, M.S., Akgun, F., Orcen, S., et al. 2006. Stratigraphic and palaeoenvironmental significance of Bartonian–Priabonian (Middle–Late Eocene) microfossils from the Başçeşme Formation, Denizli Province, Western Anatolia. Turkish Journal of Earth Sciences 15: 155180.Google Scholar
Basinger, J.F., Greenwood, D.R. & Sweda, T. 1994. Early Tertiary vegetation of Arctic Canada. Pp 175198 in Boulter, M. C. & Fisher, H. C. (eds.), Cenozoic Plants and Climates of the Arctic.Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brideaux, W.W. & McIntyre, D.J. 1975. Miospores and microplankton from Aptian-Albian rocks along Horton River, District of Mackenzie. Bulletin of the Geological Survey of Canada 252: 185.Google Scholar
Bugnicourt, D., Claracq, P., Duperon, J., Prive-Gill, C. & Sauvage, J. 1988. A lignite deposit at Capvern (Plateau de Lannemezan, Hautes-Pyrenees): sedimentology, fossil woods and palynology. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 12: 739757.Google Scholar
Caratini, C., Van Campo, M, & Sivak, J. 1972. Pollen de Cathaya (Abietaceae) au Tertaire en France. Pollen et Spores 14: 169172.Google Scholar
Chun, W.-Y. & Kuang, K.-Z. 1958. A new genus of Pinaceae: Cathaya Chun et Kuang gen. Nov., from the southern and western China. Bot. Zhur. 43: 461470 (in Russian).Google Scholar
Corrado, P. & Magri, D. 2011. A late Early Pleistocene pollen record from Fontana Ranuccio (central Italy). Journal of Quaternary Science 26: 335.CrossRefGoogle Scholar
Degeai, J.-P., Pastre, J.-F., Gauthier, A. et al. 2013. The lacustrine sequence of the Alleret maar (Massif Central, France): tephrochronology and palaeoenvironmental evolution in western Europe during the Early Middle Pleistocene. Quaternaire 24: 443459.Google Scholar
Engelhardt, H. & Kinkelin, F. 1908. Die Unterdiluvialflora von Hainstadt am Main. Abh Senckenb Natforsch Ges 29.Google Scholar
Farjon, A. 1992. Cathaya loehrii, a misnomer for a Pliocene conifer cone. Taxon 41: 721723.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds.). 1999. Conifers. Status Survey and Conifer Action Plan: IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Gaussen, H. 1971. Cathaya are not Pseudotsuga. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences serie D 273: 1098.Google Scholar
Ge, S., Hong, D.-Y., Wang, H.-Q., Liu, Z.-Y. & Zhang, C.-M. 1998. Population genetic structure of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences 159; 351357.CrossRefGoogle Scholar
Greguss, P. 1972. Cathaya argyrophylla Chun et Kuang. International Dendrology Society Yearbook 1972: 5254.Google Scholar
Grímsson, F., Zetter, R. & Ball, C. 2011. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part I. Bryophyta, Lycopodiophyta, Pteridophyta, Ginkgophyta, and Gnetophyta. Grana 50: 102128.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hong, W. & Hu, Z.-H. 1997. Comparative anatomy of resin ducts of the Pinaceae. Trees 11: 135143.Google Scholar
Hu, Y.-S. & Wang, F.H. 1984. Anatomical studies of Cathaya (Pinaceae). American Journal of Botany 71: 727735.CrossRefGoogle Scholar
Hu, Y.-S., Wang, F.H. & Chang, Y.-Z. 1976. On the comparative morphology and systematic position of Cathaya (Pinaceae). Acta Phytotaxonomica Sinica 14: 7378 (in Chinese).Google Scholar
Ji, B. 1987. A rare tree grows again. New Zealand–China News, March: 2–3.Google Scholar
Jiménez-Moreno, G., Fauquette, S. & Jean-Pierre, S. 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography 35: 16381649.CrossRefGoogle Scholar
Kan, X.-Z., Wang, S.-S., Ding, X. & Wang, X.-Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44: 765777.CrossRefGoogle Scholar
Karavaev, M.N. 1958. Tsuga longibracteata Cheng, first found in a fossil condition on the territory of U.S.S.R. Bulletin of the Society of Nature 63: 7376.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E., & Roiron, P., 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238: 321339.CrossRefGoogle Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of coniferae in Sichuan. Acta Phytotaxonomica Sinica 14: 407420 (in Chinese).Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
Kvacek, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kvaček, Z. & Wilde, V. 2006. A critical re-evaluation of monocotyledons as described by Weyland and co-authors from the Rhenish browncoal (Miocene, Germany). Palaeontographica Abt B Paläophytol 273: 139160.CrossRefGoogle Scholar
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
Li, L.-C., Liu, Y.-Q., Wang, Y.-Q. & Liu, G. 1996. Studies of the karyotypes of three species and the cytotaxonomy of Thujoideae (Cupressaceae). Acta Botanica Yunnanica 18: 391394 (in Chinese, with English summary).Google Scholar
Liu, Y.-S. & Basinger, J.F. 2000. Fossil Cathaya (Pinaceae) pollen from the Canadian High Arctic. International Journal of Plant Sciences 161: 829847.CrossRefGoogle Scholar
Liu, Y.-S., Zetter, R. & Ferguson, D.K. 1997. Fossil pollen grains of Cathaya (Pinaceae) in the Miocene of eastern China. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO 58: 227235.Google Scholar
Mägdefrau, K. 1953. Haliobiologie Der Pflanzen. Jena: Jena.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D. H. & Velitzelos, E. 2007. The fossil flora of Kallithea (Rhodos, Greece) at the Pliocene/Pleistocene boundary. Palaeontographica Abteilung B 277: 7599.CrossRefGoogle Scholar
McIver, E. E. & Basinger, J. F. 1999. Early Tertiary floral evolution in the Canadian high Arctic. Annals of the Missouri Botanical Garden 86: 523545.CrossRefGoogle Scholar
Page, C.N. 2002a. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Pastre, J.-F., Gauthier, A., Nomade, S., et al. 2007. The Alleret maar (Massif Central, France): a new lacustrine sequence of the early Middle Pleistocene in western Europe. CR Geoscience 339: 987e997.CrossRefGoogle Scholar
Peng, D.-C., Guo, Y.-R., Luo, Z.-C. & Lin, M.-J. 1982. Preliminary report on the investigation of Cathaya argyrophylla in Hunan Province. Journal of Ecology, China 4: 1923.Google Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Sadori, L., Giardini, M., Chiarini, E. 2010. Pollen and macrofossil analyses of Pliocene lacustrine sediments (Salto river valley, Central Italy). Quaternary International 225: 4457.CrossRefGoogle Scholar
Saito, T., Wang, W.M. & Nakagawa, T. 2000. Cathaya (Pinaceae) pollen from Mio–Pliocene sediments in the Himi area, central Japan. Grana 39: 288293.CrossRefGoogle Scholar
Sivak, J. 1976. Nouvelles especes du genre Cathaya d’apres leur graines de pollen dans le Tertaire du Sud de la France. Pollen et Spores 18: 243288.Google Scholar
Song, G., Hong, D.-Y., Wang, H.-Q., Liu, Z.-Y & Zhang, C.-M. 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences 159: 351357.Google Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Svechnikova, I.N. 1964. Predstavitel’ roda Cathaya (Pinaceae) iz Pliotsena Abchazii. Palaeontol. Hurnal 2: 125131.Google Scholar
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science 142: 16801681.CrossRefGoogle Scholar
Vaario, L.M., Xing, S.-Y., Xie, Z.-Q., et al. 2006. In situ and in vitro colonisation of Cathaya argyrophylla (Pinaceae) by ectomycorrhizal fungi. Mycorrhiza 16: 137142.CrossRefGoogle ScholarPubMed
Wang, F.H. & Chen, T.K. 1974. The embryogeny of Cathaya (Pinaceae). Acta Botanica Sinica 16: 6469 (in Chinese).Google Scholar
Wang, F.-H. & Chen, Z.-K. 1986. Male gametophyte of Cathaya. Acta Phytotaxonomica Sinica 24: 469470.Google Scholar
Wang, H.W. & Ge, S. 2006. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology 15: 41094122.CrossRefGoogle ScholarPubMed
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.-Q., Han, Y. & Hong, D. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46: 265271.CrossRefGoogle Scholar
Xiang, Q.Y., Soltis, D.E., Soltis, P.S., Manchester, S.R. & Crawford, D.J. 2000. Timing the eastern Asian–eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Molecular Phylogenetics and Evolution 15: 462472.CrossRefGoogle ScholarPubMed
Xie, Z.-Q., Chen, W.-L., Jiang, M.-X., Huang, H.-D. & Zhu, R.-G. 1995. A preliminary study of the population of Cathaya argyrophyla in Bamianshan Mountain. Acta Botanica Sinica 37: 5865.Google Scholar
Xie, Z.-Q., Chen, W.-L., Liu, Z.-Y, Jiang, M.-X. & Huang, H.-D. 1999. Spatial distribution pattern of Cathaya argyrophylla population. Acta Botanica Sinica 41: 95101.Google Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of Taxads and Conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T.-S., Ma, C.-G., Li, L.-Q., Zhang, Z.-S. & Zhang, W.-X. 1983. Studies on the Cathaya communities. Acta Botanica Sinica 25: 157170 (in Chinese).Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beiijng: Science Press.Google Scholar
Yu, C. H. 1981. Evolutionary trends in secondary xylem of gymnosperms. Acta Phytotax Sinica 19: 175185.Google Scholar

References

Abbott, H.G. & Quink, T.F. 1970. Ecology of eastern white pines seed caches made by small forest mammals. Ecology 51: 271278.CrossRefGoogle Scholar
Abella, S.R. & Covington, W.W. 2006a. Forest ecosystems of an Arizona Pinus ponderosa landscape: multifactor classification and implications for ecological restoration. Journal of Biogeography 33: 13681383.CrossRefGoogle Scholar
Abella, S.R. & Covington, W.W. 2006b. Vegetation–environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA. Plant Ecology 185: 255268.CrossRefGoogle Scholar
Adams, H.D. & Kolb, T.E. 2005. Tree growth response to drought and temperature in a mountain landscape in northern Arizona, USA. Journal of Biogeography 32(9): 16291640.CrossRefGoogle Scholar
Adriaensen, K., Vralstad, T., Noben, J.P., Vangronsveld, J. & Colpaert, J.V. 2005. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applications in Environmental Microbiology 71: 72797284.CrossRefGoogle ScholarPubMed
Adriaensen, K., Vangronsveld, J., Colpaert, J.V. 2006. Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553558.CrossRefGoogle ScholarPubMed
Ahonen-Jonnarth, U. & Finlay, R.D. 2001. Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil 236: 129138.CrossRefGoogle Scholar
Akkiraz, M.S., Akgün, F., Örçen, S., Bruch, A. & Mosbrugger, V. 2006. Stratigraphic and palaeoenvironmental significance of Bartonian–Priabonian (Middle–Late Eocene) microfossils from the Başçeşme Formation, Denizli Province, Western Anatolia. Turkish Journal of Earth Sciences: 15(2): 155180.Google Scholar
Ali, A.A., Carcaillet, C., Talon, B. Roiron, P. & Terral, J.F. 2005. Pinus cembra L. (arolla pine), a common tree in the inner French Alps since the early Holocene and above the present tree line: a synthesis based on charcoal data from soils and travertines. Journal of Biogeography 32: 16591669.CrossRefGoogle Scholar
Almeida-Lenero, L., Giménez de Azcárate, J., Cleef, A.M. & Gonzales Trapaga, A. 2004. Las comunidades vegetales del zacatonal alpino de los Volcanes Popocatépetl y Nevado de Toluca, Región Central de México. Phytocoenologia 34(1): 91132.Google Scholar
Almeida-Leñero, L., Hooghiemstra, H., Cleef, A.M. & van Geel, B. 2005. Holocene climatic and environmental change from pollen records of lakes Zempoala and Quila, central Mexican highlands. Review of Palaeobotany and Palynology 136(1–2): 6392.CrossRefGoogle Scholar
Alvin, K.L. 1953. Three abietaceous cones from the Wealden of Belgium. Royal Belgian Institute of Natural Sciences 125: 142.Google Scholar
Alvin, K.L. 1957. On the two cones Pseudoaraucaria heeri (Coemans) nov. comb. and Pityostrobus villerotensis nov. sp from the Wealden of Belgium. Royal Belgian Institute of Natural Sciences 135: 127.Google Scholar
Alvin, K.L. 1960. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Royal Belgian Institute of Natural Sciences 146: 139.Google Scholar
Alvin, K.L. 1988. On a new specimen of Pseudoaraucaria major Fliche (Pinaceae) from the Cretaceous of the Isle of Wight. Botanical Journal of the Linnean Society 97: 159170.CrossRefGoogle Scholar
Amir, H. & Pineau, R. 1998. Effects of metals on the germination and growth of fungal isolates from New Caledonian ultramafic soils. Soil Biology and Biochemistry 30: 20432054.CrossRefGoogle Scholar
Anenkhonov, O.A. & Chytrý, M. 1998. Syntaxonomy of vegetation of the Svyatoi Nos peninsula, Lake Baikal 2. Forests and krummholz in comparison with other regions of northern Buryatia. Folia Geobotanica 33: 3175.CrossRefGoogle Scholar
Argant, A. 2004. Les Carnivores du gisement Pliocène final de Saint-Vallier (Drôme, France). Geobios 37: S133S182.CrossRefGoogle Scholar
Armitage, F.B. & Burley, J. 1980. Pinus keysia. Tropical Forestry Papers 9: 130.Google Scholar
Arno, S.F. & Sneck, K.M. 1977. A Method for Determining Fire History in Coniferous Forests of the Mountain West. Washington, DC: USDA.Google Scholar
Arnold, M.L., 1997. Natural Hybridization and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Axelrod, A.I. 1976. History of the conifer forests, California and Nevada. University of California Publications in Botany 70: 160.Google Scholar
Axelrod, A.I. 1979. Age and origin of Sonoran Desert vegetation. Californian Academy of Sciences Occasional Papers 132.Google Scholar
Axelrod, D.I. 1981. Holocene climatic changes in relation to vegetation disjunction and speciation. American Naturalist 117: 847870.CrossRefGoogle Scholar
Axelrod, D.I. 1985. Miocene floras from the Middlegate Basin, west-central Nevada. University of California Publications in Geological Sciences 129: 1279.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annales of the Missouri Botanic Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1988. Paleoecology of the late Pleistocene Monterey pine at Laguna Niguel, southern California. Botanical Gazette 149: 458464.CrossRefGoogle Scholar
Axelrod, D.I. 1998a. The Eocene Thunder Mountain flora of central Idaho. University of California Publications in Geological Sciences 142: 161.Google Scholar
Axelrod, D.I. 1998b. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences 143: 1160.Google Scholar
Axelrod, D.I. & Cota, J. 1993. A further contribution to closed-cone pine (Oocarpae) history. American Journal of Botany 80: 743751.Google Scholar
Axelrod, D.I. & Demere, T.A. 1984. A Pliocene flora from Chula Vista, San Diego County, California. Transactions of the San Diego Society of Natural History 20: 277300.Google Scholar
Axelrod, D.I. & Govean, F. 1996. An early Pleistocene closed-cone pine forest at Costa Mesa, southern California. International Journal of Plant Sciences 157: 323329.CrossRefGoogle Scholar
Axelrod, D.I. & Hill, T.G. 1988. Pinus × critchfieldii, a late Pleistocene hybrid pine from coastal Southern California. American Journal of Botany 75(4): 558569.CrossRefGoogle Scholar
Baar, J., Horton, T.R., Kretner, A.M. & Bruns, T.D. 1999. Mycorrhizal colonisation of Pinus muricata from resistant propagules after stand-replacing wildfire. New Phytologist 143: 409418.CrossRefGoogle Scholar
Baker, R.G. 1990. Late Quaternary history of whitebark pine in the Rocky Mountains. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Bakker, M.R., Augusto, L. & Achat, D.L. 2006. Fine root distribution of trees and understorey in mature stands of maritime pine (Pinus pinasters) on dry and humid sites. Plant and Soil 286: 3751.CrossRefGoogle Scholar
Banks, H.P., Ortiz-Sotmayor, A. & Hartmann, C.M. 1981. Pinus escalantensis sp. nov. a new permineralized cone from the Oligocene of British Columbia. Botanical Gazette 142: 286293.CrossRefGoogle Scholar
Barbero, M., Loisel, R., Quezal, P., Richardson, D.M. & Romane, F. 1998. Pines of the Mediterranean Basin. Pp 153170 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Barden, L.S. 1988. Drought and survival in a self-perpetuating Pinus pungens population: equilibrium or nonequilibrium ? American Midland Naturalist 119: 253257.CrossRefGoogle Scholar
Barnes, R.D. & Styles, B.T. 1983. The closed-cone pines of Mexico and Central America. Commonwealth Forestry Review 62: 8184.Google Scholar
Barnola, L.F., Cedeno, A., & Hasegawa, M. 1997. Intraindividual variations of volatile terpene contents in Pinus caribaea needles and its possible relationship to Atta laevigata herbivory. Biochemical Systematics and Ecology 25: 707716.CrossRefGoogle Scholar
Barton, A.M. & Wallenstein, M.D. 1997. Effects of invasion of Pinus virginiana on soil properties in serpentine barrens in southeastern Pennsylvania. Journal of the Torrey Botanical Society 124: 297305.CrossRefGoogle Scholar
Basinger, J.F. & Rothwell, G.W. 1977. Anatomically preserved plants from the middle Eocene (Allenby Formation) of British Columbia. Canadian Journal of Botany 55(14): 19841990.CrossRefGoogle Scholar
Beaulieu, J.L.D. & Reille, M. 1984. A long upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13(2): 111132.CrossRefGoogle Scholar
Bendel, M., Kienast, F. & Rigling, D. 2006. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Mycological Research 110: 705712.CrossRefGoogle Scholar
Bennett, K.D. 1984. The post-glacial history of Pinus sylvestris in the British Isles. Quaternary Science Reviews 3: 133155.CrossRefGoogle Scholar
Bergmeier, E. 2002. Plant communities and habitat differentiation in the Mediterranean coniferous woodlands of Mt. Parnon (Greece). Folia Geobotanica 37: 309331.CrossRefGoogle Scholar
Berthelin, J., Leyval, C., Laheurte, R. & Degiudici, J. 1991. Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals. Pp 187200 in Atkinson, D. (ed.), Plant Root Growth: An Ecological Perspective. Oxford: Blackwell Scientific.Google Scholar
Betancourt, J.L., Van Devender, T.R. & Martin, P.S. 1990. Packrat Middens: The Last 40,000 Years of Biotic Change. Tucson, AZ: University of Arizona Press.Google Scholar
Betancourt, J.L., Schuster, W.S., Mitton, J.B. & Anderson, R.S. 1991. Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72: 16851697.CrossRefGoogle Scholar
Betancourt, J.L., Rylander, K.A., Peñalba, C. & McVickar, J.L. 2001. Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 165(1–2): 7195.CrossRefGoogle Scholar
Birks, H.J.B. 1973. Past and Present Vegetation of the Isle of Skye: A Palaeoecological Study. Cambridge: Cambridge University Press.Google Scholar
Birks, H.J.B. 1989. Holocene isochrone maps and patterns of tree-spreading in the British Isles. Journal of Biogeography 16(6): 503540.CrossRefGoogle Scholar
Birks, H., Larsen, E. & Birks, H.J.B. 2005. Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). Journal of Biogeography 32(8): 14611471.CrossRefGoogle Scholar
Bjørndalen, J.E. 1980. Kalktallskogar i Skandina -vien – ett förslag till klassifi cering. (Calcareous pine forests in Scandinavia – a proposal to classification). Svensk Botanisk Tidskrift 74: 103122.Google Scholar
Blaudez, D., Jacob, C., Turnau, K., et al. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research 104: 13661371.CrossRefGoogle Scholar
Bo, S., Siegert, M.J., Mud, S. et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic ice sheet. Nature 459: 690693.CrossRefGoogle ScholarPubMed
Bochnak, A., Brud, S., Gawlik, A. et al. 2004. Unique geological, palaeobotanical and archaeological site in Witów near Brzesko Nowe (Southern Poland). Polish Geological Institute Special Papers 13: 125–130.Google Scholar
Bogunic, F., Muratovic, E. & Siljak-Yakoviev, S. 2006. Chromosomal differentiation between Pinus heldreichii and Pinus nigra. Annals of Forestry Science 63: 267274.CrossRefGoogle Scholar
Bogunic, F., Muratovic, E., Ballian, D., Siljak-Yakoviev, S. & Brown, S. 2007. Genome size stability among five subspecies of Pinus nigra Arnold s.l. Environmental and Experimental Botany 59: 354360.CrossRefGoogle Scholar
Booth, M.G. 2004. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecology Letters 7(7): 538546.CrossRefGoogle Scholar
Boratynska, K. & Boratynski, A. 2007. Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora: Morphology–Distribution–Functional Ecology of Plants 202: 555569.CrossRefGoogle Scholar
Boratynska, K., Marcysiak, K. & Boratynski, A. 2005. Pinus mugo (Pinaceae) in the Abruzzi Mountains: high morphological variation in isolated populations. Botanical Journal of the Linnean Society 147: 309316.CrossRefGoogle Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21(1–2): 115.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E. & Lozhkin, A.V. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32(5): 833848.CrossRefGoogle Scholar
Bugnicourt, D., Claracq, P., Duperon, J. et al. 1988. A lignite deposit at Capvern. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 12: 739757.Google Scholar
Cannon, S.H. & Reneau, S., 2000. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico. Earth Surface Processes and Landforms 25: 11031121.3.0.CO;2-H>CrossRefGoogle Scholar
Chiang, T.Y. & Schaal, B.A. 2006 .Phylogeography of plants in Taiwan and the Ryukyu archipelago. Taxon 55: 3141.CrossRefGoogle Scholar
Christensen, K.M. & Whitham, T.G. 1991. Indirect herbivore mediation of avian seed dispersal in pinyon pine. Ecology 72: 534542.CrossRefGoogle Scholar
Christensen, K.M. & Whitham, T.G. 1993. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 74: 22702278.CrossRefGoogle Scholar
Climent, J., Tapias, R., Pardos, J.A. & Gil, L. 2004. Fire adaptations in the Canary Island pine (Pinus canariensis). Plant Ecology 171: 185196.CrossRefGoogle Scholar
Coffey, K., Benkman, C.W. & Milligan, B.G. 1999. The adaptive significance of spines on pine cones. Ecology 80: 12211229.CrossRefGoogle Scholar
Colby, D. & Prowell, D. 2006. Ants (Hymenoptera: Formicidae) in wet longleaf pine savannas in Louisiana. Florida Entomologist 89: 266269.CrossRefGoogle Scholar
Coleman, R.G. & Kruckeberg, A.R.. 1999. Geology and plant life of the Klamath-Siskiyou Mountain region. Natural Areas Journal 19: 320341.Google Scholar
Colgan, W. & Claridge, A.W. 2002. Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Mycological Research 106(3): 314320.CrossRefGoogle Scholar
Collinson, M.E. 1992. The early fossil history of Salicaceae: a brief review. Proceedings of the Royal Society of Edinburgh Section B: Biological Sciences 98: 155167.Google Scholar
Collinson, M.E. & Hooker, J.J. 1987. Vegetational and mammalian faunal changes in the Early Tertiary of southern England. Pp 259304 in Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds.), The Origins of Angiosperms and Their Biological Consequences. Cambridge: Cambridge University Press.Google Scholar
Collinson, M.E., Fowler, K. & Boulter, M.C. 1981. Floristic changes indicate a cooling climate in the Eocene of southern England. Nature 291 (5813): 315317.CrossRefGoogle Scholar
Colpaert, J.V., Muller, L.A.H., Lambaerts, M., Adriaensen, K., & Vangronsveld, J. 2004. Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist 162: 549559.CrossRefGoogle Scholar
Conway, B.E., McCullough, D.G. & Leefers, L.A. 1999. Long term effects of jack pine budworm outbreaks on the growth of jack pine trees in Michigan. Canadian Journal of Forest Research 29: 15101517.CrossRefGoogle Scholar
Crane, P.R., Friis, E.M. & Pedersen, K.R. 1995. The origin and early diversification of angiosperms. Nature 374: 2730.CrossRefGoogle Scholar
Creber, G.T. 1956. A new species of abietaceous cone from the Lower Greensand of the Isle of Wight. Annals of Botany. NS 20: 375383.CrossRefGoogle Scholar
Creber, G.T. 1960. On Pityostrobus leckenbyi (Carruthers) Seward and Pityostrobus oblongus (Lindley & Hutton) Seward, fossil abietaceous cones from the Cretaceous. Journal of the Linnean Society of Botany 56: 421429.CrossRefGoogle Scholar
Creber, G.T. 1967. Notes on some petrified cones of the Pinaceae from the Cretaceous. Proceedings of the Linnean Society of London 178: 147152.CrossRefGoogle Scholar
Critchfield, W.B. 1967. Crossability and relationships of the closed-cone pines. Silvae Genetica 16: 89129.Google Scholar
Critchfield, W.B. 1975. Interspecific hybridisation in Pinus: a summary review. Pp 99105 in Fowler, D.P. & Yeatman, C.W. (eds.), Symposium on Interspecific and Interprovenance Hybridisation in Forest Trees. Fredericton, New Brunswick: Canadian Tree Improvement Association.Google Scholar
Critchfield, W.B. 1984. Impact of the Pleistocene on the genetic structure of North American conifers. Pp 70118 in Laner, R.M. (ed.). Proceedings of the Eighth North American Forest Biology Workshop. Logan, UT: Utah State University.Google Scholar
Critchfield, W.B. 1985. The late Quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research 15: 749772.CrossRefGoogle Scholar
Critchfield, W.B. 1986. Hybridisation and classification of the white pines (Pinus section Strobus). Taxon 35: 647656.CrossRefGoogle Scholar
Critchfield, W.B. & Little, E.L. Jr. 1966. Geographic distribution of the pines of the world. US Department of Agriculture Forest Service Publication 991.CrossRefGoogle Scholar
Cuenca, A., Escalante, A.E. & Pinero, D. 2003. Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Molecular Ecology 12: 20872097.CrossRefGoogle Scholar
Currey, D.R. 1968. An ancient bristlecone pine stand. Ecology 44: 564566.Google Scholar
D’Amico, M.E., Freppaz, M., Leonelli, G., Bonifacio, E. & Zanini, E. 2015. Early stages of soil development on serpentinite: the proglacial area of the Verra Grande Glacier, Western Italian Alps. Journal of Soils and Sediments 15: 12921310.CrossRefGoogle Scholar
Delevoryas, T. & Hope, R.C. 1987. Further observations on the late Triassic conifers Compsostrobus neotericus and Voltzia andrewsii. Review of Palaeobotany and Palynology 51(1–3): 5964.CrossRefGoogle Scholar
Delgado, P., Pinero, D., Chaos, A., Perez-Nasser, N. & Alvarez-Buylla, E.R. 1999. High population differentiation and genetic variation in the endangered Mexican pine Pinus rzedowskii (Pinaceae). American Journal of Botany 86: 669676.CrossRefGoogle ScholarPubMed
Demske, D., Mohr, B. & Oberhänsli, H. 2002. Late Pliocene vegetation and climate of the Lake Baikal region, southern East Siberia, reconstructed from palynological data. Palaeogeography, Palaeoclimatology, Palaeoecology 184(1–2): 107129.CrossRefGoogle Scholar
Depape, G. 1922. Recherches sur la flora pliocene de la Vallee du Rhone. Annales Sciences Naturelles Botaniques 10e ser, 4: 73226.Google Scholar
Depape, G. 1928. Le monde des plantes a l’apparition de l’homme en Europe occidentale. Anales Societe Sciences Bruxelles 48: 39101.Google Scholar
Diaz, S., Mercado, C. & Alvarez-Cardenas, S. 2000. Structure and population dynamics of Pinus lagunae M.-F.Passini. Forest Ecology and Management 134: 249256.CrossRefGoogle Scholar
Dixon, J.L. & von Blanckenburg, F. 2012. Soils as pacemakers and limiters of global silicate weathering. Comptes Rendus Geoscience 344(11–12): 597609.CrossRefGoogle Scholar
Dixon, J.L., Hartshorn, A.S., Heimsath, A.M. et al. 2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters 323–324: 4049.CrossRefGoogle Scholar
Dixon, R.K. & Buschena, C.A. 1988. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265271.CrossRefGoogle Scholar
Doležal, Z. & Romig, T. 2004. Xylota caeruleiventris Zetterstedt (Diptera, Syrphidae) is present in central Europe. Volucella 7: 201203.Google Scholar
Doležal, J., Ishii, H., Vetrova, V.P., Sumida, A. & Hara, T. 2004. Tree growth and competition in a Betula platyphyllaLarix cajanderi post-fire forest in central Kamchatka. Annals of Botany, 94(3), 333343.CrossRefGoogle Scholar
Donahue, J.K. & Mar, L.C. 1995. Observations on Pinus maximartinezii Rzed. Madrono 42: 1925.Google Scholar
Donnelly, D.P., Boddy, L. & Leake, J.R. 2004. Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14: 3745.CrossRefGoogle ScholarPubMed
Douglas, R.B., Parker, V.T. & Cullings, K.W. 2005. Below-ground ectomycorhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. Forest Ecology and Management 208: 303317.CrossRefGoogle Scholar
Dumitrashko, N.V. & Kamanin, L.G. 1946. Paleogeography of Central Siberia and the Baikal Region. Transactions of the Institute of Geography Academy of Sciences USSR 37: 132151.Google Scholar
Dunabeitia, M.K., Hormilla, S., Garcia-Plazaola, J.I., et al. 2004. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D.Don. Mycorrhiza 14: 1118.CrossRefGoogle Scholar
Durall, D.M., Jones, M.D., Wright, E.F., Kroeger, P. & Coates, K.D. 1999. Species richness of ectomycorrhizal fungi in cutblocks of different sizes in the interior cedar–hemlock forests of northwestern British Columbia: sporocarps and ectomycorrhizae. Canadian Journal of Forest Research 29: 13221332.CrossRefGoogle Scholar
Dvorak, W.S., Jordon, A.P., Hodge, G.P. & Romero, J.L. 2000. Assessing evolutionary relationships of pines in the Oocarpae and Australes subsections using RAPD markers. New Forests 20: 163192.CrossRefGoogle Scholar
Eckert, A.J. 2006. Influence of substrate type and microsite availability on the persistence of foxtail pine (Pinus balfouriana, Pinaceae) in the Klamath Mountains, California. American Journal of Botany 93: 16151624.CrossRefGoogle ScholarPubMed
Eckert, C.G., Samis, K.E. & Lougheed, S.C., 2008. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology 17: 11701188.CrossRefGoogle Scholar
Edwards, M.A. & Hamrick, J.L. 1995. Genetic variation in shortleaf pine, Pinus echinata Mill. (Pinaceae). Forest Genetics 2: 2128.Google Scholar
Edwards-Burke, M.A., Hamrick, J.L. & Price, R.A. 1997. Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). American Journal of Botany 84: 879886.CrossRefGoogle Scholar
Epperson, B.K., Telewski, F.W., Plovanich-Jones, A.E. & Grimes, J.E. 2001. Clinal differentiation and putative hybridization in a contact zone of Pinus ponderosa and P. arizonica (Pinaceae). American Journal of Botany 88: 10521057.CrossRefGoogle Scholar
Epperson, B.K., Chung, M.G., & Telewski, F.K. 2003. Spatial pattern of allozyme variation in a contact zone of Pinus ponderosa and P. arizonica (Pinaceae). American Journal of Botany 90: 2531.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2006. Pinus baileyi (section Pinus, Pinaceae) from the Paleogene of Idaho, USA. American Journal of Botany 93: 197205.CrossRefGoogle Scholar
Ewers, F.W. 1982. Developmental and cytological evidence for mode of origin of secondary phloem in needle leaves of Pinus longaeva (bristlecone pine) and P. flexilis. Botanische Jahrbücher fur Systematik 103: 5988.Google Scholar
Ewers, F.W. & Schmid, R. 1981. Longevity of needle fascicles in Pinus longaeva (bristlecone pine) and other North American pines. Oecologia 51: 107115.CrossRefGoogle Scholar
Fady-Welterlen, B. 2005. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54: 905.CrossRefGoogle Scholar
Falder, A.B., Rothwell, G.W. Mapes, G., et al. 1998. Pityostrobus milleri sp. nov., a pinaceous cone from the Lower Cretaceous (Aptian) of southwestern Russia. Review of Palaeobotany and Palynology 103(3–4): 253261.CrossRefGoogle Scholar
Farjon, A. 1984. Pines: Drawings and Descriptions of the Genus Pinus. Leiden: E.J. Brill.CrossRefGoogle Scholar
Farjon, A. & Styles, B.T. 1997. Flora Neotropica Monograph 75: Pinus (Pinaceae). New York: Organisation for Flora Neotropical and New York Botanical Garden.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fernandez-Palacios, J.M., Otto, R., Delgado, J.D., et al. 2011. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38: 226246.CrossRefGoogle Scholar
Feurdean, A. & Bennike, O. 2004. Late Quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. Journal of Quaternary Science 19(8): 809827.CrossRefGoogle Scholar
Figueiral, I. & Carcaillet, C. 2005. A review of Late Pleistocene and Holocene biogeography of highland Mediterranean pines (Pinus type sylvestris) in Portugal, based on wood charcoal. Quaternary Science Reviews 24: 24662476.CrossRefGoogle Scholar
Flint, R.F. & Dorsey, H.G., Jr. 1945. Iowan and Tazewell drifts and the North American ice-sheet. American Journal of Science: 243.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Follieri, M., Magri, D. & Sadori, L. 1988. A 250 000-years pollen record from Valle di Castiglione (Roma). Pollen et Spores 30: 329356.Google Scholar
Forrest, G.I. 1980. Genotypic variation among native Scots pine populations in Scotland based on monoterpene analysis. Forestry 53: 101128.CrossRefGoogle Scholar
Forrest, G.I. 1982. Relationships of some European Scots pine populations to native Scottish woodlands based on monoterpene analysis. Forestry 55: 1937.CrossRefGoogle Scholar
French, H.M., Demitroff, M. & Forman, S.L. 2003. Evidence for late‐Pleistocene permafrost in the New Jersey Pine Barrens (latitude 39°N), eastern USA. Permafrost and Periglacial Processes 14(3): 259274.CrossRefGoogle Scholar
Fuentes, D., Disante, K.B., Valdecantos, A., Cortina, J. & Ramon-Vallejo, V. 2007. Responses of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution 145: 316323.CrossRefGoogle ScholarPubMed
Fuji, R. & Sakai, H. 2001. Paleoclimatic changes during the last 2.5 myr recorded in the Kathmandu Basin, Central Nepal Himalayas. Journal of Asian Earth Sciences 20: 255266.CrossRefGoogle Scholar
Fujiki, T. & Yasuda, Y. 2004. Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quaternary International 123: 6369.CrossRefGoogle Scholar
Gabet, E. & Bookter, A. 2008. A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA. Geomorphology 96: 298309.CrossRefGoogle Scholar
Gabet, E.J. & Mudd, S.M. 2010. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. Journal of Geophysical Research: Earth Surface 115(F4).CrossRefGoogle Scholar
Gadd, G.M. 1993. Interactions of fungi with toxic metals. New Phytologist 124(1): 2560.CrossRefGoogle Scholar
Gandolfo, M.A., Nixon, K.C. & Crepet, W.L. 2001. Turonian Pinaceae of the Raritan Formation, New Jersey. Plant Systematics and Evolution 226: 187203.CrossRefGoogle Scholar
Garrett, P.W. 1979. Species hybridization in the genus Pinus. Research paper NE-436. US Department of Agriculture, Forest Service.Google Scholar
Gascho-Landis, A. & Bailey, J.D. 2005. Reconstruction of age structure and spatial arrangement of pinon–juniper woodlands and savannas of Anderson Mesa, northern Arizona. Forest Ecology and Management 204: 221236.CrossRefGoogle Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gehring, C.A., Theimer, T.C., Whitham, T.G. & Keim, P. 1998. Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79: 15621572.CrossRefGoogle Scholar
Gemýcý, Y., Akyol, E. & Akgün, F. 1993. Macro and micro fossil flora of the Șahinali (Aydýn) Neogene Basin. Turkish Journal of Botany 17: 91106.Google Scholar
Genny, D.R., Anderson, I.C. & Alexander, I.J. 2006. Fine-scale distribution of pine ectomycorrhizas and their extrametrical mycelium. New Phytologist 170: 381390.CrossRefGoogle Scholar
Gerasimov, I.P. & Markov, K.K. 1939. Lednikovyj period na territorii SSSR. (The Ice Age in the Territory of the USSR.) Moscow: USSR Academy of Sciences.Google Scholar
Gerloff, L.M., Hills, L.V. & Osborn, G.D. 1995. Post-glacial vegetation history of the Mission Mountains, Montana. Journal of Paleolimnology 14: 269279.CrossRefGoogle Scholar
Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. 2005. Phylogeny and classification of Pinus. Taxon 54: 2942.CrossRefGoogle Scholar
Gerson, E.A. & Kelsey, R.G. 2004. Piperidine alkaloids in North American Pinus taxa: implications for chemosystematics. Biochemical Systematics and Ecology 32: 6374.CrossRefGoogle Scholar
Gervais, B.R., MacDonald, G.M., Snyder, J.A. & Kremenetski, C.V. 2002. Pinus sylvestris treeline development and movement on the Kola Peninsula of Russia: pollen and stomate evidence. Journal of Ecology 90: 627638.CrossRefGoogle Scholar
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd ed. New York: W.H. Freeman.Google Scholar
Gil-Pelegrin, E. & Perez, L.V. 1988. Structure of mountain pine (Pinus uncinata Ramond) population at its upper limit in Central Pyrenees. Pirineos 131: 2542.Google Scholar
Glen-Lewin, D.C. and van der Maarel, E. 1992. Patterns and processes in vegetation dynamics. In Glen-Lewin, D. C., Peet, R. K. & Vehlen, T. T. (eds.), Plant Succession Theory and Prediction. London: Chapman & Hall.Google Scholar
Gonzalez-Prieto, S.J. & Villar, M.C. 2003. Soil organic N dynamics and stand quality in Pinus radiata pinewoods of the temperate humid region. Soil Biology and Biochemistry 35: 13951404.CrossRefGoogle Scholar
Gorchakovslii, P.L. & Lalayan, N.T. 1982. Pine forests and sparse arid-petrophytic stands in central Kazakhstan, their characteristics and anthropogenic dynamics (Pinus sylvestris). Soviet Journal of Ecology 13: 7989.Google Scholar
Govindaraju, D., Lewis, P. & Cullis, C. 1992. Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Systematics and Evolution 179: 141153.CrossRefGoogle Scholar
Graham, A. 1973. History of the arborescent temperate element in the northern Latin American biota. Pp 301314 in Graham, A. (ed.), Vegetation and Vegetational History of Northern Latin America. Amsterdam: Elsevier.Google Scholar
Graham, A. 1989a. Late Tertiary paleoaltitudes and vegetational zonation in Mexico and Central America. Acta Botanica Neerlandica 38: 417424.CrossRefGoogle Scholar
Graham, A. 1989b. Studies in neotropical paleobotany. VII. The lower Miocene communities of Panama—the La Boca Formation. Annals of the Missouri Botanical Garden 76: 5066.CrossRefGoogle Scholar
Graham, A. 1990. A late Tertiary microfossil flora from the Republic of Haiti. American Journal of Botany 77: 911926.CrossRefGoogle Scholar
Graham, A. 1992. Utilization of the Isthmian land bridge during the Cenozoic: paleobotanical evidence for timing, and the selective influence of altitudes and climate. Review of Palaeobotany and Palynology 72: 119128.CrossRefGoogle Scholar
Graham, A. 1993. History of the vegetation: Cretaceous (Maastrichtian)–Tertiary. Flora of North America 1: 5770.Google Scholar
Graham, A. 1998. Studies in neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio-Pliocene Padre Miguel Group and the Pliocene Herreria Formation. American Journal of Botany 85: 14091425.CrossRefGoogle Scholar
Graham, A. 1999. The Tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86(1): 3238.CrossRefGoogle Scholar
Graham, R.C., Rossi, A.M. & Hubbert, K.R. 2010. Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems. GSA Today 20(2): 49.CrossRefGoogle Scholar
Grishin, S.Y., Krestov, P. & Okitsu, S. 1996. The subalpine vegetation of Mt. Vysokaya, central Sikhote-Alin. Vegetatio, 127, 155172.CrossRefGoogle Scholar
Grotkopp, E., Rejmanek, M., Sanderson, M.J. & Rost, T.L. 2004. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 17051729.Google ScholarPubMed
Guilderson, T.P., Fairbanks, R.G. & Rubenstone, J.L. 1994. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263: 663665.CrossRefGoogle ScholarPubMed
Gworek, J.R., Vander Wall, S.B. & Brussard, P.F. 2007. Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. Forest Ecology and Management 239: 5768.CrossRefGoogle Scholar
Hahn, D.A. & Tschinkel, W.R. 1997. Settlement and distribution of colony-founding queens of the arboreal ant, Crematogaster ashmeadi, in a longleaf pine forest. Insectes Sociaux 44: 323336.CrossRefGoogle Scholar
Hall, S.E., Dvorak, W.S., Johnston, J.S., Price, H.J. & Williams, C.G. 2000. Flow cytometry analysis of DNA content for tropical and temperate New World pines. Annals of Botany 86: 10811086.CrossRefGoogle Scholar
Hallam, A. 1984 . Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 47: 95223.CrossRefGoogle Scholar
Hansen-Bristow, K., Montagne, C. & Schmid, G. 1990. Geology, geomorphology and soils within whitebark pine ecosystems. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Harrington, M.G. 1987. Characteristics of 1-year old natural pinyon seedlings. Research Note RM-477. US Department of Agriculture, Forest Service.Google Scholar
Harrison, R.G. 1993. Hybrid Zones and the Evolutionary Process. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hoeksema, J.D. & Thompson, J.D. 2007. Geographic structure in a widespread plant-mycorrhizal interaction: pines and false truffles. Journal of Evolutionary Biology 20: 11481163.CrossRefGoogle Scholar
Högberg, P. & Johannisson, C. 1993. 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157: 147150.CrossRefGoogle Scholar
Horton, T.R. & Bruns, T.D. 1998. Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist 139: 331339.CrossRefGoogle Scholar
Hubbert, K.R., Graham, R.C. & Anderson, M.A. 2001. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal 65(4): 12551262.CrossRefGoogle Scholar
Huntley, B., Birks, H.J.B. 1983. An Atlas of Past and Present Pollen Maps for Europe: 0–13000 Years Ago. Cambridge: Cambridge University Press.Google Scholar
Hurst, M.D., Ellis, M.A., Royse, K.R., Lee, K.A. & Freeborough, K. 2013. Controls on the magnitude–frequency scaling of an inventory of secular landslides. Earth Surface Dynamics 1(1): 6778.CrossRefGoogle Scholar
Hutchins, H.E. & Lanner, R.M. 1982. The central role of Clark’s nutcracker in the dispersal and establishment of whitebark pine. Oecologia 55: 192201.CrossRefGoogle ScholarPubMed
Hyvarinen, H. 1975. Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142: 123.Google Scholar
Hyvarinen, H. 1976. Flandrian pollen deposition rates and tree-line history in northernmost Fennoscandia. Boreas 5: 163175.CrossRefGoogle Scholar
Ickert-Bond, S.M. 2000. Cuticle micromorphology of Pinus krempfii Lecomte (Pinaceae) and additional species from southeast Asia. International Journal of Plant Sciences 161: 301317.CrossRefGoogle ScholarPubMed
Inbar, M., Wittenberg, L. & Tamir, M. 1997. Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire 7(4): 285294.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1987. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan: Part 3. Southern part of Kusu Basin (Lower and Middle Pleistocene). Journal of the Geological Society of Japan 93: 469489.Google Scholar
Izhaki, I., Levey, D.J. & Silva, W.R. 2003. Effects of prescribed fire on an ant community in Florida pine savanna. Ecological Entomology 28: 439448.CrossRefGoogle Scholar
Jackson, S.T., Betancourt, J.L., Lyford, M.E., Gray, S.T. & Rylander, K.A. 2005. A 40,000‐year woodrat‐midden record of vegetational and biogeographical dynamics in north‐eastern Utah, USA. Journal of Biogeography 32(6): 10851106.CrossRefGoogle Scholar
Jain, T.B., Graham, R.T. & Morgan, P. 2004. Western white pine growth relative to forest openings. Canadian Journal of Forest Research 34: 21872198.CrossRefGoogle Scholar
Jeffrey, E.C. 1908. On the structure of the leaf in Cretaceous pines. Annals of Botany 23: 207220.CrossRefGoogle Scholar
Jeffrey, E.C. 1910. A new pre-Pinus from Martha’s Vineyard. Proceedings of the Boston Society of Natural History 34: 333338.Google Scholar
Jonsson, L.M., Nilsson, M.-C., Wardle, D. & Zackrisson, O. 2001. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353364.CrossRefGoogle Scholar
Jorgensen, S., Hamrick, J.L. & Wells, P.V. 2002. Regional patterns of genetic diversity in Pinuis flexilis (Pinaceae) reveal complex species history. American Journal of Botany 89: 792800.CrossRefGoogle ScholarPubMed
Jumponen, A., Mattson, K.G. & Trappe, J.M. 1998. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7: 261265.CrossRefGoogle Scholar
Jurko, A. & Kontriš, J. 1984. Euhemerobe Kalk-Kieferngesellschaften der Kleinen Karpaten. Folia geobotanica & phytotaxonomica 19: 157167.CrossRefGoogle Scholar
Kajimoto, T. 2002. Factors affecting seed recruitment and survivorship of the Japanese subalpine stone pine, Pinus pumila, after seed dispersal by nutcrackers. Ecological Research 17: 481491.CrossRefGoogle Scholar
Kelkar, V.M., Geilis, B.W., Becker, D.R., Overby, S.T. & Neary, D.G. 2006. How to recover more value from small pine trees: essential oils and resins. Biomass and Bioenergy 30: 316320.CrossRefGoogle Scholar
Kinloch, B.B., Westfall, R.D. & Forrest, G.I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytologist 104: 703729.CrossRefGoogle Scholar
Klaus, W. 1989. Mediterranean pines and their history. Plant Systematics and Evolution 162: 133163.CrossRefGoogle Scholar
Klemmedson, J.O. 1995. New Mexican locust and parent material: influence on availability of soil macronutrients. Soil Science Society of America Journal 59(3): 913917.CrossRefGoogle Scholar
Knowlton, F.H. 1901. A fossil nut pine from Idaho. Torreya 1: 113115.Google Scholar
Krám, P., Oulehle, F., Štědrá, V., et al. 2009. Geoecology of a forest watershed underlain by serpentine in central Europe. Northeastern Naturalist 16(sp5): 309328.CrossRefGoogle Scholar
Kremenetski, C.V., Tarasov, P.E. & Cherkinsky, A.E. 1997. Postglacial development of Kazakhstan pine forests. Geographie Physique et Quaternaire 51(3): 391404.CrossRefGoogle Scholar
Kremenetski, C.V., Liu, K.-B. & MacDonald, G.M. 1998. The late Quaternary dynamics of pines in northern Asia. Pp 95106 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Kroh, G.C., White, J.D., Heath, S.K. & Pinder, J.E. 2000. Colonization of a volcanic mudflow by an upper montane coniferous forest at Lassen Volcanic National Park, California. The American Midland Naturalist 143(1): 126140.CrossRefGoogle Scholar
Kruckeberg, A.R. 1969. Plant life on serpentine and other ferromagnesian rocks in northwestern North America. Syesis 2: 15114.Google Scholar
Kruckeberg, A.R. 1985. California Serpentines: Flora, Vegetation, Geology, Soils, and Management Problems. Berkeley, CA: University of California Press.Google Scholar
Kruckeberg, A.R. 2002. Geology and Plant Life. The Effects of Landforms and Rock Types on Plants. Seattle, WA: University of Washington Press.Google Scholar
Krupa, P. & Kozdrój, J. 2007. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris). Water, Air, and Soil Pollution 182: 8390.CrossRefGoogle Scholar
Krupkin, A.B., Liston, A. & Strauss, S.H. 1996. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489498.CrossRefGoogle Scholar
Kutzbach, J.F. & Guetter, P.J., 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. Journal of Atmospheric Science 43: 17261759.2.0.CO;2>CrossRefGoogle Scholar
Kvaček, Z. 2004. Revisions to the Early Oligocene flora of Flörsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews 24(1–2): 105121.CrossRefGoogle Scholar
Lacourse, T., Mathewes, R.W. & Fedje, D.W. 2003. Paleoecology of Late-Glacial terrestrial deposits with in situ conifers from the submerged continental shelf of western Canada. Quaternary Research 60(2): 180188.CrossRefGoogle Scholar
Ladd, P.G., Crosti, R. & Pignatti, S. 2005. Vegetative and seedling regeneration after fire in planted Sardinian pinewood compared with that in other areas of Mediterranean‐type climate. Journal of Biogeography 32(1): 8598.CrossRefGoogle Scholar
Laiho, O. 1990. Mykorritsat ja niiden vaikutus metsään. Silva Fennica 24(1).CrossRefGoogle Scholar
Lan, G., Chen, W. & Lei, R. 2007. Spatial distribution pattern, scale and gap characteristics of Pinus armandii population in Qinling Mountains, China. Frontiers of Forestry in China 2: 5559.CrossRefGoogle Scholar
Langlet, O. 1959. A cline or not a cline: a question of Scots pine. Silvae Genetica 8: 1322.Google Scholar
Lanner, R.M. 1982. Adaptations of whitebark pine for seed dispersal by Clark’s nutcracker. Canadian Journal of Forest Research 12: 391402.CrossRefGoogle Scholar
Lanner, R.M. 1988. Dependence of Great Basin bristlecone pine on Clark’s nutcracker for regeneration at high elevations. Arctic and Alpine Research 20: 358362.CrossRefGoogle Scholar
Lanner, R.M. 1990. Biology, taxonomy, evolution and geography of Stone pines of the world. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Lanner, R.M. & Van Devender, R. 1998. The recent history of pinyon pines in the American Southwest. Pp 171180 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Larson, D.W., Matthes, U., Gerrath, J.A., et al. 2001. Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography 27: 319331.CrossRefGoogle Scholar
Laughlin, D., Bakker, J. & Fulé, P. 2005. Understorey plant community structure in lower montane and subalpine forests, Grand Canyon National Park, USA. Journal of Biogeography 32(12): 20832102.CrossRefGoogle Scholar
Lazarus, B.E., Richards, J.H., Claassen, V.P., O’Dell, R.E. & Ferrell, M.A. 2011. Species specific plant–soil interactions influence plant distribution on serpentine soils. Plant and Soil 342: 327344.CrossRefGoogle Scholar
Ledig, F.T. 1998. Genetic variation in Pinus. Pp 251280 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Ledig, F.T. 1999. Genic diversity, genetic structure, and biogeography of Pinus sabiniana Dougl. Diversity and Distributions 5: 7790.CrossRefGoogle Scholar
Ledig, F.T. & Conkle, M.T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution 37: 7985.CrossRefGoogle Scholar
Ledig, F.T. & Fryer, J.H. 1972. A pocket of variability in Pinus rigida. Evolution 26: 259266.CrossRefGoogle ScholarPubMed
Ledig, F.T., Capa-Arteaga, M.A., Hodgskiss, P.D., et al. 2001. Genetic diversity and the mating system of a rare Mexican pinyon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). American Journal of Botany 88: 19771987.CrossRefGoogle Scholar
Lee, S.-W., Ledig, F.T. & Johnson, D.R. 2002. Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. American Journal of Botany 89: 566577.CrossRefGoogle ScholarPubMed
Lehmkuhl, J.F., Gould, L.E., Cázares, E. & Hosford, D.R. 2004. Truffle abundance and mycophagy by northern flying squirrels in eastern Washington forests. Forest Ecology and Management 200(1–3): 4965.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
Ligon, J.D. 1978. Reproductive interdependence of pinon jays and pinon pines. Ecological Monographs 48: 111126.CrossRefGoogle Scholar
Lindahl, B.D. & Tunlid, A. 2015. Ectomycorrhizal fungi: potential organic matter decomposers, yet not saprotrophs. New Phytologist 205(4): 14431447.CrossRefGoogle Scholar
Lindahl, B.D., Ihrmark, K., Boberg, J., et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173: 611620.CrossRefGoogle Scholar
Liston, A., Robinson, W.A., Pinero, D. & Alvarez-Buylla, E.R. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Molecular Phylogenetics and Evolution 11: 95109.CrossRefGoogle ScholarPubMed
Liston, A., Gernandt, D.S., Vinning, T.F., Campbell, C.S. & Pinero, D. 2003. Molecular phylogeny of Pincaeae and Pinus. Pp 107114 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference, Wye, England. Leuven: International Society for Horticultural Science.Google Scholar
Little, E.L. Jr & Critchfield, W.B. 1969. Subdivisions of the genus Pinus (pines). USDA Misc. Publ. 1144.Google Scholar
Little, E.L. Jr. & Righter, F.I. 1965. Botanical descriptions of forty artificial pine hybrids. Technical bulletin 1345. US Department of Agriculture, Forest Service.Google Scholar
Liu, J. & Ye, P. 1977. Studies on the Quaternary spore-pollen assemblages from Shanghai and Zhejiang with reference to their stratigraphic and paleoclimatic significances. Acta Palaeontologica Sinica 16: 1033.Google Scholar
Liu, K.B. 1988. Quaternary history of the temperate forests of China. Quaternary Science Reviews 7(1): 120.CrossRefGoogle Scholar
Liu, K.B., Sun, S. & Jiang, X. 1992. Environmental change in the Yangtze River delta since 12,000 years BP. Quaternary Research 38(1): 3245.CrossRefGoogle Scholar
López, G.G., Kamiya, K. & Harada, K. 2002. Phylogenetic relationships of Diploxylon pines (subgenus Pinus) based on plastid sequence data. International Journal of Plant Science 163: 737747.CrossRefGoogle Scholar
Lu, C. 2006. Roles of animals in seed dispersal of Pinus: a review. Chinese Journal of Ecology 25: 557562.Google Scholar
Luna-Vega, I., Morrone, J.J., Ayala, O.A. & Organista, D.E. 2001. Biogeographical affinities among Neotropical cloud forests. Plant Systematics and Evolution 228: 229239.CrossRefGoogle Scholar
Maas, J.L. & Stuntz, D.E. 1969. Mycoecology on serpentine soil. Mycologia 61: 11061116.CrossRefGoogle Scholar
MacDonald, G.M. & Cwynar, L.C. 1985. A fossil pollen based reconstruction of the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western interior of Canada. Canadian Journal of Forest Research 15: 10391044.CrossRefGoogle Scholar
MacGintie, H.D. 1969. The Eocene Green River Flora of Northwestern Colorado and Northeastern Utah. Berkley, CA: University of California Press.Google Scholar
Maloney, P.E. & Rizzo, D.M. 2002. Pathogens and insects in a pristine forest ecosystem: the Sierra San Pedro Martir, Baja, Mexico. Canadian Journal of Forest Research 32(3): 448457.CrossRefGoogle Scholar
Marshall, C.J. & Liebherr, J.K. 2000. Cladistic biogeography of the Mexican transition zone. Journal of Biogeography 27(1): 203216.CrossRefGoogle Scholar
Martin-Pinto, P., Vaquerizo, H., Penalver, F., Olaizola, J & Oria de Rueda, J.A. 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifera and Pinus pinaster in Spain. Forest Ecology and Management 225: 269305.CrossRefGoogle Scholar
Masuzawa, T., Mitsuda, H., Tanaka, M., Natori, T. & Watanabe, S. 2005. Alpine plant community on Mt. Apoi, Hokkaido [Japan]: Succession of plant community on the ultrabasic soil. Japanese Journal of Ecology 55: 8589.Google Scholar
Mataix-Solera, J. & Doerr, S.H. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma 118: 7788.CrossRefGoogle Scholar
McCullough, D.G. 2000. A review of factors affecting the population dynamics of jack pine budworm (Choristoneura pinus pinus Freeman). Population Ecology 42: 243256.CrossRefGoogle Scholar
McCune, B. 1988. Ecological diversity in North American pines. American Journal of Botany 75: 353368.CrossRefGoogle Scholar
McKown, A.D., Stockey, R.A. & Schwegert, C.E. 2002. A new species of Pinus subgenus Pinus subsection Contortae from Pliocene sediments of Ch’ijee’s Bluff, Yukon Territory, Canada. International Journal of Plant Sciences 163: 687697.CrossRefGoogle Scholar
McLeod, T.K. & MacDonald, G.M. 1997. Postglacial range expansion and population growth of Picea mariana, Picea glauca and Pinus banksiana in the western interior of Canada. Journal of Biogeography 24: 865881.CrossRefGoogle Scholar
McMaster, G.S. & Zedler, P.H. 1981. Delayed seed dispersal in Pinus torreyana (Torrey Pine). Oecologia 51: 6266.CrossRefGoogle ScholarPubMed
Mead, J.I., Bell, C.J. & Murray, L.K. 1992. Mictomys borealis (northern bog lemming) and the Wisconsin paleoecology of the east-central Great Basin. Quaternary Research 37(2): 229238.CrossRefGoogle Scholar
Meyer, G.A. & Pierce, J.L. 2003. Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective. Forest Ecology and Management 178(1–2): 89104.CrossRefGoogle Scholar
Meyer, M., North, M.P., Gray, A.N. & Zald, H.S.J. 2007. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed‐conifer forest. Plant Soil 294: 113123.CrossRefGoogle Scholar
Mildowski, A.E., Northmore, K.J., Kemp, S.J., et al. 2015. The mineralogy and fabric of ‘Brickearths’ in Kent, UK and their relationship to engineering behaviour. Bulletin of Engineering Geology and Environment 74: 11871211.CrossRefGoogle Scholar
Millar, C.I. 1983. A steep cline in Pinus muricata. Evolution 37: 311319.CrossRefGoogle ScholarPubMed
Millar, C.I. 1993. Impact of the Eocene on the evolution of Pinus L. Annals of the Missouri Botanic Garden 80: 471498.CrossRefGoogle Scholar
Millar, C.I. 1999. Evolution and biogeography of Pinus radiata, with a proposed revision of its Quaternary history. New Zealand Journal of Forestry Science 29: 335365.Google Scholar
Millar, C.I., Strauss, S.H., Cockle, M.T. & Westfall, R.D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Systematic Botany 13: 351370.CrossRefGoogle Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Miller, C.N. Jr. 1969. Pinus avonensis, a new species of petrified cones from the Oligocene of western Montana. American Journal of Botany 56: 972978.CrossRefGoogle Scholar
Miller, C.N. Jr. 1972. Pityostrobus palmeri, a new species of petrified conifer cones from the Late Cretaceous of New Jersey. American Journal of Botany 59: 352358.CrossRefGoogle Scholar
Miller, C.N. Jr. 1973. Silicified cones and vegetative remains of Pinus from the Eocene of British Columbia. Contributions from the Museum of Paleontology University of Michigan 24: 101118.Google Scholar
Miller, C.N. Jr. 1974. Pinus wolfei, a new petrified cone from the Eocene of Washington. American Journal of Botany 61: 772777.CrossRefGoogle Scholar
Miller, C.N. Jr. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. Jr. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Miller, C.N. Jr. 1985. Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
Miller, C.N. Jr. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.). Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. Jr. 1992a. Silicified Pinus remains from the Miocene of Washington. American Journal of Botany 79: 754760.CrossRefGoogle Scholar
Miller, C.N. Jr. 1992b. Structurally preserved cones of Pinus from the Neogene of Idaho and Oregon. International Journal of Plant Sciences 153: 147154.CrossRefGoogle Scholar
Miller, S.P. & Cumming, J.R. 2000. Effects of serpentine soil factors on Virginia pine (Pinus virginiana) seedlings. Tree Physiology 20: 11291135.CrossRefGoogle ScholarPubMed
Minnich, R.A. 1984. Snow drifting and timberline dynamics on Mount San Gorgonio, California, USA. Arctic and Alpine Research 16(4): 395412.CrossRefGoogle Scholar
Mirov, N.T. 1967. The Genus Pinus. New York: Ronald Press Co.Google Scholar
Mirov, N.T. & Hasbrouck, J. 1976. The Story of Pines. Bloomington, IN: Indiana University Press.Google Scholar
Mohr, J.A., Whitlock, C. & Skinner, C.N. 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. The Holocene 10(5): 587601.CrossRefGoogle Scholar
Molina, R. & Trappe, J.M.. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Science 28: 423458.Google Scholar
Moody, J.A. & Martin, D.A. 2001. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 26(10): 10491070.CrossRefGoogle Scholar
Mooney, K.A. & Tillberg, C.V. 2005. Temporal and spatial variation to ant omnivory in pine forests. Ecology 86: 12251235.CrossRefGoogle Scholar
Moreau, R.E. 1955. Ecological changes in the Palaearctic Region since the Pliocene. Proceedings of the Zoological Society of London 125: 253–295.CrossRefGoogle Scholar
Motzkin, G., Orwig, D.A. & Foster, D.R. 2002. Vegetation and disturbance history of a rare dwarf pitch pine community in western New England, USA. Journal of Biogeography 29: 14551467.CrossRefGoogle Scholar
Mueller, R.C., Scudder, C.M., Porter, M.E., et al. 2005. Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology 93: 10851093.CrossRefGoogle Scholar
Nakai, I., Mitsueda, K., Oochata, S. 1995. Affinity relationships based on the inter-specific hybridization in the genus Pinus and natures on the growth of the hybrids. Bulletin Tokyo University Forestry 67: 118.Google Scholar
Nealis, V.G., Lomic, P.V. & Meating, J.H. 1997. Forecasting defoliation by the jack pine budworm. Canadian Journal of Forest Research 27: 11541158.CrossRefGoogle Scholar
Nealis, V.G., Magnussen, S. & Hopkin, A.A. 2003. A lagged, density-dependent relationship between jack pine budworm Chlorisoneura pinus pinus and its host tree Pinus banksiana. Ecological Entomology 28: 183192.CrossRefGoogle Scholar
Němejc, F., Kvaček, Z., Pacltová, B. & Konzalová, M. 2002. Tertiary plants of the Plzeň Basin (West Bohemia). Acta Universitatis Carolinae Geologica 46: 121176.Google Scholar
Nowak, C.L., Nowak, R.S., Tausch, R.J. & Wigand, P.E. 1994. Tree and shrub dynamics in northwestern Great Basin woodland and shrub steppe during the Late‐Pleistocene and Holocene. American Journal of Botany 81(3): 265277.CrossRefGoogle Scholar
Oberhuber, W., Pagitz, K. & Nicolussi, K. 1997. Subalpine tree growth on serpentine soil: a dendroecological analysis. Plant Ecology 130: 213221.CrossRefGoogle Scholar
Ogilvie, R.T. 1990. Distribution and ecology of Whitebark pine in western Canada. General technical report. US Department of Agriculture, Forest Service.Google Scholar
Okitsu, S. 1984. Comparative studies on the Japanese alpine zone, with special reference to the ecology of Pinus pumila thickets. Geographical Review of Japan, Series A 57: 791802.CrossRefGoogle Scholar
Oline, D.K., Mitton, J.B. & Grant, M.C. 2000. Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution 54: 18131819.Google ScholarPubMed
Ordonez, J.L. & Retana, J. 2004. Early reduction of post-fire recruitment of Pinus nigra by post-dispersal seed predation in different time-since-fire habitats. Ecography 27: 449458.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden, Edinburgh 33: 317323.Google Scholar
Page, C.N. & Gardner, M.F. 1994. Conservation of rare temperate rainforest tree species: a fast growing role for arboreta in Britain and Ireland. Pp 119144 in Perry, A.R. & Ellis, R.G. (eds.), The Common Ground of Wild and Cultivated Plants. Cardiff: National Museum of Wales.Google Scholar
Park, A. 2003. Spatial segregation of pines and oaks under different fire regimes in the Sierra Madre Occidental. Plant Ecology 169: 120.CrossRefGoogle Scholar
Parker, A.J. 1991. Forest/environment relationships in Lassen Volcanic National Park, California, USA. Journal of Biogeography 18: 543552.CrossRefGoogle Scholar
Penny, J.S. 1947. Studies on conifers of the Magothy flora. American Journal of Botany 34: 281296.CrossRefGoogle Scholar
Perez de la Rosa, J.A., Harris, S.A. & Farjon, A. 1995. Noncoding chloroplast DNA variation in Mexican pines. Theoretical and Applied Genetics 91: 11011106.CrossRefGoogle ScholarPubMed
Perez-Moreno, J. & Read, D.J. 2000. Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist 145(2): 301309.CrossRefGoogle Scholar
Pèrez-Obiol, R. & Julià, R. 1994. Climatic change on the Iberian Peninsula recorded in a 30,000-yr pollen record from Lake Banyoles. Quaternary Research 41(1): 9198.CrossRefGoogle Scholar
Perry, J.P. 1991. The Pines of Mexico and Central America. Portland, OR: Timber Press.Google Scholar
Perry, J.P., Graham, A. & Richardson, D.M. 1998. The history of pines in Mexico and Central America. Pp 137149 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Phipps, C.J., Osborn, J.M. & Stockey, R.A. 1995. Pinus pollen cones from the middle Eocene Princeton chert (Allenby Formation) of British Columbia, Canada. International Journal of Plant Sciences 156(1): 117124.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. and Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd ed. Leipzig: Wilhelm Engelmann.Google Scholar
Platt, W.J., Doren, R.F. & Armentano, T.V. 2000. Effects of Hurricane Andrew on stands of slash pine (Pinus elliottii var densa) in the everglades region of south Florida (USA). Plant Ecology 146: 4360.CrossRefGoogle Scholar
Ponel, P., Beaulieu, J.L. & Tobolsk, K. 1992. Holocene palaeoenvironments at the timberline in the Taillefer Massif, French Alps: a study of pollen, plant macrofossils and fossil insects. The Holocene 2(2): 117130.CrossRefGoogle Scholar
Prentice, I.C. 1978. Modern pollen spectra from lake sediments in Finland and Finnmark, north Norway. Boreas 7: 131153.CrossRefGoogle Scholar
Price, R.A., Olsen-Stojkovich, J. & Lowenstein, J.M. 1987. Relationships among genera of Pinaceae: an immunological comparison. Systematic Botany 12: 9197.CrossRefGoogle Scholar
Price, R.A., Liston, A. & Strauss, S.H. 1998. Phylogeny & systematics of Pinus. Pp 4968 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Quezal, P. & Barbero, M. 1992. Le pin de’Alep et les especes voisines: repartition et caracteres ecologiques generaux, sa dynamique recente en France mediterraneene. Foret Mediterraneenne 13: 158170.Google Scholar
Quézel, P. 1980. Biogeography and Ecology of Conifers in the Mediterranean Area. London: CABI.Google Scholar
Radeloff, V.C., Mladenoff, D.J. & Boyce, M.S. 2000. The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos 90: 417430.CrossRefGoogle Scholar
Ramírez-Marcial, N., González-Espinosa, M. & Williams-Linera, G. 2001. Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. Forest Ecology and Management 154(1–2): 311326.CrossRefGoogle Scholar
Read, J. & Hill, R.S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76: 558584.CrossRefGoogle Scholar
Reed, D.J. 1998. The mycorrhizal status of Pinus. Pp 324340 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Regato-Pajareas, P. & Elena-Rossello, R. 1995. Natural black pine (Pinus nigra subsp. salzmannii) forests of the Iberian eastern mountains: development of the phytoecological basis for their site evaluation. Anales des Sciences Forestieres 52: 589606.CrossRefGoogle Scholar
Rehfeldt, G.E. 1999. Systematics and genetic structure of Ponerosae taxa (Pinaceae) inhabiting the mountain islands of the southwest. American Journal of Botany 86: 741752.CrossRefGoogle ScholarPubMed
Richardson, D.M. (ed.). 1998. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Richardson, D.M. & Higgins, S.I. 1998. Pines as invaders in the southern hemisphere. Pp 450473 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Richardson, D.M. & Rejmanek, M. 2004. Conifers as invasive aliens: a global survey and predictive framework. Diversity and Distributions 10: 321331.CrossRefGoogle Scholar
Richardson, D.M. & Rundell, P.W. 1998. Ecology and biogeography of Pinus: an introduction. Pp 346 in Richardson, D.M. (ed.). Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Rincon, A., Alvarez, I.F. & Pera, J. 1999. Ectomycorrhizal fungi of Pinus pinea L. in northeastern Spain. Mycorrhiza 8: 271276.Google Scholar
Robison, C.R. 1977a. Prepinus parlinensis, sp. nov., from the Late Cretaceous of New Jersey. Botanical Gazette 138: 352356.CrossRefGoogle Scholar
Robison, C.R. 1977b. Pinus triphylla and Pinus quinquifolia from the Upper Cretaceous of Massachusetts. American Journal of Botany 64: 726732.CrossRefGoogle Scholar
Rodrigo, A. & Retana, J. 2006. Post-fire recovery of ant communities in sub-Mediterranean Pinus nigra forests. Ecography 29: 231239.CrossRefGoogle Scholar
Roering, J.J. & Gerber, M. 2005. Fire and the evolution of steep, soil-mantled landscapes. Geology 33(5): 349352.CrossRefGoogle Scholar
Rogers, D.L., Millar, C.I. & Westfall, R.D. 1999. Fine-scale genetic structure of whitebark pine (Pinus albicaulis): associations with watershed and growth form. Evolution 53: 7490.Google ScholarPubMed
Rogers, D.L., Matheson, A.C., Vargas-Hernandez, J.J. & Guerra-Santos, J.J. 2006. Genetic conservation of insular populations of Monterey pine (Pinus radiata D. Don). Biodiversity and Conservation 15: 779798.CrossRefGoogle Scholar
Rolland, C., Schueller, J. & Cooper, J. 1995. Croissance comparee du pin a crochets et de l’epicea (Pinus uncinata Ram. et Picea abies Karst.) sur delle calcaire karstifiee en moyenne montagne temperee (Vecors, France). Revue de Geographie Alpine 83: 1732.CrossRefGoogle Scholar
Romero, A., Luna, M., Garcia, E. & Passini, M.F. 2000. Phenetic analysis of the Mexican midland pinyon pines, Pinus cembroides and Pinus johannis. Botanical Journal of the Linnean Society 133: 181194.CrossRefGoogle Scholar
Ruddiman, W.F. & Kutzbach, J.E. 1991. Plateau uplift and climatic change. Scientific American 264(3): 6675.CrossRefGoogle Scholar
Rushforth, K. 1987. Conifers. London: Christopher Helm Ltd.Google Scholar
Rzedowski, J. 1964. Una especie nueva de pino piñonero del estado de Zacatecas (Mexico). Ciencia 23: 1720.Google Scholar
Saenz-Romero, C., Guzman-Reyna, R.R. & Rehfeldt, G.E. 2006. Altitudinal genetic variation amongst Pinus oocarpa populations in Michoacan, Mexico: implications for seed zoning, conservation, tree breeding and global warming. Forest Ecology and Management 229: 340350.CrossRefGoogle Scholar
Safford, H.D. & Harrison, S. 2004. Fire effects on plant diversity in serpentine vs. sandstone chaparral. Ecology 85: 539548.CrossRefGoogle Scholar
Saki, K. 1996. Pinus mutoi (Pinacaeae), a new species of permineralized seed cone from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany 83: 16301636.CrossRefGoogle Scholar
Samano, S., & Tomback, D.F. 2003. Cone opening phenology, seed dispersal, and seed predation in southwestern White pine (Pinus strobiformis) in southern Colorado. Ecoscience 10: 319326.CrossRefGoogle Scholar
Saporta, G. de. 1865. Etudes sur la vegetation de sud-est de la France a l’epoque Tertiaire. Annales Sciences Naturelles Botaniques 5e ser, 4: 1264, 9: 5–62.Google Scholar
Sass, O., Heel, M., Leistner, I., et al. 2012. Disturbance, geomorphic processes and recovery of wildfire slopes in North Tyrol. Earth Surface Processes and Landforms 37(8): 883894.CrossRefGoogle Scholar
Sastad, S.M. 1995. Fungi–vegetation relationships in a Pinus sylvestris forest in central Norway. Canadian Journal of Botany 73: 807816.CrossRefGoogle Scholar
Saylor, L.C. & Koenig, R.L. 1967. The slash x sand pine hybrid. Silvae Geneticae 16: 134.Google Scholar
Schiller, G. 1982. Significance of bedrock as a site factor for Aleppo pine (Pinus halepensis). Forest Ecology and Management 4: 213223.CrossRefGoogle Scholar
Schiller, G. & Grunwald, C. 1987a. Resin monoterpene in range-wide provenance trials of Pinus halepensis Mill. in Israel. Silvae Genetica 36: 109114.Google Scholar
Schiller, G. & Grunwald, C. 1987b. Cortex resin monoterpene composition in Pinus brutia provenances grown in Israel. Biochemical Systematics and Ecology 15: 389394.CrossRefGoogle Scholar
Schiller, G., Conkle, M.T. & Grunwald, C. 1986. Local differentiation among Mediterranean populations of Aleppo pine and their isoenzymes. Silvae Genetica 35: 1119.Google Scholar
Schmidtling, R.C. 2003. The southern pines during the Pleistocene. Pp 203207 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference, Wye, England. Leuven: International Society for Horticultural Science.Google Scholar
Schmidtling, R.C. & Hipkins, V. 1998. Genetic diversity in longleaf pine (Pinus palustris Mill): influence of historical and prehistorical events. Canadian Journal of Forest Research 28: 11351145.CrossRefGoogle Scholar
Scholl, A.E. & Taylor, A.H. 2006. Regeneration patterns in old-growth red fir–western white pine forests in the northern Sierra Nevada, Lake Tahoe, USA. Forest Ecology and Management 235(1–3): 143154.CrossRefGoogle Scholar
Schulman, E. 1958. Bristlecone pine, oldest known living thing. National Geographical Magazine 113: 354372.Google Scholar
Schwilk, D.W. & Ackerly, D.D. 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94: 326336.CrossRefGoogle Scholar
Seal, J.N. & Tschinkel, W.R. 2006. Colony productivity of the fungus-gardening ant Trachymyrmex septentrionalis (Hymenoptera: Formicidae) in a Florida pine forest. Annals of the Entomological Society of America 99: 673682.CrossRefGoogle Scholar
Segura, G. & Snook, L.C. 1992. Stand dynamics and regeneration patterns of a pinyon pine forest in east central Mexico. Forest Ecology and Management 47: 175194.CrossRefGoogle Scholar
Senjo, M., Kimura, K., Watano, Y., Ueda, K. & Shimizu, T. 1999. Extensive mitochondrial introgression from Pinus pumila to P. parviflora ver. pentaphylla (Pinaceae). Journal of Plant Research 112: 97105.CrossRefGoogle Scholar
Setala, H. 2000. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhizae. Oecologia 125: 109118.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shaw, G.R. 1909. The Pines of Mexico. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Shaw, G.R. 1914. The Genus Pinus. Boston, MA: Houghton Mifflin.Google Scholar
Shaw, G.R. 1924. Notes on the genus Pinus. Journal of the Arnold Arboretum 5: 225227.CrossRefGoogle Scholar
Smith, S.Y. & Stockey, R.A. 2001. A new species of Pityostrobus from the Lower Cretaceous of California and its bearing on the evolution of Pinaceae. International Journal of Plant Sciences 162: 669681.CrossRefGoogle Scholar
Snyder, J.A., Macdonald, G.M., Forman, S.L., Tarasov, G.A. & Mode, W.N. 2000. Postglacial climate and vegetation history, north‐central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe‐3. Boreas 29(4): 261271.CrossRefGoogle Scholar
Sowell, J.B., Koutnik, D.L. & Lansing, A.J. 1982. Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arctic and Alpine Research 14: 97103.CrossRefGoogle Scholar
Spaulding, W.G. 1983. Vegetation and Climates of the Last 45,000 Years in the Vicinity of the Nevada Test Site, South-Central Nevada . Seattle, WA: Washington University.Google Scholar
Stead, J.W. 1983. A study of variation and taxonomy of the Pinus pseudostrobus complex. Commonwealth Forestry Review 62: 2535.Google Scholar
Stebbins, G.L. 1959. The role of hybridisation in evolution. Proceedings of the American Philosophical Society 103: 231251.Google Scholar
Stefanova, I. & Ammann, B. 2003. Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). The Holocene 13(1): 97107.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. America Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stevens, S.L. & Fry, D.L. 2005. Spatial distribution of regeneration patches in an old-growth Pinus jeffreyi : mixed conifer forest in northwestern Mexico. Journal of Vegetation Science 16: 693702.Google Scholar
Stockey, R. & Wiebe, N. 2008. Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov. (Pinaceae). Botany 86: 649657.CrossRefGoogle Scholar
Stockey, R.A. 1984. Middle Eocene Pinus remains from British Columbia. Botanical Gazette 145: 262274.CrossRefGoogle Scholar
Stockey, R.A. & Ueda, Y. 1986. Permineralised pinaceous leaves from the Upper Cretaceous of Hokkaido. American Journal of Botany 73: 11571162.CrossRefGoogle Scholar
Stopes, M.C. & Kershaw, E.M. 1910. The anatomy of Cretaceous pine leaves. Annals of Botany 24: 395402.CrossRefGoogle Scholar
Strauss, S.H. & Doerksen, A.H. 1990. Restriction fragment analysis of pine phylogeny. Evolution 44: 10811096.CrossRefGoogle ScholarPubMed
Strong, W.L. & Hills, L.V. 2005. Late‐glacial and Holocene palaeovegetation zonal reconstruction for central and north‐central North America. Journal of Biogeography 32(6): 10431062.CrossRefGoogle Scholar
Sung, S.W., Kin, K. & Hill, R.S. 2004. Cuticle micromorphology of leaves of Pinus (Pinaceae) from North America. Botanical Journal of the Linnean Society 144: 303320.Google Scholar
Suzán-Azpiri, H., Sánchez-Rámos, G., Martínez-Avalos, J.G., et al. 2002. Population structure of Pinus nelsoni Shaw, an endemic pinyon pine in Tamaulipas, Mexico. Forest Ecology and Management 165(1–3): 193203.CrossRefGoogle Scholar
Szmidt, A.E. 1982. Genetic variation in isolated populations of stone pine (Pinus cembra L.). Silvae Fennica 16: 196200.Google Scholar
Szmidt, A.E. & Wang, X.-R. 1993. Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and P. densiflora (Sieb. & Zucc.). Theoretical and Applied Genetics 86: 159165.CrossRefGoogle Scholar
Szmidt, A.E., Wang, X.-R. & Changtragoon, S. 1996. Contrasting patterns of genetic diversity in two tropical pines: Pinus kesiya (Royle ex Gordon) and P. merkusii (Jungh et De Vriese). Theoretical and Applied Genetics 92: 14321442.CrossRefGoogle Scholar
Tao, J.R. & Du, N.Q. 1987. Miocene flora from Markam County and fossil record of Betulaceae. Acta Botanica Sinica 29: 649655.Google Scholar
Thayer, T.C. & Vander Wall, S.B. 2005. Interactions between Steller’s jays and yellow pine chipmunks over scatter-hoarded sugar pine seeds. Journal of Animal Ecology 74: 365374.CrossRefGoogle Scholar
Thompson, R.S. & Mead, J.I. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17(1): 3955.CrossRefGoogle Scholar
Tidwell, W.D., Parker, L.R. & Folkman, V.K. 1986. Pinuxylon woolardii sp. nov., a new petrified taxon of Pinaceae from the Miocene basalts of eastern Oregon (USA). American Journal of Botany 73: 15171524.CrossRefGoogle Scholar
Tinner, W. & Kaltenrieder, P. 2005. Rapid responses of high‐mountain vegetation to early Holocene environmental changes in the Swiss Alps. Journal of Ecology 93(5): 936947.CrossRefGoogle Scholar
Tomback, D.F. 1982. Dispersal of whitebark pine seeds by Clark’s nutcracker: a mutualism hypothesis. Journal of Animal Ecology 51: 451467.CrossRefGoogle Scholar
Tomback, D.F. & Linhart, Y.B. 1990. The evolution of bird-dispersed pines. Evolutionary Ecology 4: 185219.CrossRefGoogle Scholar
Tomback, D.F., Holtmeier, F.K., Mattes, H., Carsey, K.S. & Powell, M.L. 1993. Tree clusters and growth form distribution in Pinus cembra, a bird-dispersed pine. Arctic and Alpine Research 25: 374381.CrossRefGoogle Scholar
Tschinkel, W.R. 1988. Distribution of the fire ants Solenopteris invicta and S. geminata (Hymenoptera: Formicidae) in northern Florida in relation to habitat and disturbance. Annals of the Entomological Society of America 81: 7681.CrossRefGoogle Scholar
Tschinkel, W.R. & Hess, C.A. 1999. Arboreal ant community of a pine forest in northern Florida. Annals of the Entomological Society of America 92: 6370.CrossRefGoogle Scholar
Tsuji, S.I., Minaki, M. & Suzuki, M. 1984. Plant fossil assemblage of the latest Pleistocene at Ninomiya-cho, southern Tochigi Prefecture, central Japan. The Quaternary Research (Daiyonki-kenkyu) 23(1): 2129.CrossRefGoogle Scholar
Tsukada, M. 1967. Vegetation in subtropical formosa during the pleistocene glaciations and the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 4964.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Tucker, J.W. Jr, Robinson, W.D. & Grand, J.B. 2006. Breeding productivity of Bachman’s sparrows in fire-managed longleaf pine forests. Wilson Journal of Ornithology 118: 131137.CrossRefGoogle Scholar
Turley, D.B., Chaudhry, Q., Watkins, R.W., Clark, J.H. & Deswarte, F.E.I. 2006. Chemical products from temperate forest tree species: developing strategies for exploitation. Industrial Crops and Products 24: 238243.CrossRefGoogle Scholar
Tyndall, R.W. & Farr, P.M. 1989. Vegetation structure and flora of a serpentine pine-cedar savanna in Maryland. Castanea 54: 191199.Google Scholar
Ucar, G. & Balaban, M. 2004. Volatile needle extractives of Anatolian black pine varieties: P. nigra subsp. pallasiana var. pallasiana and var. pyramidata. Biochemical Systematics and Ecology 32: 983992.CrossRefGoogle Scholar
Underwood, J.C. & Miller, C.N. 1980. Pinus buchananii, a new species based on petrified cone from the Oligocene of Washington. American Journal of Botany 67: 11321135.CrossRefGoogle Scholar
Urban, A., Puschenreiter, M., Strauss, J. & Gorfer, M. 2008. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18: 339354.CrossRefGoogle Scholar
Van Tichelen, K.K., Colpaert, J.V. & Vangronsveld, J. 2001. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity New Phytologist 150: 203213.CrossRefGoogle Scholar
Vander Wall, S.B. 2003. Effects of seed size of wind-dispersed pines (Pinus) on secondary seed dispersal and the caching behaviour of rodents. Oikos 100: 2534.CrossRefGoogle Scholar
Vander Wall, S.B. & Balda, R.P. 1977. Co-adaptations of the Clark’s nutcracker and the pinyon pine for efficient seed harvest and dispersal. Ecological Monographs 47: 2737.CrossRefGoogle Scholar
Vander Wall, S.B. & Joyner, J.W. 1998. Secondary dispersal by the wind of winged pine seeds across the ground surface. American Midland Naturalist 139: 365373.CrossRefGoogle Scholar
Vargas, C.F., López, A., Sánchez, H. & Rodríguez, B. 2002. Allozyme analysis of host selection by bark beetles in central Mexico. Canadian Journal of Forest Research 32(1): 2430.CrossRefGoogle Scholar
Varol, O. 2006. Floristic features of Pinus pinea forests in Kahramanmaras (Eastern-Mediterranean region of Turkey). Ekoloji 15: 17.Google Scholar
Veblen, T.T., Hadley, K.S. & Reid, M.S. 1991. Disturbance and stand development of a Colorado subalpine forest. Journal of Biogeography 18: 707716.CrossRefGoogle Scholar
Vidakovik, M. 1991. Conifers, Morphology and Variation. Zavod: Graficki Zavod Hrvatske (English translation from Croatian by Maja Soljan).Google Scholar
Viedma, O., Quesada, J., Torres, I., De Santis, A. & Moreno, J.M. 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237250.CrossRefGoogle Scholar
Visser, S. 1995. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist 129: 389401.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Wang, X.-R. & Szmidt, A.E. 1990. Evolutionary analysis of Pinus densata (Masters), a putative tertiary hybrid. 2. A study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics 80: 641647.CrossRefGoogle Scholar
Wang, X.-R. & Szmidt, A.E. 1993. Chloroplast DNA-based phylogeny of Asian Pinus species (Pinaceae). Plant Systematics and Evolution 188: 197211.CrossRefGoogle Scholar
Wang, X.-R. & Szmidt, A.E. 1994. Hybridisation and chloroplast DNA variation in a Pinus species complex from Asia. Evolution 48: 10201031.CrossRefGoogle Scholar
Wang, X.-R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. & Szmidt, A.F. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20–RPS18 spacer, and TRNV intron sequences. American Journal of Botany 86: 17421753.CrossRefGoogle ScholarPubMed
Webb, III, T. 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio, 69(1–3), 177187.CrossRefGoogle Scholar
Wells, O.O., Switzer, G.L. & Schmidtling, R.C. 1991. Geographic variation in Mississippi loblolly pine and sweetgum. Silvae Geneticae 40: 105119.Google Scholar
Wells, P.V. & Stewart, J.D. 1987. Cordilleran-boreal taiga and fauna on the central Great Plains of North America, 14,000–18,000 years ago. American Midland Naturalist 118: 94106.CrossRefGoogle Scholar
West, L. & Jones, R.H. 2000. Responses of understory tree seedlings to alteration of the soil fungal community in mid-and late-successional forests. Forest Ecology and Management 134(1–3): 125135.CrossRefGoogle Scholar
Wheeler, E.A. & Arnette, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International.22–23: 91102.CrossRefGoogle Scholar
Wheeler, N.C. & Guries, R.P. 1982. Biogeography of lodgepole pine. Canadian Journal of Botany 60: 18051814.CrossRefGoogle Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Park. Ecological Monographs 63: 173198.CrossRefGoogle Scholar
Whitmore, T.C. 1984. Tropical Rainforest of the Far East, 2nd ed. Oxford: Clarendon Press.Google Scholar
Wieser, G. & Leo, M. 2012. Whole-tree water-use by Pinus cenbra at the treeline in the central Tyrolean Alps. Plant Ecology and Diversity 5: 8188.CrossRefGoogle Scholar
Willis, K.J., Bennet, K.D. & Birks, H.J.B. 1998. The late Quaternary dynamics of pines in Europe. Pp 107121 in Richardson, D.M. (ed.), Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. 2007. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena 71(1): 7683.CrossRefGoogle Scholar
Woillard, G.M. 1978. Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9(1): 121.CrossRefGoogle Scholar
Wolfe, J.A. 1971. Tertiary climatic fluctuations and methods of analysis of tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 9(1): 2757.CrossRefGoogle Scholar
Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Science 66: 694703.Google Scholar
Wolfe, J.A. 1987. An overview of the origins of the modern vegetation and flora of the northern Rocky Mountains. Annals of the Missouri Botanical Garden. 74(4): 785803.CrossRefGoogle Scholar
Wright, J.W. 2007. Local adaptation to serpentine soils in Pinus ponderosa. Plant and Soil 293: 209217.CrossRefGoogle Scholar
Wu, J., Krutovskii, K.V. & Strauss, S.H. 1999. Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome 42: 893908.CrossRefGoogle Scholar
Wurzburger, N. & Bledsoe, C.S. 2001. Comparison of ericoid and ectomycorrhizal colonization and ectomycorrhizal morphotypes in mixed conifer and pygmy forests on the northern California coast. Canadian Journal of Botany 79: 12021210.CrossRefGoogle Scholar
Xiaodong, Y. & Shugart, H.H., 2005. FAREAST: A forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography 32(9): 16411658.CrossRefGoogle Scholar
Yi, T.M., Li, C.S. & Jiang, X.M. 2005. Conifer woods of the Pliocene age from Yunnan, China. Journal of Integrative Plant Biology 47(3): 264270.CrossRefGoogle Scholar
Yonebayashi, C. & Minaki, M. 1997. Late Quaternary vegetation and climatic history of Eastern Nepal. Journal of Biogeography 24(6): 837843.CrossRefGoogle Scholar
Yoo, K., Ji, J., Aufdenkampe, A. & Klaminder, J. 2011. Rates of soil mixing and associated carbon fluxes in a forest versus tilled agricultural field: implications for modeling the soil carbon cycle. Journal of Geophysical Research: Biogeosciences 116(G1).CrossRefGoogle Scholar
Yu, H., Ge, S., Huang, R.-F. & Jiang, H.-Q. 2000. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species. Acta Botanica Sinica 42: 107110.Google Scholar
Zhang, Z.-Y. & Li, D.-Z. 2004. Molecular phylogeny of section Parrya of Pinus (Pinaceae) based on chloroplast matK gene sequence data. Acta Botanica Sinica 46: 171179.Google Scholar
Zheng, J., Jiang, F. & Zeng, D. 2003. Eco-value level classification and ecosystem management strategy of broad-leaved Korean pine forest in Changbai Mountain. Chinese Journal of Applied Ecology 14: 839844.Google ScholarPubMed

References

Abaimov, A.P. & Korpachinskii, Yu. 1980. Polymorphisms of Larix gmelinii and Larix cajanderi. Izvesitya Sibirskogo o Toeleniya Akademii Nauk SSR, Sci Biologocheskii 1: 1924.Google Scholar
Abaimov, A.P., Lesinski, L.A., Martinsson, O. & Milyutin, L.I. 1998. Variability and ecology of Siberian larch species. Swedish University of Agricultural Sciences, Department of Silviculture Reports 43: 1123.Google Scholar
Anderson, P.M. & Lozhkin, A.V. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20(1–3): 93125.CrossRefGoogle Scholar
Araki, N.H.T., Khatab, I.A., Henamali, K.K.G.U., et al. 2008. Phylogeography of Larix sukaczewii Dyl. and Larix sibirica L. inferred from nucleotide variations of nuclear genes. Tree Genetics and Genomes 4: 611623.CrossRefGoogle Scholar
Ban, Y. & Xu, H. 1995. Natural regeneration of Larix gmelinii seedlings and micro-habitat in old-growth Larix gmelinii forests. Forest Research (China) 8: 660664.Google Scholar
Ban, Y., Xu, H. & Li, Z. 1997. Mortality patterns of Larix gmelinii and the effect of fallen deadwood on regeneration of old Larix gmelinii forest. Chinese Journal of Applied Ecology 8: 449454.Google Scholar
Barchenkov, A.P. 2011. Morphological variability and quality of seeds of Larix gmelinii (Rupr.) Rupr. Contemporary Problems in Ecology 4: 327333.CrossRefGoogle Scholar
Barchenkov, A.P., Milyutin, L.I. & Isaev, E.P. 2007. The variability of seeds in Siberian larch species. Lesovedenie 2: 6569.Google Scholar
Barnett, J. 1989. Palynology and paleoecology of the Tertiary Weaverville Formation, northwestern California, USA. Palynology 13: 195246.CrossRefGoogle Scholar
Bashalkhanova, S.I., Konstantinov, Y.M., Verbitskii, D.S. & Kobzev, V.F. 2000. Reconstruction of phylogenetic relationships of larch, Larix sukaczewii Dyl. on chloroplast DNA trnK intron sequences. Russian Journal of Genetics 39: 11161120.CrossRefGoogle Scholar
Berner, L.T., Beck, P.S.A., Loranty, M.M., et al. 2012. Cajander larch (Larix cajanderi) biomass distribution, fire regimes and post-fire recovery in northeastern Siberia. Biogeosciences Discussion 9: 75557600.Google Scholar
Binney, H.A., Willis, K.J., Edwards, M.E., et al. 2009. The distribution of Late-Quaternary woody taxa in northern Eurasia: evidence from new microfossil database. Quaternary Science Reviews 28: 24552464.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O. & Ammann, B. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1–4): 259279.CrossRefGoogle Scholar
Bobrov, E.G. 1972. Generis Larix Mill. Historia et Systematica. Leningrad: Academie of Sciences, URSS.Google Scholar
Bobrov, E.G. 1973. Introgressive hybridisation, Sippenbildung und Vegetationsänderung. Feddes Repertorium 84(4): 273293.CrossRefGoogle Scholar
Bobrov, E.G. 1983. Introgressive hybridization and geohistorical changes in taiga zone formations of the USSR. Botanicheskiĭ Zhurnal 68(1): 39.Google Scholar
Bondarev, A. 1997. Age distribution patterns in open boreal Dahurian larch forests of central Siberia. Forest Ecology and Management 93: 205214.CrossRefGoogle Scholar
Borisova, O.K. 2005. Vegetation and climate changes at the Eemian/Weichselian transition: new palynological data from Central Russian Plain. Polish Geological Institute Special Papers 16.Google Scholar
Bräuning, A. 2006. Tree-ring evidence of ‘Little Ice Age’ glacier advances in southern Tibet. The Holocene 16(3): 369380.CrossRefGoogle Scholar
Brown, K.R., Zobel, D.B. & Zasada, J.C. 1988. Seed dispersal, seedling emergence, and early survival of Larix laricina (DuRoi) K. Koch in the Tanana Valley, Alaska. Canadian Journal of Forest Research 18: 306314.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E. & Lozhkin, A.V. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32(5): 833848.CrossRefGoogle Scholar
Burga, C.A. 1988. Swiss vegetation history during the last 18 000 years. New Phytologist 110(4): 581662.CrossRefGoogle Scholar
Burga, C.A., Frauenfelder, R., Ruffet, J., Hoelzle, M. & Kääb, A. 2004. Vegetation on Alpine rock glacier surfaces: a contribution to abundance and dynamics on extreme plant habitats: flora-morphology distribution. Functional Ecology of Plants 199(6): 505515.CrossRefGoogle Scholar
Carrer, M. & Urbinati, C. 2006. Long‐term change in the sensitivity of tree‐ring growth to climate forcing in Larix decidua. New Phytologist 170(4): 861872.CrossRefGoogle ScholarPubMed
Cheng, W.C. & Fu, L.K.. 1975. Larix speciosa. Acta Phytotax. Sin. 13 (4): 84.Google Scholar
Chou, Y.L. and Uu, J.W. 1995. Deciduous and deciduous-evergreen forests in Northeastern China. Pp 307315 in Box, E. O. et al. (eds.), Vegetation Science in Forestry. Alphen aan den Rijn: Kluwer Academic.Google Scholar
Colenutt, M.E. & Luckman, B.H. 1991. Dendrochronological investigation of Larix lyallii at Larch Valley, Alberta. Canadian Journal of Forest Research 21(8): 12221233.CrossRefGoogle Scholar
Coope, G.R., Field, M.H., Gibbard, P.L., Greenwood, M. & Richards, A.E. 2002. Palaeontology and biostratigraphy of Middle Pleistocene river sediment in the Mathon Member, at Mathon, Herefordshire, England. Proceedings of the Geologists’ Association 113(3): 237258.CrossRefGoogle Scholar
Cushman, S.A. & Wallin, D.O. 2002. Separating the effects of environmental, spatial and disturbance factors on forest community structure in the Russian Far East. Forest Ecology and Management 168(1–3): 201215.CrossRefGoogle Scholar
Dolezal, J., Ishii, H., Vetrova, V.P., Sumida, A. & Hara, T. 2004 Tree growth and competition with Betula platyphylla: Larix cajanderi post-fire forest in central Kamchatka. Annals of Botany 94: 333343.CrossRefGoogle ScholarPubMed
Dolman, A.J., Maximov, T.C., Moors, E.J., et al. 2004. Net ecosystem exchange of carbon dioxide and water of Far Eastern Siberian Larch (Larix cajanderi) on permafrost. Biogeosciences 1: 133146.CrossRefGoogle Scholar
Doyle, J. 1926. Notes on the staminate cone of Larix leptolepis. Proceedings of the Royal Irish Academy 37B: 154169.Google Scholar
Earle, C.J., Brubaker, L.B., Lozhkin, A.V. & Anderson, P.M. 1994. Summer temperature since 1600 for the upper Kolyma region, northeastern Russia, reconstructed from tree rings. Arctic and Alpine Research 26(1): 6065.CrossRefGoogle Scholar
Edwards, M.E., Anderson, P.M., Brubaker, L.B., et al. 2000. Pollen‐based biomes for Beringia 18,000, 6000 and 0 14C yr BP. Journal of Biogeography 27(3): 521554.CrossRefGoogle Scholar
Equiza, M.A., Day, M.E. & Jagels, R. 2006. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer. Tree Physiology 26: 353364.CrossRefGoogle ScholarPubMed
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feurdean, A. & Bennike, O. 2004. Late Quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. Journal of Quaternary Science 19(8): 809827.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Franklin, J.F., Maeda, T., Ohsumi, Y., et al. 1979. Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs 49(3): 311334.CrossRefGoogle Scholar
Gernandt, D.S. & Liston, A. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). American Journal of Botany 86(5): 711723.CrossRefGoogle ScholarPubMed
Goryachkina, O.V., Olga, V., Badaeva, E. & Mutanova, E.N. 2013. Molecular cytogenetic analysis of Siberian Larix species by fluorescence hybridisation. Plant Systematics and Evolution 299: 471479.CrossRefGoogle Scholar
Grabner, M., Wimmer, R., Gierlinger, N, Evans, R. & Downes, G. 2005. Heartwood extractives in larch and effects on x-ray densiometry. Canadian Journal of Forest Research 35: 27812786.CrossRefGoogle Scholar
Gratzner, G., Darabant, A., Chetri, P.B., Rai, P.B. & Eckmullner, O. 2004. Interspecific variation in the response of growth, crown morphology, and survivorship to light of six tree species in the conifer belt of the Bhutan Himalayas. Canadian Journal of Forest Research 34: 10931107.CrossRefGoogle Scholar
Gross-Louis, M.-C., Bousquet, J., Paques, L.E. & Isabel, N. 2005. Species markers in Larix spp., based on RAPDs and nuclear, cpDNA, and mtDNA genes and their phylogenetic implications. Tree Genetics and Genomes 1: 5063.CrossRefGoogle Scholar
Hagman, M. 2003. Genetic diversity of European boreal conifers. Acta Horticulturae 615.Google Scholar
Hallett, D.J. & Hills, L.V. 2006. Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay Valley, southeastern British Columbia, Canada. Journal of Paleolimnology 35: 351371.CrossRefGoogle Scholar
Hantemirov, R.M., Gorlanova, L.A. & Shiyatov, S.G. 2004. Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1–4): 155164.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoch, G. 2013. Reciprocal root–shoot cooling and soil fertilization effects on the seasonal growth of two treeline conifer species. Plant Ecology & Diversity 6(1): 2130.CrossRefGoogle Scholar
Holzhauser, H. & Zumbühl, H.J. 1999. Glacier fluctuations in the Western Swiss and French Alps in the 16th century. Pp 223237 in Pfister, C., Brazdil, R. & Glaser, R. (eds.), Climatic Variability in Sixteenth-Century Europe and Its Social Dimension. New York: Springer.CrossRefGoogle Scholar
Hutton, M.J., MacDonald, G.M. & Mott, R.J. 1994. Postglacial vegetation history of the Mariana Lake region, Alberta. Canadian Journal of Earth Sciences 31(2): 418425.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Igarashi, Y. & Igarashi, T. 1998. Late Holocene vegetation history in south Sakhalin, northeast Asia. Japanese Journal of Ecology (Japan) 48: 231244.Google Scholar
Jackson, S.T., Overpeck, J.T., WebbIII, T., Keattch, S.E. & Anderson, K.H. 1997. Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in eastern North America. Quaternary Science Reviews 16(1): 170.CrossRefGoogle Scholar
Kajimoto, T., Matsuura, Y., Osawa, A., et al. 2003. Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia. Plant and Soil 255: 281292.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution, 44(2), 765777.CrossRefGoogle ScholarPubMed
Karlman, L. 2010. Genetic variation in frost tolerance, juvenile growth and timber productivity in Russian larch (Larix Mill). Acta universitatis Agriculturae Sueciae 30: 16521680.Google Scholar
Kharuk, V.I., Ranson, K.J., Im, S.T. & Naurzbaev, M.M. 2006. Forest-tundra larch forest and climatic trends. Russian Journal of Ecology 37: 291298.CrossRefGoogle Scholar
Khatab, I.A., Ishiyama, H., Inomata, N., Wang, X.A. & Szmidt, A.E. 2008. Phylogeography of Eurasian larch species informed from nucleotide variation in two nuclear genes. Genes and Genetic Systems 83: 5566.CrossRefGoogle Scholar
Klinge, M., Böhner, J. & Erasmi, S. 2015. Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia. Biogeosciences 12(10): 28932905.CrossRefGoogle Scholar
Kolbek, J., Valachovič, M., Ermakov, N. & Neuhäuslová, Z. 2003. Comparison of forest syntaxa and types in Northeast Asia. Pp 409423 in Kolbek, J., Šrůtek, M., Box, E.O. (eds.), Forest Vegetation of Northeast Asia. New York. Springer.CrossRefGoogle Scholar
Koropachinskii, I. Yu. & Milyutin, L.I. 2011. Botanical-geography and forestry aspects of introgressive hybridisation of the Gmelin’s larch (Larix gmelinii (Rupr) Rupr.) and Cajander larch (L. cajanderi Mayr). Contemporary Problems of Ecology 4: 167177.CrossRefGoogle Scholar
Kozyrenko, M.M., Artyukova, E.V. & Remanova, G.D. 2004a. Genetic variability and population structure in larch in Primory’e. Lesovedenie 6: 3441.Google Scholar
Kozyrenko, M.M., Artyukova, E.V. & Remanova, G.D. 2004b. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics 40: 401409.CrossRefGoogle Scholar
Krause, S.C. & Raffa, K.F. 1996. Defoliation tolerance affects the spatial and temporal distributions of larch sawfly and natural enemy populations. Ecological Entomology 21: 259269.CrossRefGoogle Scholar
Kremenetski, C.V., Sulerzhitsky, L.D. & Hantemirov, R. 1998. Holocene history of the northern range limits of some trees and shrubs in Russia. Arctic and Alpine Research 30(4): 317333.CrossRefGoogle Scholar
Kulakowski, D., Rixen, C. & Bebi, P. 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. Forest Ecology and Management 223(1–3): 6674.CrossRefGoogle Scholar
Kullman, L. 1998. Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Global Ecology and Biogeography Letters 7: 181188.CrossRefGoogle Scholar
Kullman, L. 2005. Gamia och nya trad pa Fulufjallet: Vagetationshistoria pa hog niva. Svensk Botanisk Tidskrift 99: 315329.Google Scholar
Labandeira, C.C., LePage, B.A. & Johnson, A.H. 2001. A dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? American Journal of Botany 88: 20262039.CrossRefGoogle Scholar
Laewandowski, A. & Mejnartowicz, L. 1991. Levels and patterns of allozyme variation in European larch (Larix decidua) populations. Hereditas 115: 221236.CrossRefGoogle Scholar
Larionova, A. Yu., Yakhneva, N.V. & Kuz’mina, N.A. 2003. Genetic variation of Siberian larch in the Lower Angara River basin. Lesovedenie 4: 1722.Google Scholar
Larionova, A. Yu., Yakhneva, N.V. & Abaimov, A.P. 2004. Genetic diversity and differentiation of Gmelin larch populations from Evenhia (Central Siberia). Russian Journal of Genetics 40: 11271133.CrossRefGoogle Scholar
LePage, B.A. & Basinger, J.F. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk Ox 37: 103109.Google Scholar
LePage, B.A. & Basinger, J.F. 1991a. A new species of Larix (Pinaceae) from the early Tertiary of Axel Heiberg Island, Arctic Canada. Review of Palaeobotany and Palynology 70: 89111.CrossRefGoogle Scholar
LePage, B.A. & Basinger, J.F. 1991b. Early Tertiary Larix from the Buchanan lake formation, Canadian Arctic Archipelago, and a consideration of the phytogeography of the genus. Bulletin Geological Survey of Canada 403: 6781.Google Scholar
Levina, E.A., Adrianova, I. Iu., & Reunova, S.D. 2008. Genetic variability and differentiation in the larch populations within the range of Larix olgensis A. Henry in the Primory’e region. Russian Journal of Genetics 44: 320325.CrossRefGoogle Scholar
Lewandowski, A., Burczyk, J. & Chałupka, W. 1997. Preliminary results on allozyme diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in Poland based on plus tree investigations. Acta Societatis Botanicorum Poloniae 66(2): 197200.CrossRefGoogle Scholar
Li, H.-M. 1992. Early Tertiary palaeoclimate of King George Island, Antarctica: evidence from the Fossil Hill flora. Pp 371375 in Yoshida, Y. (ed.), Recent Progress in Antarctic Earth Science. Tokyo: Terra Nova Publishing.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomic Sinica 31: 405412.Google Scholar
Li, L.-C., Jiang, J.-H., Wang, Y.-Q. & Wang, G. 1997. Karyotype analysis of three species in the Cupressaceae. Acta Botanica Yunnanica 19: 391394 (in Chinese, with English Summary).Google Scholar
Li, M.H., Yang, J. & Krauchi, N. 2003. Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Canadian Journal of Forest Research 33: 653662.CrossRefGoogle Scholar
Liu, B., Zhang., S.-G., Zhang, Y., et al. 2006. Molecular cytogenetic analysis of four Larix species by bicolor fluorescence in situ hybridisation and DAPI banding. International Journal of Plant Sciences 1167: 367372.CrossRefGoogle Scholar
Liu, C., Luo, J. & Liang, H. Ordination of Dahurian larch forest in Mohe forest area. Forest Research (China) 5: 589594.Google Scholar
Liu, H., Tang, Z., Dai, J., Tang, Y. & Cui, H. 2002. Larch timberline and its development in North China. Mountain Research and Development 22: 359367.CrossRefGoogle Scholar
Liu, Q., Li, X. & Hu, L. 2004. Image analysis and community monitoring on coniferous forest dynamics in Changbei Mountain. Chinese Journal of Applied Ecology 15: 11131120.Google Scholar
Lloyd, A.H., Dunn, A.G. & Berner, L. 2011. A latitudinal gradient and Larix growth response to climate warming in the Siberian taiga. Global Change Biology 17: 19331945.CrossRefGoogle Scholar
Lopez, M.L.C., Saito, H. & Kobayashi, Y. 2007. Inter-annual environmental soil fertility rate variation and transportation for Larix cajanderi, central Yakutia, Eastern Siberia. Journal of Hydrology 338: 251260.CrossRefGoogle Scholar
MacDonald, G.M., Case, R.A. & Szeicz, J.M. 1998. A 538-year record of climate and treeline dynamics from the lower Lena River region of northern Siberia, Russia. Arctic and Alpine Research 30(4): 334339.CrossRefGoogle Scholar
MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., et al. 2000. Holocene treeline history and climate change across northern Eurasia. Quaternary Research 53(3): 302311.CrossRefGoogle Scholar
Maier, J. 1992. Genetic variation in European larch (Larix decidua Mill). American Scientific Forester 49: 3947.Google Scholar
Maruta, E. 1993. Winter water relations of timberline larch (Larix leptolepis) on Mt. Fuji. International Botanical Congress, Tokyo, 1993. Abstract 2066.Google Scholar
Matveev, A.V. & Semerikov, L.F. 1994. Structure of ecological genetic variability of Larix sibirica Lbd. at the north extent of its range. Russian Journal of Ecology 25: 158163.Google Scholar
Matveev, A.V. & Semerikov, L.F. 1995. Variability of Siberian larch (Larix sibirica Lbd.): seed quality of the polar forest limit. Russian Journal of Ecology 26: 1015.Google Scholar
Mayer, A.C. & Stöckli, V. 2005. Long-term impact of cattle grazing on subalpine forest development and efficiency of snow avalanche protection. Arctic Antarctic and Alpine Research 37(4): 521526.CrossRefGoogle Scholar
McClelland, B.R. & McClelland, P.T. 1999. Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest ‘health’. Wildlife Society Bulletin 27: 846857.Google Scholar
McClelland, B.R. & McClelland, P.T. 2000. Red-naped Sapsucker nest trees in northern Rocky Mountain old-growth forest. The Wilson Bulletin 112(1): 4450.CrossRefGoogle Scholar
McComb, A.C. 1955. The European larch: its races, site requirements and characteristics. Forest Science 1: 298318.Google Scholar
Mill, R.R. 1999. A new species of Larix (Pinaceae) from southeast Tibet and other nomenclatural notes on Chinese Larix. Novon 9: 7982.CrossRefGoogle Scholar
Miller, C.N. 1985 Pityostrobus pubescens, a new species of pinaceous cones from the late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Moiseev, P.A. 2002. Effect of climatic changes on radial increment and age structure formation in high-mountain larch forests of the Kuznetsk Ala Tau. Russian Journal of Ecology 33: 713.CrossRefGoogle Scholar
Montague, T.G. & Givinish, T.J. 1996. Distribution of black spruce versus eastern larch along peatland gradients: relationship to relative stature, growth rate and shade tolerance. Canadian Journal of Botany 74: 15141532.CrossRefGoogle Scholar
Moore, J.A., HamiltonJr, D.A., Xiao, Y. & Byrne, J. 2004. Bedrock type significantly affects individual tree mortality for various conifers in the inland Northwest, USA. Canadian Journal of Forest Research 34(1): 3142.CrossRefGoogle Scholar
Mu, C. 2003. Succession of Larix olgensis and Betula platyphylla-marse ecotone communities in Changbai Mountain. Chinese Journal of Applied Ecology 14: 1813–1219.Google ScholarPubMed
Mueller, A.D., Islebe, G.A., Hillesheim, M.B., et al. 2009. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quaternary Research 71(2): 133141.CrossRefGoogle Scholar
Nara, K. & Hogetsu, T. 2004. Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85(6): 17001707.CrossRefGoogle Scholar
Noshiro, S., Terada, K., Tsuji, S.I. & Suzuki, M. 1997. Larix–Picea forests of the Last Glacial age on the eastern slope of Towada Volcano in northern Japan. Review of Palaeobotany and Palynology 98: 207222.CrossRefGoogle Scholar
Obidowicz, A. 1993. Wahania gornej granicy lasu w poznym plejstocenie i holocenie w Tatrach [Fluctuations of the forest timberline in the Tatra Mountains during the last 12 000 years]. Dokumentacja Geograficzna 4–5.Google Scholar
Obidowicz, A. 1996. A Late Glacial–Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Palaeobotanica 36(2): 159206.Google Scholar
Ohsawa, M. 1984. Differentiation of vegetation zones and species strategies in the subalpine region of Mt. Fuji. Vegetatio 57: 1552.CrossRefGoogle Scholar
Ohsawa, M. 2005. Species richness and composition of Curculionidae (Coleoptera) in a conifer plantation, secondary forest, and old‐growth forest in the central mountainous region of Japan. Ecological Research 20(6): 632645.CrossRefGoogle Scholar
Oka, S., Ohga, B. & Kanno, H. 1992. Colonization of larch scrub and slope processes along Shichataro Ridge on the northwestern side of Mount Fuji. Quaternary Research (Tokyo) 31: 213220.CrossRefGoogle Scholar
Ostenfeld, C.H. & Larsen, C.S. 1930. The species of the genus Larix and their geographical distribution. Kgl. Videnskabernes Selskab., Biologishe Meddelser 9: 1106.Google Scholar
Pâques, L.E. 1989. A critical review of larch hybridization and its incidence on breeding strategies. Annales des sciences forestières 46(2): 141153.CrossRefGoogle Scholar
Pisaric, M.F., MacDonald, G.M., Cwynar, L.C. & Velichko, A.A. 2001. Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting late Quaternary fossil pollen assemblages. Arctic Antarctic and Alpine Research 33(1): 1927.CrossRefGoogle Scholar
Polezhaeva, M.A., Lascoux, M. & Semerikov, V.C. 2010. Cytoplasmic DNA variation and biogeography of Larix Mill in Northeastern Asia. Molecular Ecology 19: 12391252.CrossRefGoogle Scholar
Polunin, N. 1959. Circumpolar Arctic Flora. Oxford: Oxford University Press.Google Scholar
Ponel, P., Andrieu‐Ponel, V., Parchoux, F., Juhasz, I. & de Beaulieu, J.L. 2001. Late‐glacial and Holocene high‐altitude environmental changes in Vallée des Merveilles (Alpes–Maritimes, France): insect evidence. Journal of Quaternary Science 16(8): 795812.CrossRefGoogle Scholar
Quian, T., Ennos, R.A. & Helgason, T. 1995. Genetic relationships among larch species based on analysis of restriction fragment variation for chloroplast DNA. Canadian Journal of Forest Research 25: 11971202.CrossRefGoogle Scholar
Ravazzi, C., Pini, R., Breda, M., et al. 2005. The lacustrine deposits of Fornaci di Ranica (late Early Pleistocene. Italian Pre-Alps): stratigraphy palaeoenvironment and geological evolution. Quaternary International 131(1): 3558.CrossRefGoogle Scholar
Risch, A.C., Schütz, M., Krüsi, B.O., et al. 2004. Detecting successional changes in long-term empirical data from subalpine conifer forests. Plant Ecology 172: 95105.CrossRefGoogle Scholar
Rubatscher, D., Munk, K., Stohr, D., et al. 2006. Biomass expansion functions for Larix decidua: a contribution to the estimation of forest carbon stocks. Austrian Journal of Forest Science 123: 87101.Google Scholar
Salem, M.Z.M., Zeidler, A., Bohm, M., Mohamed, M.E.A. & Ali, H.M. 2015. GC/MS analysis of oil extractives from wood and bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua. BioResources 10(4): 7725–7737.CrossRefGoogle Scholar
Schorn, H.E. 1994. A preliminary discussion of fossil larches (Larix, Pinaceae) from the Arctic. Quaternary International 23: 173183.CrossRefGoogle Scholar
Selmeier, A. 2002. Silicified Tertiary woods from Iceland (Larix) and the north alpine molasse basin (Liquidambar). Mitteilungen der Bayerischen Staatssammlung fur Palaontologie und Historische und Historische Geologie 42: 139153.Google Scholar
Semerikov, V.L. & Lascoux, M. 1999. Genetic relationships amongst American Larix species based on allozymes. Heredity 83: 6270.CrossRefGoogle Scholar
Semerikov, V.L. & Lascoux, M. 2003. Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. American Journal of Botany 90: 11131123.CrossRefGoogle ScholarPubMed
Semerikov, V.L., Semerikov, L.F. & Lascoux, M. 1999. Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82: 193204.CrossRefGoogle Scholar
Semerikov, V.L., Zhang, H., Sun, M. & Lascoux, M. 2003. Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmic and nuclear DNA. Molecular Phylogenetics and Evolution 27: 173184.CrossRefGoogle ScholarPubMed
Semerikov, V.L., Iroshnikova, A.I. & Lascoux, M. 2007. Mitochondrial DNA variation pattern and postglacial history of the Siberian Larch (Larix sibirica Lebed.). Russian Journal of Ecology 38: 147154.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shick, K.R., Pearson, E. & Ruggiero, L.F. 2006. Forest habitat associations of the golden-mantled ground squirrel: implications for fuels management. Northwest Science 80(2): 133.Google Scholar
Shigapov, Z.K., Putenikhin, V.P. & Shigapov, A.C. 1998. Genetic structure of Ural populations of Larix sukczwii Dyl. Genetica 34: 6574.Google Scholar
Shilo, N., Lozhkin, A., Anderson, P., et al. 2008. First data on the expansion of Larix gmelinii (Rupr.) Rupr. into Arctic regions of Beringia during the early Holocene. Doklady Earth Sciences 423: 12651267.CrossRefGoogle Scholar
Shurkal, A.V., Podoga, A.V. & Semeriko, V.L. 1989. Allozyme polymorphism of Siberian larch (Larix sibirica). Genetika 25: 18991901.Google Scholar
Sindelar, J. 1965. Preliminary research results of the morphological and botanical characters of European larch, Larix deciduas Mill. Communications Instituti Forestalis Czechosloveniae, Praha 8: 101113.Google Scholar
Stoffel, M., Lièvre, I., Monbaron, M. & Perret, S. 2005. Seasonal timing of rockfall activity on a forested slope at Täschgufer (Swiss Alps): a dendrochronological approach. Zeitschrift für Geomorphologie 49: 89106.Google Scholar
Sun, X.-M., Zhang, S.-G., Qi, L.-W., et al. 2003. Genetic variations in pulpwood qualities of open-pollinated Japanese larch families. Forest Research 16: 515522.Google Scholar
Tarasov, P.E., Jolly, D. & Kaplan, J.O. 1997. A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology 136(1–4): 281292.CrossRefGoogle Scholar
Tarasov, P., Müller, S., Andreev, A., Werner, K. & Diekmann, B. 2009. Younger Dryas Larix in eastern Siberia: a migrant or survivor?. PAGES news 17(3): 122123.CrossRefGoogle Scholar
Tchermak, L. 1935. Die Natürlich Verbreitung der Lärche in den Ostalpen. Wein: Julius Springer Verlag.CrossRefGoogle Scholar
Tikhinova, I.V. & Stolyarova, O.A. 2008. Individual sensitivity of Larix sibirica L. in open woodland of the Siberian forest-steppe. Contemporary Problems of Ecology 1: 682686.CrossRefGoogle Scholar
Treter, U., Ramsbeck-Ullmann, M., Böhmer, H.J. & Bösche, H. 2002. Vegetationsdynamik im Vorfeld des Lys-Gletschers (Valle di Gressoney/Region Aosta/Italien) seit 1821 [Vegetation Dynamics in the Lys Glacier Forefield (Valle di Gressoney/Aosta Region/Italy) since 1821]. Erdkunde 56: 253267.CrossRefGoogle Scholar
Troup, R.S. 1921. The Silviculture of Indian Trees, Volume I., Dehradun: International Book Distributors.Google Scholar
Trubina, M.R. 2006. Distribution of plants differing in attitude toward thermal conditions in communities of the timberline ecotone on Mount Iremel, the Southern Urals. Russians Journal of Ecology 37: 306315.CrossRefGoogle Scholar
Tseplyaev, V.P. 1961. The Forests of the U.S.S.R. Moscow: LESA SSSR (in Russian; translated from Russian by Prof. A. Gourevitch, Israel Program for Scientific Translation, Jerusalem, 1965).Google Scholar
Tsuji, S.I., Minaki, M. & Osawa, S. 1984. Paleobotany and paleoenvironment of the late Pleistocene in the Sagami region, central Japan. Quaternary Research 22(4): 279296.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Uemura, S., Tsuda, S., & Hasegawa, S. 1990. Effects of fire on the vegetation of Siberian taiga predominated by Larix dahurica. Canadian Journal of Forest Research 20: 547553.CrossRefGoogle Scholar
Vaskovskii, A.P. 1959. Genesis and geography of forest soils in the extreme northeast of the USSR. Kolyma Journal 1: 1523.Google Scholar
Vedrova, E.F., Shugalei, L.S. & Stakanov, V.D. 2002. The carbon balance in natural and disturbed forests of the southern taiga in central Siberia. Journal of Vegetation Science 13(3): 341350.CrossRefGoogle Scholar
Vlasenko, V. & Parfenova, E. 2005. Biodiversity of Sayano-Shushensky nature reserve. Ekologia(Bratislava)/Ecology(Bratislava) 24: 8088.Google Scholar
Wang, H.X., Zhu, J.J., Chen, Y.M., et al. 2005. Study on the growth of old Larix leptolepis stands in mountainous regions of eastern Liaoning Province. Forest Research 18: 524529.Google Scholar
Wang, Q., Wang, M. & Hao, J. 2012. Genetic variation in natural populations of prince Rupprecht’s larch (L. principis-rupprechtii) with elevation in Guandi Mountain, China. International Conference on Biomedical Engineering and Biotechnology, Macau, China.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wei, X. & Wang, X.-Q. 2003. Phylogenetic split of Larix: evidence from inherited cpDNA trnT–trnF region. Plant Systematics and Evolution 239: 6177.CrossRefGoogle Scholar
Wei, X. & Wang, X.-Q. 2004. Recolonization and radiation in Larix: evidence from nuclear ribosomal DNA paralogues. Molecular Ecology 13: 31153123.CrossRefGoogle ScholarPubMed
Wei, X., Liu, S., Zhou, G. & Wang, C. 2005. Hydrological processes in major types of Chinese forest. Hydrological Processes 19: 6375.CrossRefGoogle Scholar
Werner, K., Tarasov, P.E. Andreev, A.A., et al. 2009. A 12–5-kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verhoyansk Mountains, East Siberia, Russia. Boreas 39: 247261.Google Scholar
Wheeler, E.A. & ArnetteJr, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Whitaker, A.C. & Sugiyama, H. 2005. Seasonal snowpack dynamics and runoff in a cool temperate forest: lysimeter experiment in Niigata, Japan. Hydrological Processes: An International Journal 19(20): 41794200.CrossRefGoogle Scholar
Whitlock, C. & Dawson, M.R. 1990. Pollen and vertebrates of the early Neogene Haughton Formation, Devon Island, Arctic Canada. Arctic 43: 324330.CrossRefGoogle Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wohlfarth, B., Hannon, G., Feurdean, A., et al. 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (∼ 15,000–13,600 cal yr BP). Quaternary Science Reviews 20(18): 18971914.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiaodong, Y. & Shugart, H.H. 2005. FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests. Journal of Biogeography 32(9): 16411658.CrossRefGoogle Scholar
Xu, H. & Fan, Z. 1993. Age structure dynamics of virgin Larix gmelinii forest. Chinese Journal of Applied Ecology 4: 229233.Google Scholar
Yang, C. & Liu, G. 2001. Geographic variation of Larix olgensis. Chinese Journal of Applied Ecology 12: 801805.Google Scholar
Yang, G., Joo, Y.-C., Shibuya, M., Yajima, T. & Takashi, K. 1998. The occurrence and diversity of ectomycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycological Research 102: 15031508.CrossRefGoogle Scholar
Yano, M. 1994. Variation of ‘Japanese larch’ cones at the northern limit of distribution, and its palaeobotanical implication. Quaternary Research (Tokyo) 33: 95105.CrossRefGoogle Scholar
Yu, D., Wang, S., Tang, L., et al. 2005. Relationship between tree-ring chronology of Larix olgensis in Changbei Mountains and the climate change. Chinese Journal of Applied Ecology 16: 1420.Google Scholar
Yura, H. 1988. Comparative ecophysiology of Larix kaempferi (Lamb.) Carr. and Abies veitchii Lindl. 1. Seedling establishment on bare ground on Mt. Fuji. Ecological Research 3: 6773.CrossRefGoogle Scholar
Zhang, W., Wang, Y. Kang, Y. & Liu, X. 2005. Spatial distribution pattern of Larix chinensis population on Taibai Mt. Chinese Journal of Applied Ecology 16: 207212.Google ScholarPubMed
Zhanqing, H. and Wang, L. 1998. Water conservation capacities of soil with major forest types in mountainous regions of eastern Liaoning Province. Chinese Journal of Applied Ecology 9(3): 237241.Google Scholar

References

Alaback, P.B. 1982. Dynamics of understorey biomass in Sitka spruce: western hemlock forests of southeast Alaska. Ecology 63: 19321948.CrossRefGoogle Scholar
Amarasinghe, V. & Carlson, J.E. 1998. Physical mapping and characterization of 5S rRNA genes in Douglas-fir. Journal of Heredity 89: 495500.CrossRefGoogle ScholarPubMed
Arsenault, A. 2003. A note on the ecology and management of old-growth forests in the montane Cordillera. Forestry Chronicle 79: 441454.CrossRefGoogle Scholar
Axelrod, D.I. 1964 The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Science 51: 1-148.Google Scholar
Bailey, J.D. & Harrington, C.A. 2006. Temperature regulation of bud-burst phenology within and among years in a Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiology 26: 421430.CrossRefGoogle Scholar
Baker, R.G. & Waln, K.A. 1985. Quaternary pollen records from the Great Plains and Central United States. Pp 191203 in BryantJr., V.M. and Holloway, R.G. (eds.), Pollen Records of Late- Quaternary North American Sediments. Dallas, TX: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Beardsley, D. & Warbington, R. 1996. Old growth in northwest California National Forests. US Department of Agriculture Forest Service, Research Paper.CrossRefGoogle Scholar
Benkman, C.W. 1993. Decline of the red crossbill of Newfoundland. American Birds 47: 225229.Google Scholar
Betancourt, J.L., Rylander, K.A., Peñalba, C. & McVickar, J.L. 2001 Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 165(1–2): 7195.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2002. Origin, development and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Canadian Journal of Forest Research 32: 353372.CrossRefGoogle Scholar
Carey, A.B. 1995. Sciurids in Pacific Northwest managed and old-growth forests. Ecological Applications 5: 648661.CrossRefGoogle Scholar
Christy, R.E. & West, S.D. 1993. Biology of bats in Douglas-fir forests. General Technical Reports, US Department of Agriculture, Forest Service.CrossRefGoogle Scholar
Clement, J.P. & Shaw, D.C. 1999. Crown structure and the distribution of epiphyte functional group biomass in old-growth Pseudotsuga menziesii trees. Ecoscience 6: 243254.CrossRefGoogle Scholar
Doyle, J. 1926. The ovule of Larix and Pseudotsuga. Proceedings of the Royal Irish Academy 37B: 170180.Google Scholar
El-Kassaby, Y.A., Colangeli, A.M. & Sziklai, O. 1983. A numerical analysis of karyotypes in the genus Pseudotsuga. Canadian Journal of Botany 61: 536544.CrossRefGoogle Scholar
Engelhardt, H. & Kinkelin, F. 1908. 1. Die Oberpliozaenflora und fauna des Untermaintales, insbesondere des Frankfurter Klaerbeckens. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft 29(3): 151289.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fowells, H.A. 1965. Silvics of Forest Trees of the United States. Washington, DC: USDA.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural vegetation of Oregon and Washington. US Department of Agriculture Forest Service, General Technical Report.Google Scholar
Franklin, J.F., Spies, T.A. & Van Pelt, R. 2002. Disturbance and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399423.CrossRefGoogle Scholar
Frazer, G.W., Trofymow, J.A. & Lertzzman, K.P. 2000. Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Canadian Journal of Forest Research 30: 239256.CrossRefGoogle Scholar
Furutani, M. 1989. Stratigraphical subdivision and pollen zonation of the Middle and Upper Pleistocene in the Coastal Area of Osaka Bay, Japan. Journal of Geosciences Osaka City University 32: 91121.Google Scholar
Gagon, D. & Bradfield, G.E. 1987. Gradient analysis of west central Vancouver Island forests. Canadian Journal of Botany 65: 822833.CrossRefGoogle Scholar
Gernandt, D.S. & Liston, A. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). American Journal of Botany 86(5): 711723.CrossRefGoogle ScholarPubMed
Gray, A.N. & Spies, T.A. 1996. Gap size, within-gap position and canopy structure effects on seedling establishment. Journal of Ecology 84: 635645.CrossRefGoogle Scholar
Hansen, H.P. 1942. A pollen study of lake sediments in the lower Willamette Valley of western Oregon. Bulletin of the Torrey Botanical Club 69: 262280.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hebda, R.J., Warner, B.G. & Cannings, R.A. 1990. Pollen, plant macrofossils, and insects from fossil woodrat (Neotoma cinerea) middens in British Columbia. Géographie physique et Quaternaire 44(2): 227234.CrossRefGoogle Scholar
Hershey, K.T., Meslow, E.C. & Ramsey, F.L. 1998. Characteristics of forests at spotted owl nest sites in the Pacific Northwest. The Journal of Wildlife Management 62: 13981410.CrossRefGoogle Scholar
Heusser, C.J. 1969. Modern pollen spectra from the Olympic Peninsula, Washington. Bulletin of the Torrey Botanical Club 96: 407417.CrossRefGoogle Scholar
Hunter, J.C. & Parker, V.T. 1993. The disturbance regime of an old-growth forest in coastal California. Journal of Vegetation Science 4: 1924.CrossRefGoogle Scholar
Ishii, H. & Ford, E.D. 2002. Persistence of Pseudotsuga menziesii (Douglas-fir) in temperate coniferous forests of the Pacific Northwest Coast, USA. Folia Geobotanica 37: 6369.CrossRefGoogle Scholar
Ishii, H. & Kadotani, T. 2006. Biomass and dynamics of attached dead branches in the canopy of 450-year-old Douglas-fir trees. Canadian Journal of Forest Research 36: 378389.CrossRefGoogle Scholar
Ishii, H. & Wilson, M.E. 2001. Crown structure of old-growth Douglas-fir in the western Cascade range, Washington. Canadian Journal of Forest Research 31: 12501261.CrossRefGoogle Scholar
Jackson, S.T., Betancourt, J.L., Lyford, M.E., Gray, S.T. & Rylander, K.A. 2005. A 40,000‐year woodrat‐midden record of vegetational and biogeographical dynamics in north‐eastern Utah, USA. Journal of Biogeography 32(6): 10851106.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777.CrossRefGoogle ScholarPubMed
Kaufmann, M.R., Regan, C.M., & Brown, P.M. 2000. Heterogeneity in Ponderosa pine/Douglas-fir forests: age and size structure in unlogged and logged landscapes of central Colorado. Canadian Journal of Forest Research 30: 698711.CrossRefGoogle Scholar
Keeton, W.S. & Franklin, J.F. 2005. Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests ? Ecological Monographs 75: 103118.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Labandeira, C.C. (2001). The rise and diversification of insects. In Briggs, D. & Crowther, P. (eds.), Palaeobiology II. New York: Wiley.Google Scholar
Lanner, R.M., Hutchins, H.E. & Lanner, H.A. 1984. Bristlecone pine and Clark’s nutcracker: probable interaction in the White Mountains, California. The Great Basin Naturalist 44: 357360.Google Scholar
Larson, A.J. & Franklin, J.F. 2005. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218: 2536.CrossRefGoogle Scholar
Li, H.-L. 1975. Coniferae. Pp 499544 in DeVol, C.E. (ed.), Flora of Taiwan. Vol 1. Pteridophyta and Gymnospermae. Taipei: Epoch Publishing.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomic Sinica 31: 405412.Google Scholar
Liu, J.M. 2000. The seed bank of the forest community at the pinnacles at Maolin Karst hilly area in Guizhou. Forest Research 13: 4450.Google Scholar
Mägdefrau, K. 1953. Paläobotanik. Bericht Über das Jahr 1951: 99161.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
McClelland, B.R. & McClelland, P.T. 1999. Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest ‘health’. Wildlife Society Bulletin 27: 846857.Google Scholar
McClune, B. 1993. Gradients in epiphyte biomass in three Pseudotsuga: Tsuga forests of different ages in Western Oregon and Washington. Bryologist 96: 405411.CrossRefGoogle Scholar
McClune, B. 1997. Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest Science 71: 145152.Google Scholar
McConnon, H., Knowles, R.L., & Hansen, L.W. 2004. Provenance affects bark thickness in Douglas fir. New Zealand Journal of Forestry Science 34: 7786.Google Scholar
Miki, S., 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miller, C.N. 1985 Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
North, M. & Greenberg, J. 1998. Stand conditions associated with truffle abundance in western hemlock/Douglas-fir forests. Forest Ecology and Management 112: 5565.CrossRefGoogle Scholar
Parker, G.C. 1997. Canopy structure and light environment of an old-growth Douglas-fir/Western Hemlock forest. Northwest Science 71: 261270.Google Scholar
Poage, N.J. & Tappeiner, J.C. 2002. Long-term patterns of diameter of basal area growth of old-growth Douglas-fir trees in western Oregon. Canadian Journal of Forest Research 32: 12321243.CrossRefGoogle Scholar
Poage, N.J. & Tappeiner, J.C. 2005. Tree species and size structure of old-growth Douglas-fir forests in central western Oregon, USA. Forest Ecology and Management 204: 329343.CrossRefGoogle Scholar
Pypker, T.G., Unsworth, M.H. & Bond, B.J. 2006. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research 36(4): 819832.CrossRefGoogle Scholar
Rogers, S.O., Langenegger, K. & Holdenrieder, O. 2000. DNA changes in tissues entrapped in plant resins (the precursors of amber). Naturwissenschaften 87: 7075.CrossRefGoogle ScholarPubMed
Rypins, S., Reneau, S.L., Byrne, R. & Montgomery, D.R. 1989. Palynologic and geomorphic evidence for environmental change during the Pleistocene–Holocene transition at Point Reyes Peninsula, central coastal California. Quaternary Research 32(1): 7287.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schowalter, T.D. 1995. Canopy arthropod communities in relation to forest age and alternative harvest practices in western Oregon. Forest Ecology and Management 78(1–3): 115125.CrossRefGoogle Scholar
Schowalter, T.D. & Ganio, L.M. 1998. Vertical and seasonal variation in canopy arthropod communities in an old-growth conifer forest in southwestern Washington, USA. Bulletin of Entomological Research 88(6): 633640.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shaw, D.C., Franklin, J.F., Bible, K., et al. 2004. Ecological setting of the Wind River old-growth forest. Ecosystems 7: 427439.CrossRefGoogle Scholar
Shaw, D.C., Chen, J., Freeman, E.A. & Braun, D.M. 2005. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-fir–western hemlock forest. Canadian Journal of Forest Research 35: 9901001.CrossRefGoogle Scholar
Sillett, S.C. 1994. Growth rates of two epiphytic cyanolichen species at the edge and in the interior of a 700-year-old Douglas fir forest in the Western Cascades of Oregon. Bryologist 97: 321324.CrossRefGoogle Scholar
Sillett, S.C. & Rambo, T.R. 2000. Vertical distribution of dominant epiphytes in Douglas-fir forests of the central Oregon Cascades. Northwest Science 74: 4449.Google Scholar
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Spies, T.A., Franklin, J.F. & Thomas, T.B. 1988. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69: 16891702.CrossRefGoogle Scholar
Spies, T.A., Franklin, J.F. & Klopsch, M. 1990. Canopy gaps in Douglas-fir forests of the Cascade Mountains. Canadian Journal of Forest Research 20: 649658.CrossRefGoogle Scholar
Stewart, G.H. 1986. Forest development in canopy openings in old-growth Pseudotsuga forests of the western Cascade Range, Washington. Canadian Journal of Forest Research 16: 558568.CrossRefGoogle Scholar
Stewart, G.H. 1989. The dynamics of old-growth Pseudotsuga forests in the western Cascade Range, Oregon, USA. Vegetation 82: 7994.CrossRefGoogle Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA Forest Service.CrossRefGoogle Scholar
Tanai, T. & Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4. Geology and Mineralogy 15(1–2): 281359.Google Scholar
Thompson, R.S. & Mead, J.I.. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17(1): 3955.CrossRefGoogle Scholar
Tsukada, M. 1982. Cryptomeria japonica: glacial refugia, and late-glacial and postglacial migration. Ecology 63: 10911105.CrossRefGoogle Scholar
Vander-Wall, S.B., Borchert, M.I. & Gworek, J.R. 2006. Secondary dispersal of bigcone Douglas-fir (Pseudotsuga macrocarpa) seeds. Acta Oecologica 30: 100106.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wheeler, E.A. & ArnetteJr, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Winter, L.E., Brubaker, L.B., Franklin, J.F., Miller, E.A. & DeWitt, D.Q. 2002a. Initiation of an old-growth Douglas-fir stand in the Pacific Northwest: a reconstruction from tree-ring records. Canadian Journal of Forest Research 32: 10391056.CrossRefGoogle Scholar
Winter, L.E., Brubaker, L.B., Franklin, J.F., Miller, E.A. & DeWitt, D.Q. 2002b. Canopy disturbance over the five century lifetime of an old-growth Douglas-fir stand in the Pacific Northwest. Canadian Journal of Forest Research 32: 10571070.CrossRefGoogle Scholar
Worona, M.A. & Whitlock, C. 1995. Late Quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon. Geological Society of America Bulletin 107(7): 867876.2.3.CO;2>CrossRefGoogle Scholar
Zalewska, Z. 1961. Coniferae: Taxaceae, Podocarpaceae, Pinaceae, Taxodiaceae. Cupressaceae. Flora kopalna Turowa kolo Bogatyni 11(2). [Flora excavated in Turowa near Bogatyni.] Prace Museum Ziemi 4: 1949. English summary, pp. 92–102.Google Scholar
Zarnowitz, J.E. & Manuwal, D.A. 1985. The effects of forest management on cavity-nesting birds in northwestern Washington. Journal of Wildlife Management 49: 255263.CrossRefGoogle Scholar
Zenner, E.K. 2005. Development of tree-size distribution in Douglas-fir forests under differing disturbance regimes. Ecological Applications 15: 701714.CrossRefGoogle Scholar

References

Ager, T.A., Matthews, J.V. Jr. & Yeend, W. 1994. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: palynology, paleobotany, paleoenvironmental reconstruction and regional correlation. Quaternary International 22: 185206.CrossRefGoogle Scholar
Akkiraz, M.S., Akgun, F., Orcen, S., Bruch, A.A. & Mosbrugger, V. 2006. Stratigraphic and paleoenvironmental significance of Bartonian-Priabonian (Middle–Late Eocene) microfossils from the Bascesme formation, Denzil Province, western Anatolia. Turkish Journal of Earth Sciences 15: 155180.Google Scholar
Anderson, R.S. 1990. Holocene forest development and paleoclimates within the central Sierra Nevada, California. Journal of Ecology 78: 470489.CrossRefGoogle Scholar
Argant, A. 2004. Les Carnivores du gisement Pliocène final de Saint-Vallier (Drôme, France). Geobios 37: S133S182.CrossRefGoogle Scholar
Aubert, S., Belet, J.-M., Bouchette, A., et al. 2004. Dynamique tardiglaciaire et holocene de la vegetation a l’etage montagnard dans les Pyrenees centrales. Comptes Rendus, Biologies 327: 381388.CrossRefGoogle Scholar
Bertini, A. 2000. Pollen record from Colle Crti and Cesi: Early and Middle Pleistocene mammal sites in the Umbro-Marchean Apennine mountains (central Italy). Journal of Quaternary Science 15: 825.3.0.CO;2-6>CrossRefGoogle Scholar
Bertolani-Marchetti, D. & Lolli, F. 1983. Palinologia di una cava nell’alta pianura modenese in relazione a vicende ambientali coeve alla sedimentozione, e agli approti pollinici secondari di formazioni plioceniche [Modena – Italy]. Geograpfia Fisca e Dinamica Quaternaria 6: 4855.Google Scholar
Blinnikov, M., Busacca, A. & Whitlock, C. 2002. Reconstruction of the Late Pleistocene grassland of the Columbia Basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 77101.CrossRefGoogle Scholar
Blyakharchuk, T.A. & Sulerzhitsky, L.D. 1999. Holocene vegetational changes in the forest zone of western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. Holocene 9: 621628.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S. van der Knaap, W.O. & Ammann, B. 2004. Late Glacial and Holocene vegetational changes on the Ulgan high-mountain plateau, Altai Mountains, south Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Bogis, P. 2010. Where have all the monarchs gone ? Butterfly Observer 46: 67.Google Scholar
Browicz, K. 1982. Chlorology of Trees and Shrubs in South-West Asia. Vol. 1. Kórnik: Eigenverlag.Google Scholar
Brown, K.J. & Hebda, R.J. 2003. Coastal rainforest connections disclosed through Late Quaternary vegetation, climate and fire history investigation from the Mountain Hemlock zone on southern Vancouver Island, British Columbia, Canada. Review of Palaeobotany and Palynology 123: 247269.CrossRefGoogle Scholar
Budantsev, L. Yu. 1989. The fossil flora and phytostratigraphy of the Paleogene of Western Kamchatka. Pp. 1731 in Problems of Paleofloristics and Stratigraphy. Leningrad. [in Russian].Google Scholar
Budantsev, L. Yu. 1994. The fossil flora of the Paleogene climatic optimum in north eastern Asia. Pp 297307 in Boulter, M.C. & Fisher, H.C. (eds.) Cenozoic Plants and Climates of the Arctic. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Burckle, L.H. 1993. Late Quaternary interglacial stages warmer than present. Quaternary Science Reviews 12: 825831.CrossRefGoogle Scholar
Burjachs, F. 1994. Palynology of the Upper Pleistocene and Holocene of the north-east Iberian peninsula: Plka de l’estany (Catalonia). Historical Biology 9: 1733.CrossRefGoogle Scholar
Campbell, C.C., Hudton, W.F. & Sharp, A.J. 1964. Great Smoky Mountains Wildflowers. Tennessee: University of Tennessee Press.Google Scholar
Carriere, E.A. 1855. Traite General des Coniferes. Paris.Google Scholar
Clet, M., Occhietti, S. & Richards, P.J.H. 1991. Palynologie et lithostratigraphie du Pleistocene du site de Donnacona, Vallee du Saint-Laurent, Quebec. Geographie Physique et Quaternaire 45: 125140.CrossRefGoogle Scholar
Cleveringa, P., Meijer, T., Van Leeuwen, R.J.W., et al. 2000. The Eemian stratoype locality at Amersfoort in the central Netherlands: a re-evaluation of old new data. Netherlands Journal of Geosciences 79: 197216.CrossRefGoogle Scholar
Coode, M.J.E. & Cullen, J. 1965. Gymnospermae. Pp 6785 in Davis, P.H. (ed.) Flora of Turkey and the East Aegean Islands. Vol.1. Edinburgh: Edinburgh University Press.Google Scholar
Cwynar, L.C. 1987. Fire and forest history of the north Cascade Range. Ecology 68: 791802.CrossRefGoogle Scholar
Davis, O.K. 1998. Palynological evidence for vegetation cycles in a 1.5 million year pollen record from the Great Salt Lake, Utah, USA. Palaeogeography. Palaeoclimatology, Palaeoecology 138: 175185.CrossRefGoogle Scholar
Doit, M.F. 1999. Le Pleistocene de la facade Atlantique du Nord-Medoc (France): synthese sur la palynologie des ‘Argiles du Gurp’ s.l. et comparaison avec les donnees de l’Aquitaine. Quaternaire 10: 213225.CrossRefGoogle Scholar
Engelmann, G. 1878. A synopsis of the American Firs (Abies Link). Transactions St. Louis Academy of Science 3: 593602.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers of the Eocene thunder Mountain flora, Idaho, U.S.A. Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Fall, P.L. 1997. Timberline fluctuations and Late Quaternary paleoclimates in the southern rocky Mountains, Colorado. Geological Society of America Bulletin 109: 13061320.2.3.CO;2>CrossRefGoogle Scholar
Farjon, A. & Page, C.N. 1999. Conifers: Status Survey and Conservation Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Farjon, A. & Rushforth, K.D. 1989. A classification of Abies Miller (Pinaceae). Notes of the Royal Botanic Garden Edinburgh 46: 5979.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography. Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Field, M.H., De Beaulieu, J.L., Guiot, J. & Ponel, P. 2000. Middle Pleistocene deposits at La Cote, Val-de-Lans, isere department, France: plant macrofossil, palynological and fossil insect investigations. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 5383.CrossRefGoogle Scholar
Florin, R. 1934. Dr. H. Smith’s botanical expedition to western China in 1934: enumeration of gymnosperms. Acta Horti Bergiani 14(8): 343384.Google Scholar
Florin, R. 1948. Enumeration of gymnosperms collected on Swedish expeditions to western and north-western China in 1930–1934. Acta Horti Bergiana 14: 343384.Google Scholar
Franco, J. do A. 1950. Abetos. Lisboa.Google Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gordon, G. 1858. The Pinetum. London.Google Scholar
Graham, A. 1989. Late Tertiary paleolatitudes and vegetational zonation in Mexico and Central America. Acta Botanica Neerlandica 38: 417424.CrossRefGoogle Scholar
Graham, A. 1993. Historical factors and biological diversity in Mexico. Pp 109127 in Ramamoorthy, T.P. et al., (eds.), Biological Diversity in Mexico. Oxford: Oxford University Press.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W. & Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Science 42: 167185.CrossRefGoogle Scholar
Gruger, E. 1995. Correlation of Middle-European Late-Pleistocene pollen sequences of the Pfefferbichl und Zeifen types. Meddelingen, Rijks Geologische Dienst 52: 97104.Google Scholar
Gudoshnikov, S.V. 1981. On the origin of the mountain taiga with Abies sibirica from the south of Siberia. Botanicheskiy Zhurnal 66: 341352 [in Russian].Google Scholar
Han, H.-Y. & Yu, J.-B. 1988. Pollen analysis and paleoenvironment study of Late Pleistocene. Acta Botanica Sinica 30: 7684.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in southern Kyush, Japan. Quaternary Research (Tokyo) 23: 120.CrossRefGoogle Scholar
Hickel, R. 1906–1908. Notes pour servir a la determination practique des Abietinees. Bulletin Societe Dendrologique France 2: 4558, 3: 5–18, 4: 41–48, 5: 82–86, 7: 5–10, 9: 179–185, 10: 201–208.Google Scholar
Hu, S.Y. 1964. Notes on the flora of China. IV. Gymnospermae. Taiwania 10: 1362.Google Scholar
Hutton, M.J., MacDonald, G.M. & Mott, R.J. 1994. Postglacial vegetation history of the Mariana Lake region, Alberta. Canadian Journal of Earth Sciences 31: 418425.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13: 335344.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1986. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 2. Aihmu-Innai area (Upper Pleistocene). Journal Geological Society of Japan 92: 591598.Google Scholar
Iwauchi, A. & Hase, Y. 1987. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 3. Southern part of Kusu Basin (Lower and Middle Pleistocene). Journal Geological Society of Japan 93: 469489.Google Scholar
Iwauchi, A. & Hase, Y. 1989. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 4 Oyama-Tsuetate area (Lower Pleistocene). Journal Geological Society of Japan 93: 469489.Google Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jackson, S.T., Overpeck, J.T., Webb, T. III, Keattch, S.E. & Anderson, K.H. 1997. Mapped plant-macrofossils and pollen records of Late Quaternary vegetation change in eastern North America. Quaternary Science Reviews 16: 170.CrossRefGoogle Scholar
Jha, M.N., Rathore, R.K. & Pande, P. 1984. Soil factors effecting the natural regeneration of Silver Fir in Himachal Pradesh. Indian Journal of Forestry 110: 293298.Google Scholar
Kamoi, Y., Saito, M., Fujita, H. & Kobayashi, I. 1988. Plant fossil assemblage of the Last Glacial age in the northern part of Nigata Prefecture, central Japan. Quaternary Research (Tokyo) 27: 2129.CrossRefGoogle Scholar
Kong, Z.-C & Du, N.-Q. 1984. The macrofossilplants and pollen assemblages in the last Glacial in Sanjiang Plain. Scientia Geographica Sinica 4: 7680.Google Scholar
Kong, Z.-C, Du, N.-Q. & Zhang, Z.-B. 1982. Vegetational development and climatic changes in the last 10 000 years in Beijing. Acta Botanica Sinica 24: 172181.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxonomica Sinica 29: 393407.Google Scholar
Li, X.-Q, Li, C.-S., Lu, H.-Y, Dodson, J.R. & Wang, Y.-F. 2004. Paleovegetation and paleoclimate in Middle-Late Pliocene, Shanxi, central China. Palaeogeography, Palaeoclimatology, Palaeoecology 210: 5766.CrossRefGoogle Scholar
Liu, T.S. 1971. A Monograph of the Genus Abies. Taipei: Department of Forestry, College of Agriculture, National Taiwan University.Google Scholar
Matsushita, M. 1989. Holocene vegetation history in Haibara on Omaezaki Point, central Japan. Japanese Journal of Ecology 39: 183188.Google Scholar
Matsushita, M. 1990. Holocene vegetation history of the Matsuzaki Lowland on the Izu Peninsula, central Japan. Japanese Journal of Ecology 40: 15.Google Scholar
Matzenko, A.E. 1957. Abieties geronotogeae clavis analytica. Notes Systematic Leningrad 18: 311315.Google Scholar
Matzenko, A.E. 1963. Observations on the genus Abies Mill. Bot. Mater. Gerb. Botanical Institute Komarova Akad. Naauk. SSSR 22: 33-42 [in Russian].Google Scholar
Matzenko, A.E. 1964. The firs of the eastern hemisphere. Trudy Botanical Institute Akad. Nauk. SSSR 1: 13 [in Russian].Google Scholar
Matzenko, A.E. 1968. Novitates systematicae plantarum vascularlum, series novae generis Abies Mill. Leningrad [in Latin and Russian].Google Scholar
Mayr, H. 1890. Monographie der Abietineen des Japanischen Reiches. Munchen.Google Scholar
McVaugh, R. 1992. Flora Novo-Galiciana: A Descriptive Account of the Vascular Plants of Western Mexico. Vol. 17: Gymnosperms and Pteridophytes. Ann Arbor: University of Michigan Herbarium.Google Scholar
Moss, P.T., Greenwood, D.R. & Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okangan Highlands (British Columbia – Washington State) from palynology. Canadian Journal of Earth Science 42: 187204.CrossRefGoogle Scholar
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. Quaternary Research (Tokyo) 31: 389397.CrossRefGoogle Scholar
Nemeth, K., Martin, U. & Phillippe, M. 1999. Eroded porus-media aquifer controlled hydrovolcanic centers in the south Lake Balaton region, Hungary: the Bolgar Volcano. Acta Geologica Hungarica 42: 251266.Google Scholar
Nicol-Pichard, S. 1985. Analyse pollinique sur materiel carotte en site archeologique (caune de l’Arago, Tautavel, Pyrenees-Orientakes). Comptes Rendus, Academie des Sciences, Serie II, 300: 10391044.Google Scholar
Noshioro, S., Terada, K., Tsuji, S.I., & Suzuki, M. 1997. LarixPicea forests of the last Glacial age on the eastern slope of Towada volcano in northern Japan. Review of Palaeobotany and Palynology 98: 207222.CrossRefGoogle Scholar
O’Brien, C.E. & Jones, R.L. 2003. Early and Middle Pleistocene vegetation history of the Medoc region, southwest France. Journal of Quaternary Science 18: 557579.CrossRefGoogle Scholar
Okuda, M., Yasuda, Y. & Setoguchi, T. 2001. Middle to Late Pleistocene vegetation history and climatic changes at Lake Kopais, southeast Greece. Boreas 30: 7382.CrossRefGoogle Scholar
Okuda, M., Nakazato, H., Miyoshi, N., et al. 2006. MIS11–19 pollen stratigraphy from the 250-m Chosi core, northeast Boso peninsula, central Japan: implication for the early/mid-Bruhes (400–780 ka) climate signals. Island-Arc 15: 338354.CrossRefGoogle Scholar
Ooi, N., Minaki, M. & Noshiro, S. 1990. Vegetation changes around the last Glacial Maximum and effects of the Aira-Tn ash, at the Itagi-Teragatani site, central Japan. Ecological Research 5: 8191.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Patschke, W. 1913. Uber die extratropischen ostasiatischen Koniferen und ihre Bedeutung fur die Pflanzengeographische Gliederung ostasiens. Botanisches Jahrbucher Systematic 48: 626776.Google Scholar
Paudayal, K.N. 2005. Late Pleistocene assemblages from the Thimi Formation, Kathmandu Valley, Nepal. Island-Arc 14: 328337.CrossRefGoogle Scholar
Porsild, A.E. & Cody, W.J. 1980. Vascular Plants of Continental North-West Territories, Canada. Ottawa: National Museum of Natural Sciences.CrossRefGoogle Scholar
Rushforth, K. 1987. Conifers. London: Christopher Helm.Google Scholar
Rushforth, K.D. 1976. Tree genera – 5. The Silver Firs – Abies. Arboricultural Journal 3: 3746.CrossRefGoogle Scholar
Rushforth, K.D. 1986. Notes on Chinese Silver Firs. 3. Notes of the Royal Botanic Garden Edinburgh 43: 269275.Google Scholar
Rypins, S., Reneau, S.L., Byrne, R. & Montgomery, D.R. 1989. Palynological and geomorphic evidence for environmental change during the Pleistocene–Holocene transition at Point Reyes Peninsula, central coastal California. Quaternary Research 32: 7287.CrossRefGoogle Scholar
Sahni, K.C. 1990. Gymnosperms of India and Adjacent Countries. Dehradun: Bishen Singh and Mahendra Pal Singh India.Google Scholar
Sanchez, X.M. 1964. Contribucion al conciamiento de la ecologia de los bosques de Oyamel (Abies religiosa) (H.B.K.) Schl. et Cham. en la Valle de Mexico. PhD thesis. Instituto Politenico Nacional, Mexico.Google Scholar
Sargent, C.S. 1898. The Silva of North America. Vol. 12. Boston.Google Scholar
Sasaki, N. 2003. A 700-year landscape history of dwarf bamboo (Sasa): Nikko fir community in the sub-alpine zone of Mt. Kemegamori, Shikoku Island, Japan. Japanese Journal of Ecology 53: 219232.Google Scholar
Savvinova, G.M. 1985. Pleistocene and Holocene vegetation on the upper reaches of the Indigirka and Kolyma Rivers. Pp 211213 in Kontrimavichus, V.L. (ed.), Beringia in the Cenozoic Era. London: Balkema.Google Scholar
Schubert, B.W., Graham, R.W., McDonald, H.G., Grimm, E.C. & Stafford, T.W. Jr. 2004. Latest Pleistocene paleoecology of Jeferson’s Ground Sloth (Megalonyx x jefersonii) and Elk-moose (Cervalces scotti) in northern Illinois. Quaternary Research 61: 231240.CrossRefGoogle Scholar
Sea, D.S. & Whitlock, C. 1995. Postglacial vegetation and climate of the Cascade Range, central Oregon. Quaternary Research 43: 370381.CrossRefGoogle Scholar
Shi, N., Cao, J.-X. & Konigsson, L.K. 1993. Late Cenozoic vegetational history and the Pliocene–Pleistocene boundary in the Yushe Basin, S.E. Shanxi, China. Grana 32: 260271.Google Scholar
Shumilova, L.V. 1962. Botanicheskaya Geografiya Sibiri. Tomsk: Tomsk University Press [in Russian].Google Scholar
Silba, J. 1981. Revised generic concepts of Cupressus L. (Cupressaceae). Phytologia 49: 340399.Google Scholar
Spach, E. 1842. Histoire Naturelle des Vegetaux – Phanerogames. Vol. 11. Paris.Google Scholar
Stefanova, I. & Ammann, B. 2003. Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). Holocene 13: 97107.CrossRefGoogle Scholar
Tao, J.-N. & Du, N.-Q. 1987. Miocene flora from Markam County and fossil record of Betulaceae (Tibet, P.R.C.). Acta Botanica Sinica 29: 649655.Google Scholar
Terada, K., Ohta, S., Suzuki, M., Noshiro, S. & Tsuji, S. 1994. Dendrochronology of forests buried in Hachinohe tephra on the eastern slope of Towada volcano, northern Japan. Quaternary Research (Tokyo) 33: 153164.CrossRefGoogle Scholar
Thomas, L.F., Hodgkiss, P.D. & Johnson, D.R. 2006. Genetic diversity and seed production in Sanat Lucia fir (Abies bracteata), a relict of the Miocene broadleaved evergreen forest. Conservation Genetics 7: 383398.CrossRefGoogle Scholar
Thompson, R.S. & Mead, J.I. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17: 3955.CrossRefGoogle Scholar
Tiegham, Ph. Van 1891. Structures et affinities des Abies et des genres les plus voisins. Bulletin Societe Botanique de France 38: 406416.CrossRefGoogle Scholar
Troup, R.S. 1921. The Silviculture of Indian Trees, Volume I. Dehradun: International Book Distributors.Google Scholar
Tsukada, M. 1985. Map of vegetation during the last glacial maximum in Japan. Quaternary Research 23: 369381.CrossRefGoogle Scholar
Tzedakis, P.C. 1993. Long-term tree populations in northwest Greece through multiple Quaternary cycles. Nature 364: 437440.CrossRefGoogle Scholar
Tzedakis, P.C. 1994. The last climatic cycle at Kopais, central Greece. Journal of the Geological Society of London 156: 425434.CrossRefGoogle Scholar
Tzedakis, P.C. & Bennett, K.D. 1995. Interglacial vegetation succession: a view from southern Europe. Quaternary Science Reviews 14: 967982.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Velenovsky, J. 1885. Die Gymnospermen der bohemishen Kreideformation. Prague.CrossRefGoogle Scholar
Viereck, L.A. & Little, E.L. Jr. 1972. Alaska Trees and Shrubs. Washington, DC: USDA.Google Scholar
Wang, K., Zhang, Y. & Jiang, H. 1983. Spore-pollen assemblages from the Quaternary sediments of Taihu (Lake) and its paleovegetation and paleoclimate. Scientia Geographica Sinica 3: 1726.Google Scholar
Wang, W.M. 2006. Correlation of pollen sequences in the Neogene palynofloristic regions of China. Palaeoworld 15: 7799.CrossRefGoogle Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.-Q., Han, Y. & Hong, D. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46: 265271.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle Scholar
Webb, T. III, 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69: 177187.CrossRefGoogle Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecological Monographs 63: 173198.CrossRefGoogle Scholar
Whitney, S. 1942. Western Forests. New York: Alfred Knopf.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Harvard University Press.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wu, Y.-S., Chen, Y.-S. & Xiao, J.-Y. 1991. A preliminary study on vegetation and climate changes in Dianchi Lake area in the last 40 000 years. Acta Botanica Sinica 33: 450458.Google Scholar
Xu, J.-X., Wang, Y.-F., Du, N.-Q. & Zhang, C.-F. 2000. The Neogene pollen/spore flora of Luhe, Yunnan. Acta Botanica Sinica 42: 526532.Google Scholar
Yan, S., Mu, G., Xu, Y. & Zhao, Z. 1998. Quaternary environmental evolution of the Lop Nur region, China. Acta Geographioca Sinica 53: 332340.Google Scholar
Yll, R., Carrion, J.S., Marra, A.C. & Bonfiglio, L. 2006. Vegetation reconstruction on the basis of pollen in Late Pleistocene hyena coprolites from San Teodoro Cave (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 237: 3239.CrossRefGoogle Scholar
Yonebayashi, C. & Minaki, M. 1997. Late Quaternary vegetation and climatic history of eastern Nepal. Journal of Biogeography 24: 837843.CrossRefGoogle Scholar
Yoshinori, Y., Nitsuma, N. & Hayashida, A. 1991. A pollen analysis of the Indus Deep Sea Fan from site 720 cores. Pp 283290 in Prel, W.L. (ed.), Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Texas A&M University.Google Scholar
Zhang, S.-Q., Wang, Y.-G., Xin, Y.-H., et al. 2006. Discovery of Early Pleistocene strata containing plant fossils in the source area of the Yellow River and significance. Geology in China 33: 7885.Google Scholar
Zhao, H. & Zhou, D. 2006. Pollen assemblage and palaeo-vegetation of late Holocene fen in Dunhua of Jilin Province. Chinese Journal of Applied Ecology 17: 197200.Google ScholarPubMed

References

Campo, M. van 1955. Quelques pollens d’hybrides d’Abiétacées. Silvae Genet 4: 123126.Google Scholar
Campo-Duplan, M. van & Gaussen, H. 1948a. Sur quatre hybrides de genres chez les Abietinees. Bulletin Société Histoire Naturelle Toulouse 84: 95109.Google Scholar
Campo-Duplan, M. van & Gaussen, H. 1948b. Sur quatre hybrides de genres chez les Abietinees. Travaux Laborataire Forestier Toulouse II, 4: 2428.Google Scholar
Cheng, W. C. 1932. A new Tsuga from southwestern China. Contributions from the Biological Laboratory of the Chinese Association for the Advancement of Science, Section Botany 7: 13.Google Scholar
Cheng, W. C. 1933. The studies of Chinese conifers. Contributions from the Biological Laboratory of the Chinese Association for the Advancement of Science, Section Botany 9: 1823.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland: Timber Press.Google Scholar
Farjon, A. 2010a. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. 2010b. On Nothostuga longibracteata, a rare conifer from China. British Conifer Society Journal 15: 4348.Google Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers. Status Survey and Conifer Action Plan: IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Flous, F. 1936. Revision du genre Tsuga. Travaux Laborataire Forestier Toulouse II 2: 110120.Google Scholar
Frankis, M. 1988. Generic inter-relationships in Pinaceae. Notes of the Royal Botanic Garden Edinburgh 45: 527548.Google Scholar
Fu, L.K. & Jin, J.M. 1992. China Plant Red-data Book: The Rare and Endangered Plants. Beijing: Science Press (in Chinese).Google Scholar
Gaussen, H. 1966. Les Gymnospermes actuelles et fossiles. Travaux Laboratoire Forestier de Toulouse T.11, Sec. I, I,: 9.Google Scholar
Gaussen, H. 1967. Les Gymnospermes actuelles et fossiles. Additions et corrections aux Abietacées. Les Taxodiacées. Travaux Laboratoire Forestier de Toulouse Tom II, Sec. 1 XII: 1316.Google Scholar
Ho, T.-X., Li, Q. & Ji, X. 1984. On the legitimacy of Tsuga–Keteleeria longibracteata as explained by the anatomy of mature wood. Journal Zhongsan University 2: 8490 (in Chinese).Google Scholar
Hu, Y.-S. & Wang, F.-H. 1984 Anatomical studies of Cathaya (Pinaceae). American Journal of Botany 71: 727735.CrossRefGoogle Scholar
Hu, Y.-S., Wang, F.-H. & Chang, Y.-Z. 1976. On the comparative morphology and systematic position of Cathaya (Pinaceae). Acta Phytotaxonomical Sinica 14: 7378 (in Chinese).Google Scholar
Hu, Y.-S, Napp-Zinn, K. & Winne, D. 1989. Comparative anatomy of seed scales of female cones of Pinaceae. Bot Jahrb Syst, 111: 6385.Google Scholar
Huzioka, K. 1964. The Aniani flora of Akita Prefecture, and the Anai-type floras in Honsh, Japan. Journal of the Mining College, Akita University Series A, Mining Geology 3: 1105.Google Scholar
Kan, X.-Z., Wang, S.-S., Ding, X. & Wang, X.-Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44: 765777.CrossRefGoogle ScholarPubMed
Karavayev, M.N. 1958. Tsuga affin. longibracteata Cheng., first found in a fossil condition on the territory of the USSR. Bulletin Moskovsk. Obshch. Isp. Prir., Otd. Biol. [Bulletin Moscow Society of Nature Researchers, Biology Branch] 58(4): 7377 (in Russian).Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae 615: 2952.CrossRefGoogle Scholar
Li, L.-C. 1991. Karyotype analysis of Tsuga longibracteata and its taxonomic significance. Acta Botanica Yunnanica 13: 309313.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Lin, J.-X., Hu, Y.-S. & Wang, F.-H. 1995. Wood and bark anatomy of Nothotsuga (Pinaceae). Annals of the Missouri Botanical Garden 82: 603609.Google Scholar
Miki, S. 1941. On the change of flora in eastern Asia since Tertiary period. 1. Japanese Journal of Botany 11: 237303.Google Scholar
Miki, S. 1954. The occurrence of the remain of Taiwania and Palaeotsuga (n. subg.) from Pliocene beds in Japan. Proceedings of the Japan Academy 30(10): 976981.CrossRefGoogle Scholar
Napp-Zinn, K. & Hu, Y.-S. 1989. Anatomical studies on the bracts in pinaceaous female cones: III. Comparative study of (mostly Chinese) representatives of all genera. Bot. Jahrb. Syst. 110: 461477.Google Scholar
Page, C.N. 1988a. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 1988b. New and maintained genera in the conifer families Podocarpaceae and Pinaceae. Notes of the Royal Botanic Garden Edinburgh 45: 377395.Google Scholar
Page, C.N. 1990. Sciadopityaceae. Pp. 346348 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Kent: Acta Horticulturae.Google Scholar
Rayushkina, G.S. 1968. Fossil conifers from the upper reaches of the Bukhtarma River. Biologia and Geographia 4: 815 (in Russian).Google Scholar
Rayushkina, G.S. 1979. The Oligocene Flora from Mugodzhar and the southern Altai. Alma-Ata: Nauk (in Russian).Google Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Sciences, Hokaido University, Series IV Geology and Mineralogy 11: 119398Google Scholar
Tanai, T. & Suzuki, N. 1963. Miocene floras of southwestern Hokkaido, Japan. Tertiary floras of Japan, Miocene Floras. Collaborating Association to Commemorate the 80th Anniversary of the Geological Survey of Japan 1: 9149.Google Scholar
Wang, X.Q., Tank, D.C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle Scholar
Wu, C., Hong, W. & Xie, J. 2000. Life table analysis of Tsuga longibracteata. Chinese Journal of Applied Ecology 11: 333336.Google ScholarPubMed
Yao, B.-J. & Hu, Y.-S. 1982. Comparative anatomy of conifer leaves. Acta Phytotaxonomica Sinica 20: 275294 (in Chinese).Google Scholar

References

Abrams, M.D., Van de Gevel, S., Dodson, R.C. & Copenheaver, C.A. 2000. The dendroecology and climatic impacts for old-growth white pine and hemlock on the extreme slopes of the Berkshire Hills, Massachusetts, U.S.A. Canadian Journal of Botany 78: 851861.CrossRefGoogle Scholar
Ager, T.A., MatthewsJr, J.V. & Yeend, W. 1994. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: palynology, paleobotany, paleoenvironmental reconstruction and regional correlation. Quaternary International 22: 185206.CrossRefGoogle Scholar
Allison, T.D., Moeller, R.E. & Davis, M.B. 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology 6: 11011105.CrossRefGoogle Scholar
Ally, D. & Ritland, K. 2007. A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth Mountain hemlock (Tsuga mertensiana). Journal of Heredity 98: 7378.CrossRefGoogle ScholarPubMed
Axelrod, D.I. 1985. Miocene floras from the Middlegate Basin, west-central Nevada. University of California Publications in Geological Sciences 129: 1279.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanic Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Axelrod, D.I. 1998a. The Eocene Thunder Mountain flora of central Idaho. University of California Publications in Geological Sciences 142: 161.Google Scholar
Axelrod, D.I. 1998b. The Oligocene Haynes Creek flora of eastern Idaho. University of California Publications in Geological Sciences 143: 1160.Google Scholar
Banner, A., Pojar, J. & Rouse, G.E. 1983. Postglacial paleoecology and successional relationships of a bog woodland near Prince Rupert, British Columbia. Canadian Journal of Forest Research 13(5): 938947.CrossRefGoogle Scholar
Batten, D.J. & Dutta, R.J. 1997. Ultrastructure of exine of gymnospermous pollen grains from Jurassic and basal Cretaceous deposits in Northwest Europe and implications for botanical relationships. Review of Palaeobotany and Palynology 99(1): 2554.CrossRefGoogle Scholar
Bennett, K.D. & Fuller, J.L. 2002. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America. The Holocene 12: 421429.CrossRefGoogle Scholar
Bennett, K.D. & Fuller, J.L. 2004. The mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America – age versus causes: a reply to Payette. The Holocene 14: 950951.CrossRefGoogle Scholar
Benowicz, A., L’Hirondelle, S. & El Kassaby, Y.A. 2001. Patterns of genetic variation in mountain hemlock (Tsuga mertensiana (Bong.) Carr.) with respect to height growth and frost hardiness. Forest Ecology and Management 154: 2333.CrossRefGoogle Scholar
Bentz, S.E., Riedel, L.G.H., Pooler, M.R. & Townsend, A.M. 2002. Hybridisation and self-compatibility in controlled pollinations of eastern North American and Asian hemlock (Tsuga) species. Journal of Arboriculture 28: 200205.Google Scholar
Bertini, A. 2000. Pollen record from Colle Curti and Cesi: early and middle Pleistocene mammal sites in the Umbro–Marchean Apennine mountains (central Italy). Journal of Quaternary Science 15(8): 825840.3.0.CO;2-6>CrossRefGoogle Scholar
Bertini, A. 2006. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology 188: 235258.CrossRefGoogle Scholar
Bertoldi, R., Rio, D. & Thunell, R. 1989. Pliocene–Pleistocene vegetational and climatic evolution of the south-central Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 575.CrossRefGoogle Scholar
Bhattacharya, K. & Chanda, S. 1992. Late Quaternary vegetational history of Upper Assam, India. Review of Palaeobotany and Palynology 72(3–4): 325333.CrossRefGoogle Scholar
Bhiry, N. & Filion, L. 1996. Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quaternary Research 45(3): 312320.CrossRefGoogle Scholar
Blyakharchuk, T.A. 2003. Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberian Lowland. The Holocene, 13(5): 715731.CrossRefGoogle Scholar
Blyakharchuk, T.A. & Sulerzhitsky, L.D. 1999. Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. The Holocene 9(5): 621628.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Briles, C.E., Whitlock, C. & Bartlein, P.J. 2005. Postglacial vegetation, fire, and climate history of the Siskiyou Mountains, Oregon, USA. Quaternary Research 64(1): 4456.CrossRefGoogle Scholar
Brown, J., Collins, M., Tudhope, A.W. & Toniazzo, T. 2008. Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Climate Dynamics 30: 1936.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2002. Origin, development and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Canadian Journal of Forest Research 32: 353372.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2003. Coastal rainforest connections disclosed through a Late Quaternary vegetation, climate and fire history investigation from the Mountain Hemlock Zone on southern Vancouver Island, British Columbia, Canada. Review of Palaeobotany and Palynology 123: 247269.CrossRefGoogle Scholar
Calcote, R.C. 2003. Mid-Holocene climate and the hemlock decline: the range limit of Tsuga canadensis in the western Great Lakes region USA. The Holocene 13: 215224.CrossRefGoogle Scholar
Cázares, E. & Trappe, J.M. 1993. Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2: 153156.CrossRefGoogle Scholar
Chaney, R.W. & Hu, H.H. 1940. A Miocene flora from Shangdong Province, China. Part II. Physical conditions and correlation. Carnegie Institution of Washington Publications 507.Google Scholar
Cheng, W.-C. 1933. The studies of Chinese conifers. I. Tsuga Carriere. Contribution of the Biological Laboratory, Science Society of China 9: 1823.Google Scholar
Christie, R.L. & McMillan, N.J. 1991. Introduction. In Christie, R. L. & McMillan, N. J. (eds.), Tertiary Fossil Forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. Geological Survey of Canada, Bulletin 403, p. xiii–xvi.CrossRefGoogle Scholar
Christy, E.J. & Mack, R.N. 1984. Variation in demography of juvenile Tsuga heterophylla across the substratum mosaic. Journal of Ecology 72: 7591.CrossRefGoogle Scholar
Colinvaux, P.A. 1964. The environment of the Bering land bridge. Ecological Monographs 34: 297329.CrossRefGoogle Scholar
Collinson, M.E. 1983. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge marls, Hamstead ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177225.CrossRefGoogle Scholar
Daubenmire, R. 1978. Plant Geography. New York: Academic Press.Google Scholar
Davis, M.B. 1989. Lags in vegetation response to greenhouse warming. Climatic Change 15(1–2): 7582.CrossRefGoogle Scholar
Davis, M.B., Calcote, R.R., Sugita, S. & Takahara, H. 1998. Patchy invasion and the origin of a hemlock–hardwoods forest mosaic. Ecology 79: 26412659.Google Scholar
Del Tredici, P. & Kitajima, A. 2004. Introduction and cultivation of Chinese hemlock (Tsuga chinensis) and its resistance to hemlock wooly adelgid (Adelges tsugae). Journal of Arboriculture 30: 282286.Google Scholar
Demske, D., Mohr, B. & Oberhänsli, H. 2002. Late Pliocene vegetation and climate of the Lake Baikal region, southern East Siberia, reconstructed from palynological data. Palaeogeography, Palaeoclimatology, Palaeoecology 184(1–2): 107129.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Elias, S.A. 1980. Paleoenvironmental interpretations of Holocene insect fossil assemblages from three sites in arctic Canada. University of Colorado at Boulder.Google Scholar
Elias, T.S. 1980. The Complete Trees of North America. Washington, DC: Van Nostrand ReinholdGoogle Scholar
El-Kassaby, Y.A. & Edwards, D.G.W. 2001. Germination ecology in mountain hemlock (Tsuga mertensiana (Bong.) Carr.). Forest Ecology and Management 144: 183188.CrossRefGoogle Scholar
Fan, Z.X., Bräuning, A., Yang, B. & Cao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65: 111.CrossRefGoogle Scholar
Fauquette, S. & Bertini, A. 2003. Quantification of the northern Italy Pliocene climate from pollen data: evidence for a very peculiar climate pattern. Boreas 32: 361369.CrossRefGoogle Scholar
Fauquette, S., Suc, J.-P., Guiot, J., et al. 1999. Climate and biomes in the west Mediterranean area during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 1536.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Filion, L. & Quinty, F. 1993. Macrofossil and tree-ring evidence for a long-term forest succession and mid-Holocene hemlock decline. Quaternary Research 40(1): 8997.CrossRefGoogle Scholar
Fitschen, J. 1929. Die Gattung Tsuga. Mitteilungen der Deutschen Dendrologischen Gesellschaft 41: 111.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1969. Vegetation of Oregon & Washington. US Pacific Northwest Forest and Range Experiment Station.CrossRefGoogle Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan from late Pliocene to early Pleistocene. Quaternary International 184(1): 7583.CrossRefGoogle Scholar
Fuller, J.L. 1998. Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. Ecology 79: 23372351.CrossRefGoogle Scholar
Fusco, F. 2007. Vegetation response to early Pleistocene climatic cycles in the Lamone valley (Northern Apennines, Italy). Review of Palaeobotany and Palynology 145(1–2): 123.CrossRefGoogle Scholar
Gaussen, H. 1967. Les Gymnospermes actuelles et fossiles. Additions et corrections aux Abietacées. Les Taxodiacées. Travaux Laboratoire Forestier de Toulouse II XII: 1316.Google Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic Peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Gedalof, Z. & Smith, D.J. 2001. Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America. Canadian Journal of Forest Research 31: 322332.CrossRefGoogle Scholar
Haas, J.N. & McAndrews, H.H. 1999. The summer drought related hemlock (Tsuga canadensis) decline in eastern North America 5,700–5,100 years ago. Pp 2224 in Proceedings: Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America. Durham, NH: US Forest Service.Google Scholar
Hably, L. & Marrón, M.T.F. 2007. The first macrofossil record of Ginkgo from the Iberian Peninsula. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 244: 6570.CrossRefGoogle Scholar
Hadley, J.L. & Schedlbauer, J.L. 2002. Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England. Tree Physiology 22(15–16): 10791092.CrossRefGoogle Scholar
Harmon, M.E. & Franklin, J.F. 1989. Tree seedlings on logs in PiceaTsuga forests of Oregon and Washington. Ecology 70: 4859.CrossRefGoogle Scholar
Hart, J.L. & Shankman, D. 2005. Disjunct Eastern hemlock (Tsuga canadensis) stands at its southern range boundary. Journal of the Torrey Botanical Society 132: 602612.CrossRefGoogle Scholar
Havill, N.P., Campbell, C.S., Vining, T.F., et al. 2008. Phylogeny and biogeography of Tsuga (Pinaceae) inferred from nuclear ribosomal ITS and chloroplast DNA sequence data. Systematic Botany 33(3): 478489.CrossRefGoogle Scholar
Hyatt, T.L. & Naiman, R.J. 2001. The residence time of large woody debris in the Queets River, Washington, USA. Ecological Applications 11(1): 191202.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jaramillo-Correa, J.P., Beaulieu, J., Khasa, D.P. & Bousquet, J. 2009. Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Canadian Journal of Forest Research 39(2): 286307.CrossRefGoogle Scholar
Jarvis, D.I. 1993. Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quaternary Research 39(3): 325337.CrossRefGoogle Scholar
Jenkins, J.C., Aber, J.D. & Canham, C.D. 1999. Hemlock wooly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Canadian Journal of Forest Research 29: 630645.CrossRefGoogle Scholar
Jiménez-Moreno, G., Fauquette, S. & Jean-Pierre, S. 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography 35: 16381649.CrossRefGoogle Scholar
Jumpponen, A., Trappe, J.M. & Cázares, E. 2002. Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12: 4349.CrossRefGoogle ScholarPubMed
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777CrossRefGoogle Scholar
Kawahata, H. & Ohshima, H. 2002. Small latitudinal shift in the Kuroshio Extension (Central Pacific) during glacial times: evidence from pollen transport. Quaternary Science Reviews 21(14–15): 17051717.CrossRefGoogle Scholar
Kincaid, J.A. 2007. Compositional and environmental characteristics of Tsuga canadensis (L.) Carr. forests in the southern Appalachian Mountains, USA. Journal of the Torrey Botanical Society 134: 479488.CrossRefGoogle Scholar
Kranabetter, J.M. & Friesen, J. 2002. Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Canadian Journal of Botany 80: 861868.CrossRefGoogle Scholar
Krueger, L.M. & Peterson, C.J. 2006. Effects of white-tailed deer on Tsuga canadensis regeneration: Evidence of microsites as refugia from browsing. American Midland Naturalist 156: 353362.CrossRefGoogle Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotax. Sinica 14: 407420 (in Chinese).Google Scholar
Kubota, Y. 2006. Spatial pattern and regeneration dynamics in a temperate AbiesTsuga forest in southwestern Japan. Journal of Forest Research 11: 191201.CrossRefGoogle Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
Lacourse, T. 2004. A late Pleistocene pollen record from the continental shelf of western Canada. Current Research in the Pleistocene 21: 8789.Google Scholar
Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews 24(1–2): 105121.CrossRefGoogle Scholar
LePage, B.A. 2003. A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. Botanical Journal of the Linnean Society 141: 257296.CrossRefGoogle Scholar
Li, H.L. 1963. Woody Flora of Taiwan. Livingston, AL: Livingston Publishing.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Liu, T.-S. 1962. A phytogeographic sketch on the forest flora of Taiwan (Formosa). Acta Phytotaxica Geobotanica 20: 149157.Google Scholar
Lopatina, D.A. 2003. Comparative analysis of the Eocene–Miocene micro- and macrofloras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation, 11: 7490.Google Scholar
Macko, S. 1963. Sporomorphs from Upper Cretaceous near Opole (Silesia) and from the London Clays. Prace Wrocławskiego Towarzystwa Naukowego. Seria B 106: 1–82.Google Scholar
Manum, S.B. 1962. Studies in the Tertiary Flora of Spitzbergen. Oslo: Norsk Polarinstitutt.Google Scholar
Mathiasen, R.L. & Daugherty, C.M. 2005. Comparative susceptibility of conifers to western hemlock dwarf mistletoe in the Cascade Mountains of Washington and Oregon. Western Journal of Applied Forestry 20: 94100.CrossRefGoogle Scholar
Mathiasen, R.L. & Hawksworth, F.G. 1988. Dwarf mistletoes on western white pine and whitebark pine in northern California and southern Oregon. Forest Science 34(2): 429440.CrossRefGoogle Scholar
Matsumoto, M., Ohsawa, T.A. & Nishida, M. 1995. Tsuga shimokawaensis, a new species of permineralised conifer leaves from the Middle Miocene Shimokawa Group, Hokkaido, Japan. Journal of Plant Research 108: 417428.CrossRefGoogle Scholar
MatthewsJr, J.V. 1982. East Beringia during Late Wisconsin time: a review of the biotic evidence. Pp 127150 in Hopkins, D., Matthews, J., & Young, S. (eds.), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Mattson, W.J. & Haack, R.A. 1987. The role of drought in outbreaks of plant-feeding insects. Bio-Science 37(2): 110118.Google Scholar
Mazancov, M. 1962. Rostlinne mikrofosilie z loziska Uhelnfi ve Slezsku. Sb Ustred Ustavu Geol 27: 159191.Google Scholar
McKenna, M.C. 1975. Fossil mammals and early Eocene North Atlantic land continuity. Annals of the Missouri Botanical Garden 62: 335353.CrossRefGoogle Scholar
McKenna, M.C. 1983a. Cenozoic paleogeography of North Atlantic land bridges. Pp 351399 in Bott, M., Saxov, S., Talwani, M. & Thiede, J. (eds.), Structure and Development of the Greenland-Scotland Ridge: New Methods and Concepts. New York: Springer.CrossRefGoogle Scholar
McKenna, M.C. 1983b. Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Annals of the Missouri Botanical Garden 70: 459489.CrossRefGoogle Scholar
Millar, C.I., King, J.C., Westfall, R.D., Alden, H.A. & Delany, D.L. 2006. Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA. Quaternary Research 66(2): 273287.CrossRefGoogle Scholar
Miller, C.N. & Crabtree, D.R. 1989. A new taxodiaceous seed cone from the Oligocene of Washington. American Journal of Botany 76(1): 133142.CrossRefGoogle Scholar
Miyadokoro, T., Nishimura, N., Hoshino, D. & Yamamoto, S.I. 2004. Dynamics of forest canopy and major tree populations over nine years in a subalpine old-growth coniferous forest, central Japan. Ecoscience 11(1): 130136.CrossRefGoogle Scholar
Mohr, J.A., Whitlock, C. & Skinner, C.N. 2000. Postglacial vegetation and fire history, eastern Klamath Mountains, California, USA. The Holocene 10(5): 587601.CrossRefGoogle Scholar
Mour, M. 1997. Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla/Thuja plicata forests. Forest Ecology and Management 94: 175186.CrossRefGoogle Scholar
Nakamura, T. & Obata, K. 1985. Differences in ecological character between Abies veitchii and Tsuga diversifolia. II: Distribution of seedlings on the moss-covered floor of Tsuga forest on Mt. Fuji. Bulletin of the Tokyo University Forests 74: 6779 (in Japanese).Google Scholar
Narukawa, Y., Iida, S., Tanouchi, H., Abe, S. & Yamamoto, S.I. 2003. State of fallen logs and the occurrence of conifer seedlings and saplings in boreal and subalpine old-growth forests in Japan. Ecological Research 18: 267277.CrossRefGoogle Scholar
Nealis, V.G., Turnquist, R. & Garbutt, R. 2004. Defoliation of juvenile western hemlock by western blackheaded budworm in Pacific coastal forests. Forest Ecology and Management 198: 291301.CrossRefGoogle Scholar
Němejc, F., Kvaček, Z., Pacltová, B. & Konzalová, M. 2003. Tertiary plants of the Plzeň Basin (West Bohemia). Acta Universitatis Carolinae Geologica 46: 121176.Google Scholar
Nguyen, Duc To Luu & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Numata, M. 1971. Ecological interpretation of vegetation zonation of high mountains, particularly in Japan and Taiwan. Pp 288299 in Troll, C. (ed.), Geoecology of the High-Mountain Regions of Eurasia. Wiesbaden: Franz Steiner Verlag GMBH.Google Scholar
O’Brien, C.E. & Jones, R.L. 2003. Early and Middle Pleistocene vegetation history of the Medoc region, southwest France. Journal of Quaternary Science 18(6): 557579.CrossRefGoogle Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in South and east Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Ohsawa, M., Shakya, P.R. & Numata, M. 1973. On the occurrence of deciduous broad-leaved forests in the cool-temperate zone of the humid Himalayas in eastern Nepal. Japanese Journal of Ecology 23: 218228.Google Scholar
Orwig, D.A., Foster, D.R. & Mausel, D.L. 2002. Landscape patterns of hemlock decline in New England due to the introduced hemlock wooly adelgid. Journal of Biogeography 29: 14751487.CrossRefGoogle Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden Edinburgh 33: 317323.Google Scholar
Page, C.N. 1979. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.). The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. & Barker, M.A. 1988. Ecology and geography of hybridisation in British and Irish horsetails. Proceedings of the Royal Society of Edinburgh 86B: 265272.Google Scholar
Paradis, A., Elkington, J., Hayhoe, K. & Buonaccorsi, J. 2008. Role of winter temperature and climate change on the survival and future range expansion of the hemlock wooly adelgid (Adelges tsugae) in eastern North America. Mitigation and Adaptation Strategies for Global Change 13: 541554.CrossRefGoogle Scholar
Parish, R. & Antos, J.A. 2004. Structure and dynamics of an ancient montane forest in coastal British Columbia. Oecologia 141(4): 562576.CrossRefGoogle ScholarPubMed
Parish, R. & Antos, J.A. 2006. Slow growth, long-lived trees, and minimal disturbance characterize the dynamics of an ancient, montane forest in coastal British Columbia. Canadian Journal of Forest Research 36(11): 28262838.CrossRefGoogle Scholar
Parish, R., Nigh, G.D. & Antos, J.A. 2008. Allometry and size structure of trees in two ancient snow forests in coastal British Columbia. Canadian Journal of Forest Research 38(2): 278288.CrossRefGoogle Scholar
Parker, A.J. 1989. Forest/environment relationships in Yosemite National Park, California. Vegetatio 82: 4154.CrossRefGoogle Scholar
Parshall, T. 2002. Late Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83: 13861398.CrossRefGoogle Scholar
Parsons, D.J. 1972. The southern extension of Tsuga mertensiana (mountain hemlock) in the Sierra Nevada. Madrono 21: 536539.Google Scholar
Paudayal, K.N. 2005. Late Pleistocene pollen assemblages from the Thimi Formation, Kathmandu Valley, Nepal. Island Arc 14(4): 328337.CrossRefGoogle Scholar
Payette, S. 2004. Determining the age of the mid-Holocene Tsuga canadensis (hemlock) decline, eastern North America: a comment on Bennett and Fuller. The Holocene 14(6): 949950.CrossRefGoogle Scholar
Peterson, D.W. & Peterson, D.L. 2001. Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology 82: 33303345.CrossRefGoogle Scholar
Pooler, M.R., Riedel, L.G.H., Bentz, S.E. & Townsend, A.M. 2002. Molecular markers used to verify interspecific hybridisation between hemlock (Tsuga) species. Journal of the American Association for Horticultural Science 127: 623627.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Potter, K.M., Dvorak, W.S., Crane, B.S., et al. 2008. Allozyme variation and recent evolutionary history of eastern hemlock (Tsuga canadensis) in the southeastern United States. New Forests 35: 131145.CrossRefGoogle Scholar
Price, K. & Hochachka, G. 2001. Epiphytic lichen abundance: effects of stand age and composition in coastal British Columbia. Ecological Applications 11(3): 904913.CrossRefGoogle Scholar
Rheder, A. 1927. Rheder’s Manual of Cultivated Trees and Shrubs Hardy in North America. New York: Macmillan.Google Scholar
Richardson, A.D., Ashton, P.M.S., Berlyn, G.P., McGroddy, M.E. & Cameron, I.R. 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Annals of Botany 88: 10071015.CrossRefGoogle Scholar
Sakai, A. 1970. Mechanism of desiccation damage of conifers wintering in soil-frozen areas. Ecology 51: 657664.CrossRefGoogle Scholar
Shang, Y. & Zavada, M.S. 2003. The ultrastructure of Cerebropollenites from the Jurassic and Cretaceous of Asia. Grana 42(2): 102107.CrossRefGoogle Scholar
Shen, J., Jones, R.T., Yang, X., Dearing, J.A. & Wang, S. 2006. The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. The Holocene 16(2): 265276.CrossRefGoogle Scholar
Shilo, N.A., Lozhkin, A.V., Titov, E.E. & Shumilov, Yu. V. 1983. The Kirgilyakh Mammoth (Paleogeographic Aspect). Moscow: Nauka.Google Scholar
Shuman, B., Bartlein, P., Logar, N., Newby, P. & WebbIII, T. 2002. Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21(16–17): 17931805.CrossRefGoogle Scholar
Shuman, B., Newby, P., Donnelly, J.P., Tarbox, A. & WebbIII, T. 2005. A record of late-Quaternary moisture-balance change and vegetation response from the White Mountains, New Hampshire. Annals of the Association of American Geographers 95(2): 237248.CrossRefGoogle Scholar
Singh, J.S. & Singh, S.P. 1987. Forest vegetation of the Himalaya. The Botanical Review 53: 80192.CrossRefGoogle Scholar
Small, M.J., Small, C.J. & Dreyer, G.D. 2005. Changes in hemlock-dominated forest following wooly adelgid infestation in southern New England. Journal of the Torrey Botanical Society 132: 458470.CrossRefGoogle Scholar
Smith, D.J. & Gedalov, Z. 2001. Dendroclimatic response of mountain hemlock (Tsuga mertensiana) in Pacific North America. Canadian Journal of Forest Research 31: 322332.Google Scholar
Snyder, C.D., Young, J.A., Lemarie, D.P. & Smith, D.R. 2002. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 262275.CrossRefGoogle Scholar
Straus, A. 1952. Beiträge zur Pliocänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeonto-graphica B 83(1–3): 144.Google Scholar
Su, H.J. 1984a. Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry 17(3): 114.Google Scholar
Su, H. J. 1984b. Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry 17(4): 5773.Google Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA.CrossRefGoogle Scholar
Sugita, H. & Tani, M. 2001. Difference in microhabitat-related regeneration patterns between two subalpine conifers, Tsuga diversifolia and Abies mariesii, on Mount Hyacine, northern Honshu, Japan. Ecological Research 16: 423433.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Tang, C.Q. & Ohsawa, M. 2002. Tertiary relic deciduous forests on a humid subtropical mountain, Mt. Emei, Sichuan, China. Folia Geobotanica 37: 93106.CrossRefGoogle Scholar
Tarasov, P.E., WebbIII, T., Andreev, A.A., et al. 1998. Present‐day and mid‐Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25(6): 10291053.CrossRefGoogle Scholar
Taylor, A.H. 1995. Forest expansion and climate change in the mountain hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, USA. Arctic and Alpine Research 27: 207216.CrossRefGoogle Scholar
Taylor, R.J. 1972. The relationship and origin of Tsuga heterophylla and Tsuga mertensiana based on phytochemical and morphological interpretations. American Journal of Botany 29: 149157.CrossRefGoogle Scholar
Tiffney, B.H. 1985. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66(2): 243273.CrossRefGoogle Scholar
Tingley, M.W., Orwig, D.A., Field, R. & Motzlin, G. 2002. Avian responses to removal of a forest dominant: consequences of hemlock wooly adelgid infestations. Journal of Biogeography 29: 15051516.CrossRefGoogle Scholar
Tsukada, M. 1967. Vegetation in subtropical formosa during the Pleistocene glaciations and the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 4964.CrossRefGoogle Scholar
Tsukada, M. 1983. Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19(2): 212235.CrossRefGoogle Scholar
Ueno, J. 1957. Relationship of genus Tsuga from pollen morphology. Journal of the Institute of Polytechnics, Osaka City University, Series D. Biology 8: 191196.Google Scholar
Vabre, A. 1954. L’hybrids TsugoPicea hookeriana et ses parents etude des plantules. Travaux Laboratoire Forestiere de Toulouse Tome 1(5): 18.Google Scholar
Van Campo-Duplan, M. & Gaussen, H. 1949. Sur quatre hybrides de genres chez les Abietinees. Bulletin de la Société d’histoire naturelle de Toulouse 84: 95109.Google Scholar
Viereck, L.A. & Little, E.L. 1972. Alaska Trees and Shrubs. Washington, DC: US Forest Service.Google Scholar
Wang, W.M., Saito, T. & Nakagawa, T. 2001. Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology 117(4): 281295.CrossRefGoogle Scholar
Wangda, P. & Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management 230(1–3): 136150.CrossRefGoogle Scholar
Whitney, S. 1985. Western Forests. New York: Alfred A. Knopf.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wimberly, M.C. & Spies, T.A. 2001. Influences of environment and disturbance on forest patterns in coastal Oregon watersheds. Ecology 82(5): 14431459.CrossRefGoogle Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation of forests to other regions of the Northern Hemisphere and Australasia. US Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolff, R.L., Lavialle, O., Pédrono, F., et al. 2002. Abietoid seed fatty acid composition: a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37: 1726.CrossRefGoogle ScholarPubMed
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Woodward, A., Schreiner, E.G. & Silsbee, D.G. 1995. Climate, geography, and tree establishment in subalpine meadows of the Olympic Mountains, Washington, USA. Arctic and Alpine Research 27(3): 217225.CrossRefGoogle Scholar
Wu, J.Y., Kaji, M. & Suzuki, K. 1996. Altitudinal distributions of major tree species in a natural Morrison spruce [Picea morrisonicola] forest in central Taiwan. Journal of the Japanese Forestry Society (Japan) 78(3): 301308.Google Scholar
Xu, J.X., Wang, Y.F. & Li, C.S. 2000. A method for quantitative reconstruction of tertiary palaeoclimate and environment: coexistence approach. Pp 195203 in Li, C. S., (ed.), Advances in Plant Science, vol. 3. Heidelberg: China Higher Education Press and Springer-Verlag (in Chinese).Google Scholar
Xu, J.X., Ferguson, D.K., Li, C.S., Wang, Y.F. & Du, N.Q. 2004. Climatic and ecological implications of Late Pliocene palynoflora from Longling, Yunnan, China. Quaternary International 117(1): 91103.CrossRefGoogle Scholar
Xu, J.X., Ferguson, D.K., Li, C.S. & Wang, Y.F. 2008. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Review of Palaeobotany and Palynology 148(1): 3659.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M. & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12(2): 167180.CrossRefGoogle Scholar
Yi, T.M., Li, C.S. & Jiang, X.M. 2005. Conifer woods of the Pliocene age from Yunnan, China. Journal of Integrative Plant Biology 47(3): 264270.CrossRefGoogle Scholar
Yoshida, N. & Ohsawa, M. 1999. Seedling success of Tsuga sieboldii along a microtopographic gradient in a mixed cool-temperate forest in Japan. Plant Ecology 140: 8998.CrossRefGoogle Scholar
Yu, X.D., Luo, T.H. & Zhou, H.Z. 2008. Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. Forest Ecology and Management 255(7): 26172625.CrossRefGoogle Scholar
Zhang, Z.-X., Liu, P., Liu, C.-S., et al. 2008. The structure characteristics and dominant population regeneration types of Tsuga tchekiangensis communities in the Jiulongshan National Natural Reserve of Zhejiang Province. Acta Ecologica Sinica 28: 45474558.Google Scholar

References

Blokhina, N.I., Afonin, M.A., & Popov, A.M. 2006. Fossil wood of Keteleerioxylon kamtschatkiense sp. nov. (Pinaceae) from the cretaceous of the northwestern Kamchatka Peninsula. Paleontological Journal 40: 678686.CrossRefGoogle Scholar
Bugincourt, D., Claracq, P. Duperon, J., Prive-Gill, C. & Sauvage, J. 1998. Sedimentologhie, bois fossiles et palynologie d’une couche a lignite de capvern (Plateau de Lannemezan, Hautes-Pyrennees). Bulletin Centres de Recherche Exploration Production Elf Aquitaine 12: 739757.Google Scholar
Chang, J.C. & Shi, J.-E. 2000. Frequency of typhoon landfall over Guandong Province of China during the period 1470–1931. International Journal of Climatology 20: 183190.3.0.CO;2-U>CrossRefGoogle Scholar
Chang, J.C. & Slaymaker, O. 2002. Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills. Taiwan Catena 46: 285307.CrossRefGoogle Scholar
Chen, Y.-F., Yang, Y.-C., Zhang, H.-Q, Yang, X.-S. & Li, D.-J. 2000. A study on site quality evaluation of natural tropical mountainous rain forest in Hainan Island. Forest Research 13: 134140.Google Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. 1989. A second revision of the genus Keteleeria Carriere. Notes of the Royal Botanic Garden Edinburgh 46: 8191.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940 Die Koniferen etc. V. Palaeontographica 85(5): 243–236.Google Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan, from the late Pliocene to early Pleistocene. Quaternary International 184: 7583.CrossRefGoogle Scholar
Grimson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Ho, C.-H., Baik, J.-J., Kim, J.-H., Gong, D.-Y., & Sui, C.H. 2004. Interdecadal changes in summertime typhoon tracks. Journal of Climate 17: 17671776.2.0.CO;2>CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of coniferae in Sichuan. Acta Phytotaxonomica Sinica 4: 401407 (in Chinese).Google Scholar
Lei, Z.-Q. & Zheng, Z. 1993. Quaternary sporo-pollen flora and paleoclimate of the Tianyang volcanic lake basin, Leizhou Peninsula. Acta Botanica Sinica 35 (suppl.): 128138.Google Scholar
LePage, B. A. 2001. New species of Picea A. Dietrich (Pinaceae) from the middle Eocene of Axel Heiberg Island, Arctic Canada. Botanical Journal of the Linnean Society 135: 137167.CrossRefGoogle Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Liang, B., Wen, Z. & Liang, J. 1996. The typhoon disasters and related effects in China. Journal of Chinese Geography 6: 6171.Google Scholar
Liang, S., Li, J. & Cheng, S. 2002. Age structure and dynamics of Keteleeria davidiana ver. Chein-peii population in Guizhou Province. Chinese Journal of Applied Ecology 13: 2126.Google Scholar
Lin, P.-S., Lin, J.-Y., Hung, J.-C. & Dang, M.-D. 2002. Assessing debris flow hazard in a watershed in Taiwan. Engineering Geology 66: 295313.CrossRefGoogle Scholar
Lin, Y.-P., Chang, T.-K., Wu, C.-F., Chiang, T.-C. & Lin, S.-H. 2006. Assessing impacts of typhoons and the Chi-Chi earthquake on Chenyulan watershed landscape pattern in central Taiwan using landscape metrics. Environmental Management 38: 108125.CrossRefGoogle Scholar
Liu, K.-B., Shen, C. & Louie, K.S. 2001. A 1,000-year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese documentary records. Annals of the Association of American Geographers 91: 453464.CrossRefGoogle Scholar
Lu, S., Li, Y., Chen, Z. & Lin, J. 2003. Pollen development on Picea asperata Mast. 2003. Flora 198: 112117.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. Quaternary Research (Tokyo) 31: 389397.CrossRefGoogle Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Kent: Acta Horticulturae.Google Scholar
Petley, D.N. & Reid, S. 1999. Uplift and landscape stability at Taroko, eastern Taiwan. Geological Society Special Publication 162: 169181.CrossRefGoogle Scholar
Pokrovskaya, I. M. and Stel’mak, N. K. 1964. Proceedings of the State Geological Committee of the USSR, 124. In Atlas of Lower Cretaceous Spore and Pollen Assemblages of Some Regions of the USSR. Moscow: Nedra.Google Scholar
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222(3–4): 181222.CrossRefGoogle Scholar
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science: 142: 16801681.CrossRefGoogle ScholarPubMed
Wang, J.-B. & Qian, W.-H. 2005. Statistic analysis of tropical cyclone impact on the China mainland during the last half century. Acta Geophysica Sinica 48: 992999.Google Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wang, Y.-F., Xiang, Q.-P., Ferguson, D.K., et al. 2006. A new species of Keteleeria (Pinaceae) in the Shanwang Miocene flora of China and its phytogeographic connection with North America. Taxon 55: 165171.CrossRefGoogle Scholar

References

Arnold, C.A. & Lowther, J.S. 1955. A new Cretaceous conifer from Alaska. American Journal of Botany 42: 522528.CrossRefGoogle Scholar
Basinger, J.F. 1991. The fossil forests of the Buchanan Lake Formation (early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: preliminary floristics and paleoclimate. Bulletin of the Geological Survey of Canada 403 :3956.Google Scholar
Bell, W.A. 1956. Lower Cretaceous Floras of Western Canada. Ottawa: Geological Survey of Canada.CrossRefGoogle Scholar
Boulter, M.C. & Kvacek, Z. 1989. The Palaeocene flora of the Isle of Mull. Palaeontological Association of London Special Papers on Palaeontology 42:1149.Google Scholar
Buchholtz, J.T. 1931. The suspensor of Sciadopitys. Botanical Gazette 92: 243262.CrossRefGoogle Scholar
Buchholtz, J.T. & Old, E.M. 1933. The anatomy of the embryo of Cedrus in the dormant stage. American Journal of Botany 20: 3544.CrossRefGoogle Scholar
Buzek, F. & S̆rámek, J. 1985. Sulfur isotopes in the study of stone monument conservation. Studies in Conservation 30:171.CrossRefGoogle Scholar
Chaney, R.W. 1940. Tertiary forests and continental history. Geological Society of America Bulletin v.Google Scholar
Chaney, R.W. 1947. Tertiary centers and migration routes, in origin and development of natural floristic areas with special reference to North America. Ecological Monographs 17(2): 139148.CrossRefGoogle Scholar
Chaney, R.W. & Hu, H.H. 1940. A Miocene Flora from Shantung Province, China. Washington, DC: Carnegie Institute of Washington.Google Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Collinson, M.E. 1983. Accumulations of fruits and seeds in three small sedimentary environments in southern England and their palaeoecological implications. Annals of Botany 52: 583592.CrossRefGoogle Scholar
Dorofeev, P.I. 1961. New data on Tertiary flora from the region of Antropovo on the River Tavda. Dokl Akad Nauk USSR Earth Science Section 137: 335338.Google Scholar
Farjon, A. 2003. The remaining diversity of conifers. Acta Horticulturae 615: 7589.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Florin, R. 1940 Die Koniferen etc. V. Palaeontographica 85(5): 243–236.Google Scholar
Florin, R. 1948. Enumeration of gymnosperms collected on Swedish expeditions to western and north-western China in 1930–1934. Acta Horti Bergiani 14: 121312.Google Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Givulescu, R. 1948. Noti asupra florei sarmatice din estul Bazinului neogen al Borodului. Rev Muz Min Geol 8: 248258.Google Scholar
Gooch, N.L. 1992. Two new species of Pseudolarix Gordon (Pinaceae) from the middle Eocene of the Pacific Northwest. PaleoBios 14: 1319.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hamilton, W. 1983. Cretaceous and Cenozoic history of the northern continents. Annals of the Missouri Botanical Garden 70(3): 440458.CrossRefGoogle Scholar
Hancock, J.M. & Kauffman, E.G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society 136(2): 175186.CrossRefGoogle Scholar
Hao-min, L. & Gui-ying, Y. 1984. Miocene Qiuligou flora in Dunhua County Jilin Province. Acta Palaeontologica Sinica 23: 204214.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hickel, R. 1932. Note sur gisement de vegetaux Pliocenes dans le Bas-Rhin. Bulletin de la Société Dendrologique de France 83: 4348.Google Scholar
Hopkins, D.M. (ed.). 1967. The Bering Land Bridge. Stanford, CA: Stanford University Press.Google Scholar
Jackson, H.R. & Gunnarsson, K. 1990. Reconstructions of the Arctic: Mesozoic to present. Tectonophysics 172(3–4): 303322.CrossRefGoogle Scholar
Jahren, A.H., 2007. The Arctic forest of the middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777.CrossRefGoogle ScholarPubMed
Keller, A.M. & Hendrix, M.S. 1997. Paleoclimatologic analysis of a Late Jurassic petrified forest, southeastern Mongolia. Palaios 12: 282291.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Kimura, T. & Horiuchi, J. 1978. Pseudolarix niponica sp. nov., from the Palaeogene Noda Group, northeast Japan. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences 54: 429434.CrossRefGoogle Scholar
Kolesnikova, T.D. 1963. New data on the Tertiary flora of Bashkiria. Botanicheskii zhurnal 48: 14241437.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kornilova, V.S., Imankulova, S.K. 1972. Conifers from the Oligocene sediments of Akmole and Erzhilinsaya (Turgaiskii Trough). Nauka 4: 6980.Google Scholar
Kovar-Eder, J. & Berger, J.-P. 1987. Die Oberoligozäne Flora von Unter-Rudling bei Eferding in Oberösterreich. Annalen des Naturhistorischen Museums in Wien. 89: 57–93.Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and Its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Krassilov, V.A. 1982. Early Cretaceous flora of Mongolia. Palaeontographica, Abt., B. 181: 143.Google Scholar
Kryshtofovich, AN, Palibin, IV, Shaparenko, KK & Yarmolenko, AV. 1956. The Oligocene flora from the Ashutas Mountains in Kazakhstana. Palaeobotanica 1:1179.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxonomica Sinica 14: 407420 (in Chinese).Google Scholar
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticultura 615: 2952.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
LePage, B.A. & Basinger, J.F. 1991. The evolutionary and biogeographic history of Pseudolarix. American Journal of Botany 78: 118.Google Scholar
LePage, B.A. & Basinger, J.F. 1995. Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). International Journal of Plant Sciences 156: 910950.CrossRefGoogle Scholar
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomica Sinica 31: 405412.Google Scholar
Mädler, K. 1939. Die pliozäne flora von Frankfurt am Main. Frankfurt am Main: Alexander Doweld.Google Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Mai, D.H. & Walther, H., 1988. Die pliozänen Floren von Thüringen Deutsche Demokratische Republik. Quartärpaläont 7: 55297.Google Scholar
Manton, I. 1950. Problems of Cytology and Evolution in the Pteridophyta. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Bulletin of the Geological Survey of Canada 403: 8398.Google Scholar
Meyen, S.V. 1987. Fundamentals of Palaeobotany. London: Chapman & Hall.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1977 Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp. 448486 in Beck, C.B. (ed.) Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Moss, P.T., Greenwood, D.R. & Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia Washington State) from palynology. Canadian Journal of Earth Sciences 42(2): 187204.CrossRefGoogle Scholar
Muntzing, A. 1933. Hybrid incompatibility and the origin of polyploidy. Hereditas 18: 3355.CrossRefGoogle Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Nkongolo, K.K. & Mehes-Smith, M. 2012. Karyotype evolution in the Pinaceae: implication with molecular phylogeny. Genome 55: 735753.CrossRefGoogle ScholarPubMed
Ozaki, K. 1979. Late Miocene Tatsumitoge flora of Tottori Prefecture, southwest Honshu, Japan (I). Science Reports of the Yokohama National University Section II 26: 3156.Google Scholar
Page, C.N. 1972. An interpretation of the morphology and evolution of the cone and shoot of Equisetum. Journal of the Linnean Society Botany 65: 359397.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Price, W.R. 1931. On the distribution of Pseudolarix fortunei, the Golden larch. Kew Bulletin 2: 6768.Google Scholar
Raven, P.H. & Axelrod, D.I. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539673.CrossRefGoogle Scholar
Reid, C. & Reid, E.M., 1915. The Pliocene floras of the Dutch–Prussian border. Meded Rijksopsp Delfst 6: 1178.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schloemer-Jaeger, A. 1958. Alttertiaere Pflanzen aus Floezcn der Broegger-halbinsel Spitzbergens. Palaeontographica Abteilung B 104: 39103.Google Scholar
Seward, A.C. 1912. Jurassic plants from Amurland. Memoirs of the Geological Survey of New South Wales 81:134.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Stebbins, G.L. 1938. Cytological characteristics associated with the different growth habits in the dicotyledons. American Journal of Botany 25: 189198.CrossRefGoogle Scholar
Stebbins, G.L. 1947. Types of polyploids; their classification and significance. Advances in Genetics 1: 403429.CrossRefGoogle ScholarPubMed
Stebbins, G.L. 1963. Variation and Evolution in Plants. New York: Columbia University Press.Google Scholar
Stewart, W.N. & Rothwell, G.W. 1993. Paleobotany and the Evolution of Plants, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Supniewska, H. 1954. Krotkopedy Pseudolarix amabilis Rehd. Z pliocenu pod Huba w Karpatach zachodnic. Institute of Geology (Warsaw) Proceedings. 71: 133146 (in Polish).Google Scholar
Szafer, W. 1947. The Pliocene flora of Kroscienko in Poland. Pol Akad Umiejetn 72: 1213.Google Scholar
Takhtajan, A. 1969. Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Boyd.Google Scholar
Takhtajan, A.L. 1956. The Higher Plants 1. Psilophytales – Coniferales. Moscow: Academia of Sciences of USSR (in Russian).Google Scholar
Takhtajan, A.L. 1957. On the origin of temperate flora of Eurasia. Botanische Zhurnal 42: 16351653.Google Scholar
Takhtajan, A.L. 1966. Major phytochoria of the Late Cretaceous and the Palaeocene in the territory of the USSR and adjacent countries. Botanische Zhurnal 51: 12171230.Google Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University Ser IV. Geology 11: 119398.Google Scholar
Tanai, T. & Onoe, T. 1961. A Mio–Pliocene flora from the Ningyo-Toge area on the border between Tottori and Okayama prefectures, Japan. Geological Survey of Japan 187: 163.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Teslenko, Y.V. 1970. Geologic history of larches and pseudolarches. Paleontology Journal 4: 241247.Google Scholar
Tiffney, B.H. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. Journal of the Arnold Arboretum 66: 7394.CrossRefGoogle Scholar
Tiffney, B.H. 1985b. The Eocene North Atlantic land bridge: its importance in the Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66: 243273.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vakhrameev, V.A. & Labedev, E.L. 1976. A new Pseudolarix from the Upper Cretaceous of the northeast of the USSR. Paleontology Journal 10: 500504.Google Scholar
Wang, C.-W. 1961. The Forests of China, With a Survey of Grassland and Desert Vegetation. Cambridge, MA: Maria Moors Cabot Foundation Publications.Google Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wehr, W.C. & Schorn, H.E. 1993. Current research on Eocene conifers at Republic, Washington. Washington Geology 20:2023.Google Scholar
Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62: 264279.CrossRefGoogle Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 29: 400415 (in Chinese, with English summary).Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zanni, M. & Ravazzi, C. 2007. Description and differentiation of Pseudolarix amabilis pollen: palaeoecological implications and new identification key to fresh bisaccate pollen. Review of Palaeobotany and Palynology 145: 3575.CrossRefGoogle Scholar

References

Ajbilou, R., Maranon, T. & Arroyo, J. 2006. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica 29: 104113.CrossRefGoogle Scholar
Argant, J. 2004. Le gisement pliocene final de Saint-Vallier (Drom, France): Palynologie. Geobios 37 (suppl.): S8190.CrossRefGoogle Scholar
Barghoorn, E.S. Jr. & Bailey, I.W. 1938. The occurrence of Cedrus in the auriferous gravels of California. American Journal of Botany 25: 641648.CrossRefGoogle Scholar
Beals, E.W. 1965. The remnant cedar forests of Lebanon. Journal of Ecology 53: 679694.CrossRefGoogle Scholar
Benabdid, A. & Fennane, M. 1994. Connaissances sur la vegetation du maroc: phytogeographie, phytosocciologie et series de vegetation. Lazaroa 14: 2197.Google Scholar
Bertini, A. 2006. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology 188: 235258.CrossRefGoogle Scholar
Bertoldi, R. 1997. Lineamenti palinostratografici de depositi continentali del Pliocene-Pleistocene inferiore inizaile dell’Italia nord-occidental. Bolletino Societa Paleontologica Italiana 39: 6373.Google Scholar
Bertoldi, R., Rio, D. & Thunnell, R. 1989. Pliocene–Pleistocene vegetational and climatic evolution of the south-central Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 263275.CrossRefGoogle Scholar
Blokhina, N.I. 1998. Fossil wood of Cedrus (Pinaceae) from the Paleogene of Kamchatka. Paleontological Journal 32: 532538.Google Scholar
Boukhris, I., Lahssini, S., Collalti, A., et al. 2023. Calibrating a process-based model to enhance robustness in carbon sequestration simulations: the case of Cedrus atlantica (Endl.) Manetti ex Carrière. Forests 14(2): 401.CrossRefGoogle Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21: 115.CrossRefGoogle Scholar
Boydak, M. 2003. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management 178: 231234.CrossRefGoogle Scholar
Brandis, D. 1921. Indian Trees. London: Constable.Google Scholar
Chaney, R.W. 1932. Notes on occurrence and age of fossil plants found in the auriferous gravels of Sierra Nevada. California State Division of Mines, Report of the State Mineralogist 28.Google Scholar
Chapman, E. 1949. Cyprus Trees and Shrubs. Nicosia: Government Printing Office.Google Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Cornuel, , 1882. Note sur les cones de Pinus elongata decouvertes a Saint-Dizier et de la Houpette (Meuse). Bulletin de la Société Géologique de France Ser 3 10: 259263.Google Scholar
Craggs, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney Range flora of northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 217: 2546.CrossRefGoogle Scholar
Darrow, B.S. 1936. A fossil araucarian embryo from the Cerro Cuadrado of Patagonia. Botanial Gazette 98: 328337.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Emberger, L. 1938. Contribucion a la connaissance des Cedres et en particulier de Deodar et du Cedre de l’Atlas. Revue Botanique Appliquees et d’Agriculture Tropicale 17: 7792.CrossRefGoogle Scholar
Ezzahiri, M. & Belghazi, B. 2000. Synthese de quelques resultants sur la regeneration naturelle du cedre de l’Atlas au Moven Atlas (Maroc). Secheresse, Science et Chagements Plaetaires 11: 7984.Google Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 73110.CrossRefGoogle Scholar
Gray, J. 1964. Northwest American Tertiary paleontology: the emerging picture. Pp 2130 in Cranwell, L. (ed.), Ancient Pacific Floras. Honolulu: University of Hawaii Press.Google Scholar
Grimson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Gupta, B.L. 1928. Forest Flora of Chakraata, Dehra Dun and Saharanpur Forest Divisions, United Provinces. Calcutta: Government of India Central Publication Branch.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, northern Yakutiya). Palaeogeography, Palaeoclimatology, Palaeoecology 295(3–4): 409422.CrossRefGoogle Scholar
Hsu, J., Tao, J. & Sun, X. 1973. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica 15(1): 103119.Google Scholar
Ivanov, D., Ashraf, A.R., Mosbrugger, V. & Palamarev, E. 2002. Palynological evidence for Miocene climate change in the Forecarpathian Basin (central Paratethys, NW Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology 178(1–2): 1937.CrossRefGoogle Scholar
Kavgaci, A., Basaran, S. & Basaran, M.A. 2010. Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144: 271287.CrossRefGoogle Scholar
Khouzami, M. 1994. The Lebanese cedar forests. Proceedings of the First National Conference on the Cedar of Lebanon, Present and Future. Beirut: American University of Beirut.Google Scholar
Khuri, S. & Akeroyd, J. 1999. Cherishing Lebanon’s famous cedars. Plant Talk 17: 1921.Google Scholar
Khuri, S. & Talhouk, S.N. 1999. Species accounts: cedar of Lebanon (Cedrus libani A. Rich). Pp. 108111 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Khuri, S., Shmoury, M.R., Baalbaki, R., Maunder, M. & Talkouk, S.N. 2000. Conservation of the Cedrus libani populations in Lebanon: history, current status and experimental application of somatic embryogenesis. Biodiversity and Conservation 9: 12611273.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Krouchi, F., Derridj, A. & Lefevre, F. 2004. Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. Forest Ecology and Management 197: 181189.CrossRefGoogle Scholar
Lamb, H.F. & Van-der-Kaars, S. 1995. Vegetation response to Holocene climatic change: pollen and palaeolimnological data from the Middle Atlas, Morocco. Holocene 5: 400408.CrossRefGoogle Scholar
Meddour, R. 1992. Regeneration naturelle de Cedrus atlantica Man. Et de divers pins apres incendie dans l’arboretum de Meurdja (Algerie). Foret mediterraneenne 13: 275287.Google Scholar
Meiggs, R. 1982. Trees and Timber in the Ancient Mediterranean World. Oxford: Clarendon Press.Google Scholar
Mikesell, M.W. 1969. The deforestation of Mount Lebanon. Geographic Review 59: 128.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. London: HMSO.Google Scholar
Mouterde, P. 1966. Nouvelle Flore du Liban et de la Syrie. Beyrouth: Editions de l’imprimerie catholique.Google Scholar
Newton, A.C., Alnutt, T.R., Gillies, A.C.M., Lowe, A.J. & Ennos, R.A. 1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends in Ecology and Evolution 14: 140145.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Panetsos, K.P., Scaltsoyiannes, A. & Tsaktsira, M. 1994. Genetic variation in allozymes of Cedrus libani A. Rich and Cedrus atlantica Mannetti. Annales de la Recherche Forestiereau Maroc 27: 420434.Google Scholar
Pons, A. 1964. Contribution palynologique à l’étude de la flore et de la végétation pliocènes de la région rhodanienne. Doctoral dissertation, Masson & Cie.Google Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Puri, G.S. 1957. Preliminary observations on the phytogeographical changes in the Kashmir Valley during the Pleistocene. Palaeobotanist 6: 1618.Google Scholar
Qiao, C.-Y., Ran, J.-H., Li, Y. & Wang, X.-Q. 2007. Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Annals of Botany 100: 573580.CrossRefGoogle ScholarPubMed
Ravazzi, C., Pini, R., Breda, M., et al. 2005. The lacustrine deposits of Fornaci di Ranica (late Early Pleistocene, Italian Pre-Alps): stratigraphy, palaeoenvironment and geological evolution. Quaternary International 131: 3558.CrossRefGoogle Scholar
Renau-Morata, B., Nebauer, S.G., Sales, E., et al. 2005. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. American Journal of Botany 92: 875884.CrossRefGoogle Scholar
Roberts, M.C. & Whitehead, D.R. 1984. The palynology of a non-marine Neogene deposit in the Williamette Valley, Oregon (USA). Review of Palaeobotany and Palynology 41: 112.CrossRefGoogle Scholar
Sahni, K.C. 1990. Gymnosperms of India and Adjacent Countries. Dehradun: Bishen Singh and Mahendra Pal Singh India.Google Scholar
Saporta, G. 1880. Notice sur les vegetaux fossiles de la Craie inferieure des environs de Havre. Bulletin de la Société géologique de Normandie 6: 640661.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schickhoff, U. 1994. Die Verbreitung der Vegetation im Kaghan-Tal (Westhimalaya, Pakistan) und ihre kartographische Darstellung im Mass-stab. Erdkunde 48: 92110.CrossRefGoogle Scholar
Semaan, M. & Haber, R. 2003. In situ conservation of Cedrus libani in Lebanon. Acta Horticultura 615: 415417.CrossRefGoogle Scholar
Sharma, C.M., Baduni, N.P., Gairola, S., Ghildiyal, S.K. & Suyal, S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology and Management 260: 21702179.CrossRefGoogle Scholar
Sharma, C.M., Gairola, S., Baduni, N.P., Ghildiyal, S.K., & Suyal, S. 2011. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Biosciences 36: 701708.CrossRefGoogle ScholarPubMed
Stefanoviac, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene. American Journal of Botany 85: 688697.CrossRefGoogle ScholarPubMed
Stockey, R.A. 1977. Reproductive biology of the Cerro Cuadrado (Jurassic) fossil conifer: Paraucaria patagonica. American Journal of Botany 64: 733744.CrossRefGoogle Scholar
Su, T., Jacques, F.M.B., Spicer, R.A., et al. 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past 9(4): 19111920.CrossRefGoogle Scholar
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 181222.CrossRefGoogle Scholar
Sveshnikova, I.N. and Budantsev, L.J. 1969. Iskopaemye flory Arktiki, I (Fossil Floras of the Arctic, I). Leningrad: Nauka (in Russian).Google Scholar
Takaso, T. & Owens, J.N. 1995. Ovulate cone morphology and pollination in Pseudotsuga and Cedrus. International Journal of Plant Sciences 156: 630639.CrossRefGoogle Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2001a. Conifer conservation in Lebanon. Acta Horticultura 615: 411414.Google Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2001b. Conservation of the coniferous forests of Lebanon: past, present and future prospects. Oryx 35: 206215.CrossRefGoogle Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2003. Conifer conservation in Lebanon. Acta Horticulturae 615: 411414.CrossRefGoogle Scholar
Terrab, A., Paun, O., Talavera, S., et al. 2006. Genetic diversity and population structure in natural populations of Moroccan Atlas Cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. American Journal of Botany 93: 12741280.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vishnu-Mittre, & Sharma, B.D. 1963. Pollen morphology of the Indian species of Alnus. Grana 4(2): 302305.Google Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.-C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Yasuda, Y., Kitagawa, H. & Nakagawa, T. 2000. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73: 127136.CrossRefGoogle Scholar
Yavuz-Isik, N. 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitomer Basin (Kutahya), Western Anatolia. Geobios 40: 701708.CrossRefGoogle Scholar
Yu, C.J. 1971. The Tertiary fossil pollens and diatoms from Bukpyeong, Korea. Bulletin of the Geological Survey of Korea 13: 449484.Google Scholar
Zhu, Z.H., Wu, L., Xi, P., Song, Z.C. & Zhang, Y.Y. 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Beijing: Petroleum Industry Press.Google Scholar
Zohary, M. 1973. Geobotanical Foundations of the Middle East. Amsterdam: Verlag-Swets-Zeitlinger.Google Scholar

References

Allison, T.D. 1990. Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology 71: 516522.CrossRefGoogle Scholar
Allison, T.D. 1991. Variation in sex expression in Canada yew (Taxus canadensis). American Journal of Botany 78: 569578.CrossRefGoogle Scholar
Allison, T.D. 1993. Self-fertility in Canada yew (Taxus canadensis Marsh.). Bulletin of the Torrey Botanical Club 120: 115120.CrossRefGoogle Scholar
Allison, T.D., Shimizu, T., Ohara, M. & Yamanaka, N. 2008. Variation in sexual reproduction in Taxus cuspidata Sieb. & Zucc. Plant Species Biology 23: 2532.CrossRefGoogle Scholar
Altmann, K.H. & Gertsch, J. 2007. Anticancer drugs from nature: natural products as a unique source of new microtubule-stabilising agents. Natural Products Report 24: 327357.CrossRefGoogle Scholar
Anderson, E.D. & Owens, J.N. 1999. Megagametophyte development, fertilisation and cytoplasmic inheritance in Taxus brevifolia. International Journal of Plant Sciences 160: 459469.CrossRefGoogle Scholar
Arno, S.F. 1977. Northwest Trees. Seattle, WA: The Mountaineers.Google Scholar
Axelrod, D.I., Al-Shebaz, I. & Raven, P.H. 1998. History of the modern flora of China. Pp 4355 in Zhang, A.L. & Wu, S.G. (eds.), Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press/Springer.Google Scholar
Bailey, J.D. & Liegel, L.H. 1998. Pacific yew (Taxus brevifolia Nutt.) growth and site factors in western Oregon. Northwest Science 72: 283292.Google Scholar
Ball, R.L., Camey, D.H. & Albrecht, T. 1990. Taxol inhibits stimulation of cell DNA synthesis by human cytomegalovirus. Experimental Cell Research 191: 3744.CrossRefGoogle ScholarPubMed
Bao, W.K. & Chen, Q.H. 1998. Present status, problems and further development strategies on natural Taxus resource and their exploitation within China. Journal of Natural Resources 13: 375380.Google Scholar
Barker, K.P., Burrowclough, G.E. & Groth, J.G. 2002. A phylogenetic analysis of passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society B: Biological Sciences 269(1488): 295308.CrossRefGoogle ScholarPubMed
Barnea, A., Harborne, J.B. & Pannell, C. 1993. What parts of fleshy fruits contain secondary compounds toxic to birds and why? Biochemical Systematics and Ecology 21: 421429.CrossRefGoogle Scholar
Bartkowiak, S. 1970. Ornitochoria rodzimych I obcych gatunkow drew I krzewow. Arboretum Kornickie 15: 237261 (in Polish).Google Scholar
Bartkowiak, S. 1978. Seed dispersal by birds. Pp 139146 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Bell, C.P. 2005. Progress in evolution of bird migration and pattern in avians. Journal of Avian Biology 31: 258265.CrossRefGoogle Scholar
Berglund, B.E. 1966 Late-Quaternary vegetation in eastern Blekinge, southeastern Sweden: a pollen analytical study. II. Post-glacial time. Opera Botanica 12: 1190.Google Scholar
Bevan-Jones, R. 2016. The Ancient Yew: A History of Taxus baccata. Oxford: Windgather Press.CrossRefGoogle Scholar
Bialobok, S. 1978. Possibilities of yew cultivation in an environment modified by man. Pp 147149 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Birks, H.J.B. 1982. Mid-Flandrian forest history of Roundsea Wood National nature Reserve, Cumbria. New Phytologist 90: 339354.CrossRefGoogle Scholar
Brea, M., Bellosi, E. & Krause, M. 2009. Taxaceoxylon katuatenkum sp. nov. from the Loluel-Laike Formation (Lower-Middle Eocene), Chubut, Argentina: a component of Paleogene subtropical forests of Patagonia. Ameghiniana 46: 127140.Google Scholar
Brockman, C.F. 1949. Trees of Mount Ranier National Park. Seattle, WA: University of Washington Press.Google Scholar
Bruderer, B. & Salewski, V. 2008. Evolution of bird migration in a biogeographical context. Journal of Biogeography 35: 19511959.CrossRefGoogle Scholar
Busing, R.T., Halpern, C.B. & Spies, T.A. 1995. Ecology of Pacific yew (Taxus brevifolia) in western Oregon and Washington. Conservation Biology 9: 11991207.CrossRefGoogle Scholar
Cao, C.-M., Zhang, M.-L., Wang, Y.-F., et al. 2006. Two new taxanes from needles and branches bark of Taxus cuspidata. Chemistry and Biodiversity 3: 11531161.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S., Greenwood, D.R., Partridge, A.D. & Banks, M.A. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685718.CrossRefGoogle Scholar
Chang, S.-H., Ho, C.-K., Chen, Z.Z. & Tsay, J.-Y. 2001. Micropropagation of Taxus mairei from mature trees. Plant Cell Reports 20: 469502.CrossRefGoogle Scholar
Changxing, L., Saddai, G., Hassan, F., et al. 2020. Biotechnology approach to the production of plant-derived primary anti-cancer agents: an update and overview. Biomedicine and Pharmacotherapy 132: 110918.CrossRefGoogle Scholar
Chase, M. 1991a. Taxol appears effective in treating advanced breast cancer, study finds. Wall Street Journal, 9 April: A1.Google Scholar
Chase, M. 1991b. Cancer drug may save many human lives – at a cost of a rare tree. Wall Street Journal, 18 December: B5.Google Scholar
Chen, Q.-H., Xu, T.-L., & Chen, X.-M. 1997. The utilization and conservation of germplasm resources of Taxus in Guizhou. Guizhou Science 15: 219222.Google Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Chiappe, L.M. 1995. The first 85 million years of avian evolution. Nature 378: 349355.CrossRefGoogle Scholar
Chiappe, L.M. & Dyke, G.J. 2002. The Mesozoic radiation of birds. Annual Review of Ecology and Systematics 33: 91124.CrossRefGoogle Scholar
Chira, E. 1964. Vplyv teploty na priebeh meiozy pelovych materskych buniek Taxus baccata L. Biologia 19: 235244 (in Polish).Google Scholar
Chuang, C.-F., El-Razel, M.H.A., Kuo, Y.-C., et al. 2009. Taxane diterpenoids from Taiwanese yew Taxus sumatrana. Helvetica Chimica Acta 92: 21342136.CrossRefGoogle Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin Academica Sinica II, 4: 1014.Google Scholar
Clark, C.J., Poulsen, J.R., Connor, E.F. & Parker, V.T. 2004. Fruiting trees a dispersal foci in semi-deciduous tropical forest. Oecologia 139: 6675.CrossRefGoogle Scholar
Clark, J.G.D. 1963. Neolithic bows from Somerset, England, and the prehistory of archery in north-western Europe. Proceedings of the Prehistoric Society 29: 5098.CrossRefGoogle Scholar
Coles, J.M., Heal, S.V.E. & Orme, B.J. 1978. The use and character of wood in prehistoric Britain and Ireland. Proceedings of the Prehistoric Society 44: 145.CrossRefGoogle Scholar
Collins, D., Mill, R.R. & Möller, M. 2003. Species separation of Taxus baccata, T. canadensis and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. American Journal of Botany 90: 175182.CrossRefGoogle Scholar
Comes, H.P. & Kadereit, J.W. 1998. The effects of Quaternary climatic change on plant distribution and evolution. Trends in Plant Science 3: 432438.CrossRefGoogle Scholar
Contreras-Medina, R., Luna-Vega, I., & Rios-Muňoz, C.A. 2010. Distribución de Taxis globosa (Taxaceae) en México: Modelas ecológicos de nicho efectos du cambio del uso di sueloy conservación. Revists Chileana de Historia Natural 83: 421433.Google Scholar
Contreras-Medina, R., Luna-Vega, I., & Ramírez-Martinez, J.C. 2011. Representativdad del tejo mexicna (Taxus globosa Schtdl.), Taxaceae, en las areas naturals protegedas de Mesoaméricana. Spanish Journal o Novel development 51: 5160.Google Scholar
Cooper, A. & Penny, D. 1997. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275: 11091113.CrossRefGoogle ScholarPubMed
Corrandini, P., Edelin, C., Bruneau, A. & Bouchard, A. 2002. Architectural and genotypic variation in the clonal shrub Taxus canadensis as determined from random amplified polymorphic DNA and amplified length polymorphism. Canadian Journal of Botany 80: 205219.CrossRefGoogle Scholar
Cox, C.W. 1985. The evolution of avian migration systems between tropical and temperate regions of the world. American Naturalist 126: 451474.CrossRefGoogle Scholar
Cragg, G.M., Schepartz, S.A., Suffness, M. & Grever, M.R. 1993. The taxol supply crisis: new NCI policies for handling the large scale production of novel natural product anticancer and anti-HIV agents. Journal of Natural Products 56: 16571668.CrossRefGoogle Scholar
Cramp, S. (ed.). 1988. The Birds of the Western Palearctic. Vol. V. Oxford: Oxford University Press.Google Scholar
Creutz, G. 1952. Misteldrossel und Seidenschwanz. Ornithologische Mitteilung 4: 67.Google Scholar
Daniewski, W., Gumulka, M., Anczewski, W., et al. 1998. Why the yew tree (Taxus baccata) is not attacked by insects. Phytochemistry 49: 12791282.CrossRefGoogle Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Deforce, K. & Bastiaens, J. 2007. The Holocene history of Taxus baccata (yew) in Belgium and neighbouring regions. Belgian Journal of Botany 140: 222237.Google Scholar
Dempsey, D. & Hook, I. 2000. Yew (Taxus) species: chemical and morphological variations. Pharmaceutical Biology 38: 274280.CrossRefGoogle ScholarPubMed
DiFazio, S.P., Wilson, M.V. & Vance, N.C. 1998. Factors limiting seed production of Taxus brevifolia (Taxaceae) in Western Oregon. American Journal of Botany 85: 910918.CrossRefGoogle ScholarPubMed
Ding, A.H., Porteu, F., Sanchez, E. & Nathan, C.F. 1990. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248: 370372.CrossRefGoogle ScholarPubMed
Dodson, J.R. & Bradshaw, R.H.W. 1987. A history of vegetation and fire 6,600 BP to present, County Sligo, western Ireland. Boreas 16: 113123.CrossRefGoogle Scholar
Dogra, P.D. 1980. Embryogeny of gymnosperms and taxonomic assessment. Glimpses in Plant Research 5: 114128.Google Scholar
Dörken, V.M., Nimsch, H. & Rudall, P.J. 2019. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Annals of Botany 123: 133143.CrossRefGoogle ScholarPubMed
Doss, R.P., Carney, J.R., Shanks, C.H., Williamson, R.T. & Chamberlain, J.D. 1997. Two new taxoids from European yew (Taxus baccata) that act as pyrethroid insecticide synergists with the black vine weevil (Otiorhynchus sulcatus). Journal of Natural Products 60: 11301133.CrossRefGoogle Scholar
Doyle, J. 1945. Developmental lines in pollination mechanisms of Coniferales. Science Proceedings Royal Dublin Society II 24: 4362.Google Scholar
Doyle, J. 1963. Proembryogeny in Pinus in relation to that of other conifers: a survey. Proceedings of the Royal Irish Academy B62: 181216.Google Scholar
Doyle, J. & Brennan, M. 1971. Cleavage polyembryony in conifers and taxads: a survey. Proceedings of the Royal Society of Dublin A4: 5788.Google Scholar
Dyke, G.J. 2001. The evolution of birds in the Early Tertiary: systematics and patterns of diversification. Geological Journal 36: 306315.CrossRefGoogle Scholar
Edwards, S.V. & Boles, W.E. 2002. Out of Gondwana: the origin of passerine birds. Trends in Ecology and Evolution 17: 347349.CrossRefGoogle Scholar
El-Kassaby, Y.A. & Yanchuk, A.D. 1994. Genetic diversity, differentiation and inbreeding in Pacific yew from British Columbia. Journal of Heredity 85: 112117.CrossRefGoogle Scholar
Ericson, P.G.P., Kestedt, M., & Johannsen, M.S. 2003. Evolution, biogeography, and patterns of diversification in passerine birds. Journal of Avian Biology 34: 315.CrossRefGoogle Scholar
Fang, W.S., Fang, Q.C. & Liang, X.T. 1996. Bicyclic taxoids from needles of Taxus chinensis. Planta Medica 62: 567569.CrossRefGoogle ScholarPubMed
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Filer, D. 2013. An Atlas of the World’s Conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status. Leiden: Brill.CrossRefGoogle Scholar
Feduccia, A. 1999. The Origin and Evolution of Birds, 2nd ed. New Haven, CT: Yale University Press.Google Scholar
Fei, Y.J., Lei, Z.X., Yu, C.J., Chen, Z.Y. & He, J. 1997. The cause for endangerment of Taxus L. and measures for its sustainable development in China. Natural Resources 5: 5963.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Ferguson, D.K. 1978. Some current research on fossil and recent taxads. Review of Palaeobotany and Palynology 26(1–4): 213226.CrossRefGoogle Scholar
Ferguson, D.K. 1985. A new species of Amentotaxus (Taxaceae) from northeastern India. Kew Bulletin 40: 115119.CrossRefGoogle Scholar
Fischer, H.E. & Chapman, C.A. 1993. Frugivores and fruit syndromed: differential patterns at the genus and species level. Oikos 66: 432482.CrossRefGoogle Scholar
Florin, R. 1938. Die Koniferen des Oberkarbons und des unteren Perms. Palaeontographica B 85: 1729.Google Scholar
Florin, R. 1945. On taxonomic relationships, male cones. Palaeontographica B 85 (8): 657.Google Scholar
Florin, R. 1948a. On Nothotaxus, a new genus of the Taxaceae, from Eastern China. Acta Horti Bergiani 14: 385395.Google Scholar
Florin, R. 1948b. On the morphology and relationships of the Taxaceae. Botanical Gazette 110: 3139.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1954. The female reproductive organs of Conifers and Taxads. Biological Review 29: 367389.CrossRefGoogle Scholar
Florin, R. 1958. On Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 17: 257410.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Fu, L.K., Yu, Y.F. & Farjon, A. 1999. Cupressaceae. Pp 6277 in Wu, Z.Y. & Raven, P.H. (eds.), Flora of China 4. Beijing: Science Press.Google Scholar
Fuller, R.J. 1982. Bird Habitats in Britain. Calton: Poyser.Google Scholar
Gao, L.M., Möller, M., Zhang, X.M., et al. 2007. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology 16(22):46844698.CrossRefGoogle Scholar
Gao, L.M., Möller, M., Zhang, X.-M., et al. 2009. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology 16: 46844698.CrossRefGoogle Scholar
Garcia, D., Zamora, R., Hodar, J.A., Gomez, J.M. & Castro, J. 2000. Yew (Taxus baccata L.) regeneration is facilitated by fleshy-fruited shrubs in Mediterranean environments. Biological Conservation 95: 3138.CrossRefGoogle Scholar
Garcia, D., Obeso, J.R. & Martinez, I. 2005. Spatial concordance between seed rain and seedling establishment in bird-dispersed trees: does scale matter? Journal of Ecology 93: 693704.CrossRefGoogle Scholar
Garcia-Arana, M.A., Cantú-Ayala, C., Estrada-Castillión, E., Panda-Moreno, M., Moreno-Talamantez, A.M. 2012. Distribucion actual et potential de Taxus globosa en México. Journal of Botanical Research Institute of Texas 6: 587598.Google Scholar
Ge, S., Hong, D.Y., Wang, H.Q., Liu, Z.Y. & Zhang, C. 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences 159: 351357.CrossRefGoogle Scholar
Godfrey, R.K. & Kurz, H. 1962. The Florida Torreya destined for extinction. Science 136(3519): 900902.CrossRefGoogle ScholarPubMed
Godwin, H. 1956. The History of the British Flora. Cambridge: Cambridge University Press.Google Scholar
Greguss, P. 1955. Xylotomische Bestimmung der heute lebenden Gymnospermen. Budapest: Akademiai Kiado.Google Scholar
Grimaldi, D. & Engel, M.S. 2005. Evolution of the Insects. Cambridge: Cambridge University Press.Google Scholar
Grime, J.P. 1979. Plant Strategies and Vegetation Processes. Chichester: John Wiley.Google Scholar
Griswold, C. K., Taylor, C.M. & Norris, D.R. 2010. The evolution of migration in a seasonal environment. Proceedings of the Royal Society, Biological Science 277: 27112720.CrossRefGoogle Scholar
Gueritte, F. 2001. General and recent aspects of the chemistry and structure-activity relationships of taxoids. Current Pharmaceutical Design 7: 12291249.CrossRefGoogle ScholarPubMed
Gupta, B.L. 1928. Forest Flora of the Chakrata, Dehra Dun and Saharanpur Forest Divisions, United Provinces. Calcutta: Government of India Central Publication Branch.Google Scholar
Han, R. 1996. Highlight on the studies of anticancer drugs derived from plants in China. Stem Cells 12: 5363.CrossRefGoogle Scholar
Hanson, J. 2017. Some contributions of organic chemistry to the study of the biosynthesis of natural products. Science Progress 100: 124211.CrossRefGoogle Scholar
Hao, D.C., Huang, B.-L. & Yang, L. 2008a. Phylogenetic relationships of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA. Biological Pharmaceutical Bulletin 31: 260265.CrossRefGoogle Scholar
Hao, D.C., Xiao, P.G., Huang, B.-L., Ge, G.B. & Yang, L. 2008b. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hartley, P.H.T. 1954. Wild fruits in the diet of British thrushes: a study in the ecology of closely allied species. British Birds 47: 98107.Google Scholar
Hattenschwiler, S. 2001. Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2. Oecologia 129: 3142.CrossRefGoogle Scholar
Hattenschwiler, S. & Korner, C. 2000. Tree seedling responses to in-situ CO2 enrichment differ among species and depend upon understorey light availability. Global Change Biology 6: 213226.CrossRefGoogle Scholar
Heit, C.E. 1968. Thirty five years’ testing of tree and shrub seed. Journal of Forestry 66: 632633.Google Scholar
Helbig, A.J. 2003. Evolution of bird migration: a phylogenetic and biogeographic perspective. Pp. 320 in Berthold, P., Gwinner, E. & Sonnenschein, E. (eds.), Avian Migration. Berlin: Springer.CrossRefGoogle Scholar
Herrera, C.M. 1988. A study of avian frugivores, bird-dispersed plants, and their interrelationships with Mediterranean shrublands. Ecological Monographs 54: 123.CrossRefGoogle Scholar
Hertel, H. & Kohlstock, N. 1996. Genetische Variation und geographische Struktur von Eibenvorkommen (Taxus baccata L.) in Mecklenburg-Vorpommern (Germany). Silvae Genetica 45: 290294.Google Scholar
Hewitt, G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London, Ser. B, Biological Sciences 359: 183195.CrossRefGoogle ScholarPubMed
Hilfiker, K., Holderegger, R., Rotach, P. & Gugerli, F. 2004. Dynamics of genetic variation in Taxus baccata: local versus regional perspectives. Canadian Journal of Botany 82: 219227.CrossRefGoogle Scholar
Hirasuna, T.J., Pestchanker, L.J., Srinivasan, V. & Shuler, M.L. 1996. Taxol production in suspension cultures of Taxus baccata. Plant Cell, Tissue and Organ Culture 44: 95102.CrossRefGoogle Scholar
Holmes, F.A., Walters, R.S., Theriault, R.L., et al. 1991. Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute 83: 17971805.CrossRefGoogle ScholarPubMed
Hook, I., Poupat, C., Ahond, A., et al. 1999. Seasonal variation of neutral and basic taxoid contents in shoots of European yew (Taxus baccata). Phytochemistry 52: 10411045.CrossRefGoogle Scholar
Horowitz, S.B. 1992. Mechanism of action of taxol. Trends in Pharmacological Sciences 13: 134136.CrossRefGoogle Scholar
Hu, Y.-S., Wang, H.-Y. & Wang, F.-H. 1992 Leaf anatomy of Austrotaxus in relation to its systematic position. Cathaya 4: 6977.Google Scholar
Huang, C.-C., Chiang, T.-Y. & Hsu, T.-W. 2008. Isolation and characterisation of microsatellite loci in Taxus sumatrana (Taxaceae) using PCR-based isolation of microsatellite arrays (PIMA). Conservation Genetics 9: 471473.CrossRefGoogle Scholar
Hulme, P.E. 1996. Natural regeneration of yew (Taxus baccata L.): microsite, seed or herbivore limitation. Journal of Ecology 84: 835861.CrossRefGoogle Scholar
Hulme, P.E. 1997. Post-dispersal seed predation and the establishment of vertebrate dispersed plants in Mediterranean scrublands. Oecologia 111: 9198.CrossRefGoogle ScholarPubMed
Hulme, P.E. & Borelli, T. 1999. Variability in post-dispersal seed predation in deciduous woodland: relative importance of location, seed species, burial and density. Plant Ecology 145–156.Google Scholar
Hulten, E. 1971. Atlas over vaxternas utbredning I Norden. Stockholm: Generalstabens Litografiska Anstals Forlag (in Swedish).Google Scholar
Huxtable, R. J. 1992. The pharmacology of extinction. Journal of Ethnopharmacology 37: 111.CrossRefGoogle ScholarPubMed
Iszkulo, G. & Boratynski, A. 2004. Interaction between canopy tree species and European yew Taxus baccata (Taxaceae). Polish Journal of Ecology 52: 523531.Google Scholar
Jalas, J. & Suominen, J. (eds.), 1973. Atlas Florae Europaeae. 2. Gymnosperms. Helsinki: Committee for the Mapping of Flora Europaea.Google Scholar
Janchen, E. 1949. Das System der Koniferen. Oest. Acad. Wiss. Math-Naturw. Kl. 158: 155162.Google Scholar
Jaziri, M., Zhiri, A. Guo, Y.-W., et al. 1996. Taxus sp. cell, tissue and organ cultures as alternative sources for taxoids production: a literature survey. Plant Cell Tissue and Organ Culture 46: 5975.CrossRefGoogle Scholar
Jennewein, S. & Croteau, R. 2001. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Applied Microbiological Biotechnology 57: 1319.Google ScholarPubMed
Jetter, R., Klinger, A. & Schaffer, S. 2002. Very long-chain phenylpropyl and phenybutyl esters from Taxus baccata needle cuticular waxes. Phytochemistry 61: 579587.CrossRefGoogle Scholar
Jǿnsson, , K., Henri-Fabre, P., Ricklets, R. & Fjeldsa, J. et al. 2011. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proceedings of the National Academy of Sciences of the USA 108: 23282333.CrossRefGoogle ScholarPubMed
Jordano, P., Garcia, C., Goday, J.A. & Garcia-Castaño, J.L. 2007. Diffuse tree attraction of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences 104: 32783282.CrossRefGoogle Scholar
Kamppa, G. 1926. Dendrologinche Erfahrungen in Finnland. Mitteilungen der Deutsche dendrologischen Gesellscaft 26: 192194.Google Scholar
Kelly, D.L. 1981. The native forest vegetation of Killarney, south-west Ireland: an ecological account. Journal of Ecology 69: 437472.CrossRefGoogle Scholar
Kelsey, R.G. & Vance, N.C. 1992. Taxol and cephalomannine concentration in the foliage and bark of shade and sun exposed Taxus brevifolia trees. Journal of Natural Products 55: 912916.CrossRefGoogle Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of the conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Kimura, K., Yumoto, T. & Kikuzawa, K. 2001. Fruiting phenology of fleshy-fruited plants and seasonal dynamics of frugivorous birds in four vegetation zones on Mt. Kinabalu, Borneo. Journal of Tropical Ecology 17: 833858.CrossRefGoogle Scholar
Kobayashi, J. & Shigemori, H. 2002. Bioactive taxoids from the Japanese yew Taxus cuspidata. Medicinal Research Reviews 22: 305328.CrossRefGoogle ScholarPubMed
Kollmann, J. 2000. Dispersal of fleshy-fruited species: a matter of spatial scale? Perspectives in Plant Ecology, Evolution and Systematics 3: 2951.CrossRefGoogle Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kou, X.Y., Ferguson, D.K., Xu, J.X., Wang, Y.F. & Li, C.S. 2006. The reconstruction of paleovegetation and paleoclimate in the Late Pliocene of west Yunnan, China. Climatic Change 7: 431448.CrossRefGoogle Scholar
Kräusel, R. 1918. Einige Bemerkungen zur Bestimmung fossiler Koniferen-Hölzer. Österreichische Botanische Zeitschrift 67(4/5): 127135.CrossRefGoogle Scholar
Kräusel, R. 1949. Die Fossilen Koniferen – Holzer. Palaeontographica Abt. B. Palaophytologie 89: 83203.Google Scholar
Kräusel, R. & Jain, K.P. 1964. New fossil coniferous woods from the Rajmahal Hils, Bihar, India. Palaeobotanist (India) 12: 5966.Google Scholar
Kruckeberg, A.R. 2002. Geology and Plant Life: The Effects of Landforms and Rock Types on Plants. Seattle, WA: University of Washington Press.Google Scholar
Kryshtofovich, A. 1935. A final link between the Tertiary floras of Asia and Europe (contribution to the age of the Arcto-Tertiary floras of the Northern Holarctic). The New Phytologist 34(4): 339344.CrossRefGoogle Scholar
Kumar, A., Sharma, C.M. & Baduni, N.P. 1997. Community structure and physical environment: a case study of the temperate mixed coniferous Lata forest in the Malari Valley of Garhwal Himalaya. Journal of Tropical Forest Science 9: 449457.Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 6780.CrossRefGoogle Scholar
Kurochkin, E.N. 1995. Synopsis of Mesozoic birds and evolution of class aves. Archaeopteryx 13: 4766.Google Scholar
Kvaček, Z. 1984. Tertiary taxads of NW Bohemia. 1982. Acta Univ. Carol Geol Pokor 4: 471491.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kwit, C., Horovitz, C.C. & Platt, W. 2004. Conserving slow-growing, long-lived tree species: input from the demography of a rare understorey conifer, Taxus floridana. Conservation Biology 18: 432443.CrossRefGoogle Scholar
Larson, D.W., Matthes, U. & Kelly, P.E. 2000. Cliff Ecology: Pattern and Process in Cliff Ecosystems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Larson, D.W., Matthes, U., Gerrath, J.A., et al. 2001. Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography 27: 319331.CrossRefGoogle Scholar
Le Page-Degivry, M.T. & Garello, G. 1973. La dormance embryonnaire chez Taxus baccata: influence de la composition du milieu liquide sur l’indication de la germination. Physiologia Plantarum 29: 204207.CrossRefGoogle Scholar
Lemoine, N., Schafer, H.C. & Bohning-Gaese, K. 2007. Species richness of migrating birds as influenced by global climate change. Global Ecology and Biogeography 16: 5664.CrossRefGoogle Scholar
Levine, J.M. & Murrell, D.J. 2003. The community-level consequences of seed dispersal patterns. Annual Review of Ecology and Systematics 34: 549574.CrossRefGoogle Scholar
Li, D. 1999. Taxus spp. resources in Yunnan and the sustainable exploration strategies. Journal of South-west Forestry College 19: 7885.Google Scholar
Li, H.L. & Keng, H. 1994. Taxaceae. Pp. 550551 in Editorial Committee of the Flora of Taiwan (ed.), Flora of Taiwan. Taipei: Flora of Taiwan.Google Scholar
Li, J., Davis, C.C., Tredici, P.D. & Donoghue, M.J. 2001. Phylogeny and biogeography of Taxus (Taxaceae) inferred from sequences of the internal transcribed spacer region of nuclear ribosomal DNA. Harvard Papers in Botany 6: 267274.Google Scholar
Li, J.Y., Sidhu, R.S., Ford, E.J., et al. 1998. The induction of taxol production in the endophytic fungus Periconia sp from Torreya grandifolia. Journal of Industrial Microbiology and Biotechnology 20: 259264.CrossRefGoogle Scholar
Li, N. & Fu, L.K. 1997. Notes on gymnosperms. I. Taxonomic treatment of some Chinese conifers. Novon 7: 261264.Google Scholar
Li, N., Wang, Z., Cai, Y., & Zhang, L. 2020. Importance of microhabitat selection by birds for the early recruitment of endangered trees in a fragmented forest. Avian Research 11: 16.CrossRefGoogle Scholar
Li, S.H., Zhang, H.-J. & Yao, P 2000. Rearranged taxanes from the bark of Taxus yunnanensis. Journal of Natural Products 63: 14881491.CrossRefGoogle ScholarPubMed
Li, X.L., Yu, X.M. & Guo, W. 2006. Genomic diversity within Taxus cuspidata var nana revealed by random amplified polymorphic DNA markers. Russian Journal of Plant Physiology 53: 684688.CrossRefGoogle Scholar
Lowe, J. 1897. The Yew Trees of Great Britain and Ireland. London: Macmillan.Google Scholar
Lu, C., Zhu, Q. & Deng, Q. 2008. Effect of frugivorous birds on the establishment of a naturally regenerating population of Chinese yew in ex situ conservation. Integrative Zoology 3: 186193.CrossRefGoogle ScholarPubMed
Ma, X. & Wang, Z. 2006. Anticancer drug discovery and the future: an evolutionary perspective. Drug Discovery Today 1016: 17.Google Scholar
Macovei, G., & Givulescu, R. 2006. The present stage in the knowledge of the fossil flora at Chiuzbaia, Maramureş, Romania. Carpathian Journal of Earth and Environmental Sciences 1(1): 4152.Google Scholar
Mai, D.H. 1981. Entwicklung und Klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiar. Flora 171: 525585.CrossRefGoogle Scholar
Mansukhlal, C.W., Taylor, H.L., Monroe, E.W., Coggon, P. & McPhail, A.T. 1971. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93: 23252327.Google Scholar
Martínez, I., García, D. & Olsen, J.R. 2008. Differential seed dispersal patterns generated by a common assemblage of vertebrate frugivores in three fleshy-fruited trees. Ecoscience 15: 189199.CrossRefGoogle Scholar
Melzack, R.N. & Watts, D. 1982a. Variations in seed weight, germination, and seedling vigour in the yew (Taxus baccata L.) in England. Journal of Biogeography 9: 5563.CrossRefGoogle Scholar
Melzack, R.N. & Watts, D. 1982b. Cold hardiness in the yew (Taxus baccata L.) in Britain. Journal of Biogeography 9: 231241.CrossRefGoogle Scholar
Miao, Y.-C., Su, J.-R., Zhang, Z.-J., et al. 2008. Isolation and characterisation of microsatellite markers for the endangered Taxus yunnanensis. Conservation Genetics 9: 16831685.CrossRefGoogle Scholar
Miao, Z., Wang, Y., Yu, X., Guo, B. & Tang, K. 2009. New endophytic taxane production fungus from Taxus chinensis. Applied Biochemistry and Microbiology 45: 8186.CrossRefGoogle Scholar
Miller, R.W. 1980. A brief survey of Taxus alkaloids and other taxane derivatives. Journal of Natural Products 43: 425437.CrossRefGoogle Scholar
Miller, R.W., Powell, R.G., Smith, C.R., Arnold, E. & Clardy, J. 1981. Antileukemic alkalods from Taxus walliciana Zucc. Journal of Organic Chemistry 46: 14691474.CrossRefGoogle Scholar
Minore, D., Weatherly, H.H. & Cartmill, M. 1996. Seeds, seedlings, and growth of Pacific yew (Taxus brevifolia). Northwest Science 70: 223229.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. London: HMSO.Google Scholar
Mitchell, A.K., Duncan, R.W., Bow, T.A. & Marshall, V.G. 1997. Origin and distribution of the yew big bud mite, Cecidophyopsis psilapsis (Nalepa) in British Columbia. Canadian Entomologist 129: 745755.CrossRefGoogle Scholar
Mitchell, F.J.G. 1988. The vegetational history of the Killarney oakwoods, SW Ireland: evidence from fine spatial resolution pollen analysis. Journal of Ecology 76: 415436.CrossRefGoogle Scholar
Mitchell, F.J.G. 1990a. The history and vegetation dynamics of a yew wood (Taxus baccata L.) in S.W. Ireland. New Phytologist 115: 573577.CrossRefGoogle Scholar
Mitchell, F.J.G. 1990b. The impact of grazing and human disturbance on the dynamics of woodland in S.W. Ireland. Journal of Vegetation Science 1: 245254.CrossRefGoogle Scholar
Moeller, M., Gao, L.M., Mill, R.R., et al. 2007. Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Botanical Journal of the Linnean Society 155(3): 307335.CrossRefGoogle Scholar
Mohapatra, K.P., Sehgal, R.N., Sharma, R.K. & Mohapatra, T. 2009. Genetic analysis and conservation of endangered medicinal tree species Taxus wallichiana in the Himalayan region. New Forests 37: 109121.CrossRefGoogle Scholar
Moir, A.K. 1999. The dendrochronological potential of modern yew (Taxus baccata) with special reference to a yew from Hampton Court palace, UK. New Phytologist 114: 479488.CrossRefGoogle Scholar
Möller, M., Gao, L.-M., Mill, R.R., et al. 2007. Morphometric analysis of the Taxus wallichiana-complex (Taxaceae) based on herbarium material. Botanical Journal of the Linnean Society 122: 307335.CrossRefGoogle Scholar
Möller, M., Gao, L.M., Mill, R.R., et al. 2013. A multidisciplinary approach reveals hidden taxonomic diversity in the morphologically challenging Taxus wallichiana complex. Taxon 62(6): 11611177.CrossRefGoogle Scholar
Möller, M., Liu, J., Li, Y., et al. 2020. Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.). Molecular Phylogenetics and Evolution 153: 106952.CrossRefGoogle ScholarPubMed
Moody, R. 1980. Prehistoric World. London: Hamlyn.Google Scholar
Mroczek, T., Glowniak, Z. & Hajnos, M. 2000. Screening for pharmaceutically important taxoids in Taxus baccata var aurea Corr. with CC/SPE/HPLC-PDA procedure. Biomedical Chromatography 14: 516529.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Mukherjee, S., Gosh, B., Jha, T.B. & Jha, S. 2002. Variation in content of taxol and related taxanes in eastern Himalayan populations of Taxus wallichiana. Planta Medica 68: 757759.CrossRefGoogle ScholarPubMed
Mundry, I. & Mundry, M. 2001. Male cones in Taxaceae s.l.: an example of Wettstein’s Pseudanthium concept. Plant Biology (Stuttgart) 3: 405416.CrossRefGoogle Scholar
Nevo, M., Vamota, K., Razafimandimby, D., et al. 2018. Frugivores and the evolution of forest crown structure. Royal Society, Biology Letters 14: 14.Google Scholar
Newton, I. 2008. The Migration Ecology of Birds. London: Academic Press.Google Scholar
Nosova, N.V. & Kiritchkova, A.I. 2018. A new species of Marskea Florin (Pinopsida) from the Middle Jurassic of the Irkutsk Coal Basin (East Siberia). Paleontological Journal 52(5): 574581.CrossRefGoogle Scholar
O’Connell, M., Mitchell, F.J.G., Readman, P.W. & Doherty, T.J. 1987. Palaeocological investigations towards the reconstruction of the post-glacial environment at Lough Doo, County Mayo, Ireland. Journal of Quaternary Science 2: 49164.Google Scholar
Orr, M.Y. 1937. On the value for diagnostic purposes of certain of the anatomical features of conifer leaves. Notes from the Royal Botanic Garden Edinburgh 19: 255266.Google Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1974. Morphology and affinities of Pinus canariensis. Notes from the Royal Botanic Garden Edinburgh 33: 317323.Google Scholar
Palido, F. 2007. The genetics of the evolution of avian migration. Bioscience 57: 165174.CrossRefGoogle Scholar
Pant, S. & Samant, S.S. 2008. Population ecology of the endangered Himalayan yew in Khokhan Wildlife Sanctuary of North Western Himalaya for conservation management. Journal of Mountain Science 5: 257264.CrossRefGoogle Scholar
Phillips, L. 1974. Vegetational history of the Ipswichian-Eemian interglacial in Britain and Continental Europe. New Phytologist 73: 589604.CrossRefGoogle Scholar
Piovesan, G., Saba, E.P., Biondi, F., et al. 2009. Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies. Plant Ecology 205: 2346.CrossRefGoogle Scholar
Pole, M. 1997a. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 1997b. Paleocene plant macrofossils from Kakahu, south Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371400.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Poupat, C., Hook, I., & Gueritte, F. 2000. Neutral and basic taxoid contents in the needles of Taxus species. Planta Medica 66: 580584.CrossRefGoogle ScholarPubMed
Press, J.R. & Short, M.J. 1994. Flora of Madeira. London: HMSO.Google Scholar
Price, R.A. 1990. The genera of Taxaceae in the southeastern United States. Journal of the Arnold Arboretum 71: 6991.CrossRefGoogle Scholar
Rajewski, M., Lange, S. & Hattemer, H.H. 2000. Reproduktion bei der Generhaltung seltner baumarten: das Beispiel der Eibe (Taxus baccata L.). Forest, Snow and Landscape Research 75: 251266.Google Scholar
Rao, K.V., Hanuman, J.B., Alvarez, C., et al. 1995. A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharmaceutical Research 12: 10031010.CrossRefGoogle ScholarPubMed
Raunkiaer, C. 1934. The Life-Form of Plants and Statistical Plant Geography. Oxford: Oxford University Press.Google Scholar
Redfern, M. 1975. The life history and morphology of the early stages of the yew gall-midge, Taxmyia taxi (Inchbald) (Diptera: Cercidomyiidae). Journal of Natural History 9: 513533.CrossRefGoogle Scholar
Renoult, J.P., Valiado, A., Jordan, P. & Schaefer, H.M. 2016. Adaptation of fruit colours to multiple distinct microhabitats. New Phytologist 201: 678686.CrossRefGoogle Scholar
Rikhari, H.C., Palni, L.M.S., Sharma, A.S. & Nandi, S.K. 1998. Himalayan yew: stand structure, canopy damage, regeneration and conservation strategy. Environmental Conservation 25: 334341.CrossRefGoogle Scholar
Rikhari, H.C., Sharma, A.S., Nandeem, M., & Palni, L.M.S. 2000. The effect of disturbance levels, forest types and associates on the regeneration of Taxus baccata: lessons from the Central Himalayas. Current Science 79: 8890.Google Scholar
Roulande-Lefevre, C., Diouf, M.N., Brauman, A. & Neyra, M. 2002. Phylogenetic relationships in termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: a first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Molecular Phylogenetics and Evolution 22: 423429.CrossRefGoogle Scholar
Roy, S.K. 1972. Fossil wood of Taxaceae from the McMurray formation (Lower Cretaceous) of Alberta, Canada. Canadian Journal of Botany 50: 349352.CrossRefGoogle Scholar
Sands, W.A. 1969. The association of termites and fungi. Pp 495524 in Krishna, K. & Weesner, F.M. (eds.), Biology of Termites. Vol I. New York: Academic Press.CrossRefGoogle Scholar
Sanhi, B. 1920. On certain archaic features in the seed of Taxus baccata, with remarks on the antiquity of the Taxineae. Annals of Botany 34: 117133.Google Scholar
Saniga, M. 2000. Struktura, produkcne a regeneracne pocesy tisa obcajneho v Statnej reservacii Plavno. Journal of Forest Science (Prague) 46: 7690.Google Scholar
Sarmaja-Korjonen, K., Vasari, Y. & Haeggstrom, C.-A. 1991. Taxus baccata and influence of Iron Age man on the vegetation of Aland, SW Finland. Annales Botanica Fennici 28: 143159.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356374.CrossRefGoogle Scholar
Schaefer, H.M., Levy, D.T., Schafer, V. & Avery, M. 2006. The roles of chromatic and achromatic signals for fruit detection by birds. Behavioural Ecology 17: 784789.CrossRefGoogle Scholar
Schaefer, H.M., Valido, A. & Jontano, P. 2014. Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society, ser. B. 281: 20132516.Google ScholarPubMed
Scher, S. 1996. Genetic structure of natural Taxus populations in western North America. Pp 424441 in Smith, T.B. & Wayna, R.K. (eds.), Molecular Genetic Approaches in Conservation. New York: Oxford University Press.CrossRefGoogle Scholar
Schulz, B., Haas, S., Junker, C., Andrée, M. & Schobert, M. 2015. Fungal endophytes are involved in multiple balanced antagonisms. Current Science 108: 3945.Google Scholar
Seki, M., Ohzora, C., Takeda, M., & Furusaki, S. 2000. Taxol (paclitaxel) production using free and immobilised cells of Taxus cuspidate. Biotechnology and Bioengineering 53: 214219.3.0.CO;2-K>CrossRefGoogle Scholar
Serevo, P.C. & Rao, C. 1992. Early evidence of avian flight and perching: new evidence from the Cretaceous of China. Science 255: 845848.Google Scholar
Shah, A., Li, D.-Z., Möller, M., et al. 2008. Delimitation of Taxus fauna Nan Li & R.R.Mill (Taxaceae) based on morphological and molecular data. Taxon 57: 211222.Google Scholar
Shanker, K., Pathak, N.K.R., Trivedi, V.P. Chansuria, J.P.N. & Pandey, V.B. 2002. An evaluation of toxicity of Taxus baccata Linn. in experimental animals. Journal of Ethnopharmacology 79: 6973.CrossRefGoogle ScholarPubMed
Shen, Y.-C., Cheng, K.-C.,& Lin, Y.-C. 2005. Three new taxane diterpenoids from Taxus sumatrana. Journal of Natural Products 68: 9093.CrossRefGoogle ScholarPubMed
Shen, Y.-C., Lin, Y.-S., Hsu, S.-M., et al. 2007. Tasumatrols P-T, five new taxoids from Taxus sumatrana. Helvetica Chimica Acta 90: 1319.CrossRefGoogle Scholar
Shi, Q.W., Oritani, T. & Sugiyama, T. 1999. Two new taxane diterpenoids from the seeds of the Chinese yew, Taxus yunnanensis. Journal of Asian Natural Products Research 2: 7179.CrossRefGoogle ScholarPubMed
Skorupski, M. & Luxton, M. 1998. Mesostigmatid mites (Acari: Parasitiformes) associated with yew (Taxus baccata) in England and Wales. Journal of Natural History 32: 419439.CrossRefGoogle Scholar
Smal, C.M. & Fairley, J.S. 1980a. Food of wood mice and bank voles in oak and yew woods in Kilarney, Ireland. Journal of Zoology 191: 413418.CrossRefGoogle Scholar
Smal, C.M. & Fairley, J.S. 1980b. The fruits available as food to small rodents in two woodland ecosystems. Holarctic Ecology 3: 1018.Google Scholar
Snow, B. & Snow, D. 1988. Birds and Berries. Calton: Poyser.Google Scholar
Sorensen, A.E. 1984. Nutrition, energy and passage time: experiments with fruit preference in European blackbirds (Turdus merula). Journal of Animal Ecology 53: 545557.CrossRefGoogle Scholar
Sorochinskii, B.V., Prokhnevskii, A.I. & Grodzinskii, D.M. 1990. Method of isolating taxol from Taxus baccata. Khimiya Prirodnykh Soeineneii 5: 702703 (in Russian).Google Scholar
Spjut, R.J. 2007a. Taxonomy and nomenclature of Taxus (Taxaceae). Journal of Botanical Research Institute of Texas 1: 203289.Google Scholar
Spjut, R.J. 2007b. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters. Journal of Botanical Research Institute of Texas 1: 291332.Google Scholar
Splittstoeser, W.E. & Meyer, M.M. 2006. Evergreen foliage contributions to the spring growth of Taxus. Physiologia Plantarum 24: 528533.CrossRefGoogle Scholar
Straus, A. 1952. Beiträge zur Pliozänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeontographica Abt B 93.Google Scholar
Strouts, R.G. & Winter, T.G. 1994. Diagnosis of Ill-Health in Trees. London: HMSO/Forestry Commission.Google Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA.CrossRefGoogle Scholar
Sukatschev, W. 1908. Über des vorkommen der Samen von Euryale ferox Salisb. in einer interglazialen Ablagerungen in Russland. Bericht der Deutschen Botanischen Gesellschaft 26: 132137.Google Scholar
Suliman, S. & Raizada, M.N. 2020. States of biosynthesis and storage of taxol in Taxus media (Rehder) plants: mechanism and accumulation. Phytochemistry 175: 112369.CrossRefGoogle Scholar
Suzuki, M. 1979. The course of resin canals in the shoots of conifers I. Taxaceae, Cephalotaxaceae and Podocarpaceae. Botanical Magazine Tokyo 92: 235251.CrossRefGoogle Scholar
Szaniawski, R.K. 1978. An outline of yew physiology. Pp 5564 in Bartkowiak, S., Bugala, W., Czartoryski, A., et al. (eds.), The Yew: Taxus baccata. Warsaw: Department of the National Center for Scientific and Technical, and Economic Information.Google Scholar
Tachibana, S., Ishikaw, H. & Itoh, K. 2005. Antifungal activities of compounds isolated from the leaves of Taxus cuspidata ver nana against plant pathogenic fungi. Journal of Wood Science 51: 181184.CrossRefGoogle Scholar
Tang, J.M. 1996. Distribution and conservation strategy of Taxus chinensis in Shenlongjia. Hubei Forestry Science and Technology 1: 3136.Google Scholar
Tang, Z.-X., Chen, Z.-K. & Wang, F.-H. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 451453.Google Scholar
Thomas, P.A. & Polwart, A. 2003. Taxus baccata L. biological flora of the British Isles. Journal of Ecology 91: 489524.CrossRefGoogle Scholar
Thompson, J.N. & Wilson, M.F. 1978. Disturbance and the dispersal of fleshy fruits. Science 2000: 11611163.CrossRefGoogle Scholar
Tittensor, R.M. 1980. Ecological history of yew Taxus baccata L. in southern England. Biological Conservation 17: 243265.CrossRefGoogle Scholar
Van Rozendaal, E.L.M., Kurstjens, S.J.L., Van Beek, T.A. & Van den Berg, R.G. 1999. Chemotaxonomy of Taxus. Phytochemistry 52: 427433.CrossRefGoogle Scholar
Vanek, T., Vesela, D, Mala, J., et al. 1996. Production of taxanes by Taxus baccata plant cells. Biotechnology Letters 18: 501504.CrossRefGoogle Scholar
Vogler, P. 1904. Die Eibe (Taxus baccata L.) in der Schweiz. Jahrbuch der St Gallischen Naturwissenschaftlichen Gesellschaft für das Vereinsjahr.Google Scholar
Voliotis, D. 1986. Historical and environmental significance of the yew (Taxus baccata L.). Israel Journal of Botany 35: 4752.Google Scholar
Von der Werth, J. & Murphy, J.J. 1994. Cardiovascular toxicity associated with yew leaf ingestion. British Heart Journal 72: 9293.CrossRefGoogle ScholarPubMed
Wang, B. & Qi, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299363.CrossRefGoogle Scholar
Wang, X.Q. & Shu, Y.Q. 2000. Chloroplast matK gene phylogeny of Taxaceae and Cephalotaxaceae, with additional reference to the systematic position of Nageia. Acta Phytotaxonomica Sinica 38: 201-210.Google Scholar
Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. & McPhail, A.T. 1971. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society 93: 23252327.CrossRefGoogle Scholar
Watt, A.S. 1926. Yew communities of the South Downs. Journal of Ecology 14: 282316.CrossRefGoogle Scholar
Watt, A.S. 1934a. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. Journal of Ecology 22: 230270.CrossRefGoogle Scholar
Watt, A.S. 1934b. The vegetation of the Chiltern Hills, with special reference to the beechwoods and their seral relationships. II. The vegetation of the plateaus. Journal of Ecology 22: 445507.CrossRefGoogle Scholar
Watts, W.A., Allen, J.R.M., Huntley, B. & Fritz, S.C. 1996. Vegetation history and climate of the last 15,000 years at Laghi di Monticchio, southern Italy. Quaternary Science Reviews 15: 113132.CrossRefGoogle Scholar
West, R.G. 1962. A note on Taxus pollen in the Hoxnian Interglacial. New Phytologist 61: 189190.CrossRefGoogle Scholar
Wheeler, N.C., Jech, K.S. & Masters, S.A. 1995. Genetic variation and parameter estimates in Taxus brevifolia (Pacific yew). Canadian Journal of Forest Research 25: 19131927.CrossRefGoogle Scholar
White, J.E.J. 1998. Estimating the Age of Large and Veteran Trees in Britain. London: HMSO/Forestry Commission.Google Scholar
Whitfield, P. 1993. The Natural History of Evolution. London: Doubleday.Google Scholar
Williamson, R. 1978. The Great Yew Forest I: The Natural History of Kingley Vale. London: Macmillan.Google Scholar
Wilson, C.R., Sauer, J.M. & Hooser, S.B. 2001. Taxines: a review of the mechanism and toxicity of yew (Taxus spp.). Toxicon 39: 175185.CrossRefGoogle ScholarPubMed
Wilson, E.O. 1916. Conifers and Taxads of Japan. Cambridge: Cambridge University Press.Google Scholar
Wilson, P., Bunopane, M. & Allison, T.D. 1996. Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bulletin of the Torrey Botanical Club 123: 715.CrossRefGoogle Scholar
Witherup, K.M., Look, S.A., Stasko, M.W., et al. 1990. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. Journal of Natural Products 55: 12491255.CrossRefGoogle Scholar
Wooton, R.J. 1990. Major insect radiations. Pp 187208 in Taylor, P.D. & Larwood, G.P. (eds.), Major Evolutionary Radiations. Oxford: Clarendon Press.Google Scholar
Wu, Z.Y. 1998. Delineation and unique features of the Sino-Japanese floristic region. Pp 135 in Boufford, D.E. & Ohba, H. (eds.), Sino-Japanese Flora: Its Characteristics and Diversification. Tokyo: Tokyo University Press.Google Scholar
Wu, Z.Y. & Wu, S.G. 1998. A proposal for a new floristic kingdom (realm): the E. Asiatic kingdom, its delineation and characteristics. Pp 312 in Zhang, A.L. & Wu, S.G. (eds.), Floristic Characteristics and Diversity of East Asian Plants. Beijing: China Higher Education Press/Springer.Google Scholar
Xing, S.P., Chen, Z.K., Hu, Y.X., Zhou, F. & Lin, J.X. 2000. Ovule development, formation of pollination drop and pollination process in Taxus chinensis (Taxaceae). Acta Botanica Sinica 42: 126132.Google Scholar
Xu, X.-H., Sun, B.-M., Yan, D.-P., Wang, J. & Dong, C. 2015. A Taxus leafy branch with attached ovules from the Lower Cretaceous of Inner Mongolia, North China. Cretaceous Research 54: 266282.CrossRefGoogle Scholar
Zamani, S., Abbasian, Z., Khaksar, G., et al. 2008. Genomic diversity among yew (Taxus baccata) genotypes of Iran revealed by random amplified polymorphism DNA markers. International Journal of Agriculture and Biology 10: 648652.Google Scholar
Zhang, M.-L., Dong, M., Huo, C.-H., et al. 2008. Taxopropellane: a novel taxane with an unprecedented polycyclic skeleton from the needles of Taxus canadensis. European Journal of Organic Chemistry 32: 54145417.CrossRefGoogle Scholar
Zhou, X., Wang, Z., Jiang, K., et al. 2007. Screening of taxol-producing endophytic fungi from Taxus chinensis var mairei. Applied Biochemistry and Microbiology 43: 439443.CrossRefGoogle Scholar
Zu, Y.-G., Chen, H.-F., Wang, W.-J. & Nie, S.-Q. 2006. Population structure and distribution pattern of Taxus cuspidate in Muling region of Heilongjiang Province, China. Journal of Forestry Research 17: 8082.CrossRefGoogle Scholar

References

Chen, K.-Y. 1990. The chromosomes of Pseudotaxus chienii. Chinese Bulletin of Botany 7: 5455.Google Scholar
Chen, Z.K. & Wang, F.H. 1978 Embryogeny of Pseudotaxus chienii in relation to its systematic position. Acta Phytotaxonomica Sinica 16: 19 (in Chinese with English summary).Google Scholar
Chuang, T.I. & Hu, W.W. L. 1963. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Ferguson, D.K. 1978. Some current research on fossil and recent taxads. Review of Palaeobotany and Palynology 26: 213226.CrossRefGoogle Scholar
Florin, C.R. 1948. On Nothotaxus; a new genus of the Taxaceae from eastern China. Acta Horticulturae 14: 385395.Google Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademiai Kiado.Google Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnL–trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxonomica Sinica 19: 407414 (in Chinese with English summary).Google Scholar
Ma, Z.W., He, G.F. & Yin, W.F. 1982. Study of major chemical components of Pseudotaxus chienii. Acta Botanica Sinica 24: 554557.Google Scholar
Page, C.N. 1972a. An assessment of inter-specific relations in Equisetum subgenus Equisetum. New Phytologist 71: 335369.CrossRefGoogle Scholar
Page, C.N. 1972b. An interpretation of the morphology and evolution of the cone and shoot of Equisetum. Journal of the Linnean Society Botany 65: 359397.CrossRefGoogle Scholar
Silba, J. 1996. A new species of Pseudotaxus Cheng (Taxaceae) from China. Phytologia 81: 322328.Google Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Tang, Z.-X., Chen, Z.-K. & Wang, F.-H. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 453 (in Chinese with English summary).Google Scholar
Yang, X., Yu, M., Ding, B., Xu, S. & Ye, L. 2005. Population structure and community characteristics of Pseudotaxus chienii in Fengyangshan National Natural reserve. Chinese Journal of Applied Ecology 16: 11891194.Google Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 19: 415418 (in Chinese with English summary).Google Scholar

References

Bobrov, A.V., Melikian, A.P., Romanov, M.S. & Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Bobrov, A.V.F.C. & Romanov, M.S. 1999. Seed coat structure and systematic relationships of Sundacarpus amarus (Blume) C.N.Page (Podocarpaceae (Dumort.) Endl. S.l.). 14th Symposium Biodiversisät Evolutionsbiologie Jena.Google Scholar
Bobrov, A.V.F.Ch. 1996. Bitegmic seeds of representatives of orders Podocarpales, Cephalotaxales and Taxales. Pp 23–26 in Proceedings of the IX International Congress on Plant Phylogeny, Moscow (in Russian).Google Scholar
Chavchavadze, E.S. 1979. Wood of Conifers. Leningrad: Nauka (in Russian).Google Scholar
Chaw, S.-M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle ScholarPubMed
Chaw, S.-M., Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chen, Z.K. & Wang, F.X. 1984 On the systematic position of Amentotaxus from its embryological investigation. Acta Phytotaxica Sinica 22: 269276.Google Scholar
Cheng, Y.-C., Nicolson, R.G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matL gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Dawson, J.W. 1963. New Caledonia and New Zealand: a botanical comparison. Tuatara 11: 178194.Google Scholar
De Laubenfels, D.J. 1953. The external morphology of coniferous leaves. Phytomorphology 3: 120.Google Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Ferguson, D.K. 1978. Some current research on fossil and recent taxads. Reviews in Palaeobotany and Palynology 26: 213226.CrossRefGoogle Scholar
Ferre, M.Y., Rouane, M.L. & Woltz, M.P. 1977. Systematique et anatomie comparee des feulles de taxaceae, Podocarpaceae, Cupressaceae de Nouvelle-Caledonie. Cahier du Pacific 20: 241266.Google Scholar
Fleming, C.A. 1962. New Zealand biogeography: a paleontologist’s approach. Tuatara 10: 53108.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. Kungluska Svenska Vetenskapsakademiens Handlangan 10: 1588.Google Scholar
Florin, C.R. 1948a. On Nothotaxus; a new genus of the Taxaceae from eastern China. Acta Horticulturae 14: 385395.Google Scholar
Florin, R. 1948b. Enumeration of gymnosperms collected on Swedish expeditions to western and north-western China in 1930–1934. Acta Horti Bergiani 14: 121312.Google Scholar
Gaussen, H. 1979. Les Gymnosperms actuelles et fossils. Les Taxines. Travaux de Laboratoire Forestier de Toulouse, Tome II, Fasicule 15. Chapitre 1: 124.Google Scholar
Ghimire, B. & Hso, K. 2014. Cladistic analysis of Taxaceae s.l. Plant Systematics and Evolution 300: 217223.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Hao, D.C., Huang, B.-L. & Yang, L. 2008a. Phylogenetic relationships of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA. Biological Pharmaceutical Bulletin 31: 260265.CrossRefGoogle ScholarPubMed
Hao, D.C., Xiao, P.G., Huang, B.-L., Ge, G.B. & Yang, L. 2008b. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnLtrnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hu, Y.S., Wang, H. & Wang, F. 1992. Leaf anatomy of Austrotaxus spicata in relation to its systematic position. Cathaya 4: 6977.Google Scholar
Jaffré, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Jaffré, T., Munzinger, J. & Lowry, P.P. II. 2010. Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodiversity and Conservation 19: 14851502.CrossRefGoogle Scholar
Keng, H. 1969. Aspects of morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. Journal of the Arnold Arboretum 50: 437445.CrossRefGoogle Scholar
Keng, H. 1978. The genus Phyllocladus (Phylocladaceae). Journal of the Arnold Arboretum 59: 249273.CrossRefGoogle Scholar
Koidzumi, G. 1932. Notes on Amentotaxaceae. Acta Phytotaxonomica Geobotanica 1: 185.Google Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotax. Geobot 11: 135136, 227–229 (in Japanese).Google Scholar
Li, H.L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.Ch. 1997a. De Abstammung von supraintegumnetalen Samendecken – des Epimatiums und Samenmantels (‘arillus’) 0 bei den Vertretern der Ordnungen Taxales und Podocarpales. Scripta Botanica Belgica 15: 111.Google Scholar
Melikan, A.P. & Bobrov, A.V.F.Ch. 1997b. Sistematicheskoe polozhenie roda Acmopyle (Podocarpaceae Endl. Sl.l.) po dannjim sravnitelnoy morfologii, anatomii I ul’trastrukturji semjan. Pp 92–93 in Proceedings of the International Conference of Plant Anatomy, St. Petersburg (in Russian).Google Scholar
Melikan, A.P. & Bobrov, A.V.F.Ch. 1997c. O storenii naruzhnjikh obolochek semjan – epimatija I arrilus – u predstavteley semeystva Podocarpaceae Enlicher 1847 s.l. Byulletin Moscovskogo Obschestva Ispyitateli Prirodyi 102: 4653 (in Russian).Google Scholar
Melikan, A.P. & Bobrov, A.V.F.Ch. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Page, C.N. 1990. Sciadopityaceae. Pp 346348 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Philips, E.W.J. 1941. The identification of coniferous woods by their microscopic structure. Journal of the Linnean Society Botany 52: 259320.CrossRefGoogle Scholar
Saxton, W.T. 1934. Notes on conifers: VIII. The morphology of Austrotaxus spicata Compton. Annals of Botany 48: 411427.CrossRefGoogle Scholar
Tang, Z.-X. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 453.Google Scholar
Wilde, M.H. 1975. A new interpretation of microsporangiate cones in Cephalotaxaceae and Taxaceae. Phytomorphology 25:434.Google Scholar

References

Axelrod, D.I. 1996. Diverse upland Eocene forests, western USA. Journal of Palaeosciences 45: 8197.CrossRefGoogle Scholar
Bae, K., Jin, W., Thuong, P.T., et al. 2007. A new flavenoid glycoside from the leaf of Cephalotaxus koreana. Fitoterapia 78: 409413.CrossRefGoogle Scholar
Berhal, F. 2009. Synthesis of optically active monoacid side-chains of Cephalotaxus alkaloids. European Journal of Organic Chemistry 2009: 437443.CrossRefGoogle Scholar
Bhattacharya, A., Parmar, V.S., Sharma, S.K., et al. 2002. Chemical constituents of Cephalotaxus species. Journal of the Indian Chemical Society 79: 787795.Google Scholar
Bobrov, A.V., Melikian, A.P., Romanov, M.S. and Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Bocar, M., Jossang, A. & Bodo, B. 2003. New alkaloids from Cephalotaxus fortunei. Journal of Natural Products 66: 152154.CrossRefGoogle ScholarPubMed
Buta, J.G., Flippen, J.L. & Lusby, W.R. 1978. Harringtonolide, a plant growth inhibitory tropone from Cephalotaxus harringtoniana (Forbes) K.Koch. Journal of Organic Chemistry 43: 10021003.CrossRefGoogle Scholar
Chaw, S.-.M, Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Cheng, Y., Nicolson, R.G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chuang, T.I. & Hu, W.W. L. 1963. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Cisowski, W., Mazol, I. & Glensk, M. 2005. Investigation of the essential oils from three Cephalotaxus species. Acta Poloniae Pharmaceutica 62: 461463.Google ScholarPubMed
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Du, D.-L., Su, J., Fu, Y.-C., et al. 2002. Genetic diversity of Cephalotaxus mannii, a rare and endangered plant. Acta Botanica Sinica 44: 193198.Google Scholar
Du, J., Chiu, M.-H., & Nie, R.-L. 1999. Two new lactones from Cephalotaxus fortunei var alpina. Journal of Natural Products 62: 16641665.CrossRefGoogle Scholar
Efferth, T., Sauerbrey, A., Halatsch, M.-E., Ross, D.D. & Gebhert, E. 2003. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Archives of Pharmacology 367: 5667.CrossRefGoogle ScholarPubMed
Eichler, A.W. 1889. Coniferae. Pp 28116 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien. Leipzig: Engelmann.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, U.S.A. Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940 Die Koniferen etc. V. Palaeontographica 85(5): 243–236.Google Scholar
Florin, R. 1948. On the morphology and relationships of the Taxaceae. Botanical Gazette 110: 3139.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1954. The female reproductive organs of conifers and taxads. Biological Reviews 29: 367389.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horticultura Bergiani 20: 121312.Google Scholar
Gregor, H.J. 1979. Fruktifikationen der Gattung Cephalotaxus Siebold & Zuccarini aus dem Tertiar Europas und Japans. Feddes Repertorium 90: 110.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akad Kiado.Google Scholar
Gu, Z.-J. 1998. A karyomorphological study of Cephalotaxaceae. Acta Phytotaxonomica Sinica 1: 4752.Google Scholar
Hao, D.C., Xiao, P.G., Huang, B.L., Ge, G.B., & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnLtrnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 296307.CrossRefGoogle Scholar
Heer, O. 1883. Die Fossile Flora Gronlands, II. Flora Fossilis Arctica 7: 1275.Google Scholar
Hu, Y.-S. & Wang, F.-H. 1989. Anatomy and affinities of Cephalotaxus (Cephalotaxaceae). Cathaya 1: 3748.Google Scholar
Huang, L. & Xue, Z. 1984. Cephalotaxus alkaloids. The Alkaloids: Chemistry and Pharmacology 23: 157226.Google Scholar
Ito, H., Ito, S., Matsui, T., & Marutani, T. 2006. Effect of fluvial and geomorphic disturbances on habitat segregation of tree species in a sedimentation-dominated riparian forest in warm-temperate mountainous region in southern Japan. Journal of Forest Research, 11(6): 405417.CrossRefGoogle Scholar
Janchen, E. 1949. Das System der Konifern. Akad. Wien. Sitz-ber. 158: 155262.Google Scholar
Jiang, T.L., Liu, R.H. & Salmon, S.E. 1983. Comparative in vitro antitumor activity of homoharingtonine and harringtonine against clonogenic human tumor cells. Investigational New Drugs 1: 2125.CrossRefGoogle Scholar
Kantarjian, H.M., Talpaz, M., Santini, V., et al. 2001. Homoharringtonine: history, current research, and future directions. Cancer 92: 15911605.3.0.CO;2-U>CrossRefGoogle Scholar
Kee, D.Y., Doc., G.J., Yun, H.H., Jei, M.R. & Kim, J. 2007. Inhibitors of osteoclast differentiation from Cephalotaxus koreana. Journal of Natural Products 70: 20292032.Google Scholar
Keng, H. 1963a. Phyllocladus hypophyllus Hook. F. Gardens Bulletin, Singapore 20: 123126.Google Scholar
Keng, H. 1963b. Taxonomic position of Phyllocladus and the classification of Conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1969. Aspects of morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. Journal of the Arnold Arboretum 50: 432448.CrossRefGoogle Scholar
Kobayashi, J., Yoshinaga, M., Yoshida, N., Shiro, M. & Morita, H. 2002. Cephalocyclin A, a novel pentacyclic alkaloid from Cephalotaxus harringtoniana var nana. Journal of Organic Chemistry 67: 22832286.CrossRefGoogle Scholar
Koidzumi, G. 1932. Notes on Amentotaxaceae. Acta Hytotaxonomica Geobotanica 1: 185.Google Scholar
Kudo, Y. & Yamamoto, Y. 1931. Materials for a flora of Formosa, IV. Journal of the Society for Tropical Agriculture (Taihoku) 3(2): 110111.Google Scholar
Kuo, Y.-H., Lin, C.-H., Hwang, S.-Y., et al. 2000. A novel cytotoxic C-methylated biflavone from the stem of Cephalotaxus wilsoniana. Chemical and Pharmaceutical Bulletin 48: 440441.CrossRefGoogle Scholar
Kuo, Y.-H., Hwang, S.-Y., Kuo, L.-M.Y., et al. 2002. A novel cytotoxic C-methylated biflavone, taiwanhomoflavone-B from twigs of Cephalotaxus wilsoniana. Chemical and Pharmaceutical Bulletin 50: 16071608.CrossRefGoogle ScholarPubMed
Kurmann, M.H. 1992. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 25-39.CrossRefGoogle Scholar
Lee, M.K., Lim, S.W., Yang, H., et al. 2006. Osteoblast differentiation stimulating activity of biflavenoids from Cephalotaxus koreana. Bioorganic and Medical Chemistry Letters 16: 28502854.CrossRefGoogle Scholar
Li, H.L. 1953. Recent distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, W., Dai, R.-J., Yu, Y.-H., et al. 2007. Antihyperglycemic effect of Cephalotaxus sinensis leaves and GLUT-4 translocation facilitating activity of its flavenoid constituents. Biological and Pharmaceutical Bulletin 30: 11231129.CrossRefGoogle Scholar
Li, X.Y. & Wang, Y.J. 2003. Research on slope runoff processes in two vegetation types in Jinyung Mountain in Chongquing City. Journal of Beijing Forestry University 25: 8184.Google Scholar
Lu, D.Y., Cao, J.Y. & Xu, B. 1999. Biological activities and clinical utilizations of harringtonine and homoharringtonine. Natural Products Research and Development 12: 7073.Google Scholar
Luo, C.Y., Tang, J.Y. & Wang, Y.P. 2004. Homoharringtonine: a new treatment option for myeloid leukemia. Hematology 9: 259270.CrossRefGoogle ScholarPubMed
Mehrotra, R., Liu, X.Q., Li, C.S., Wang, Y.F. & Chauhan, M. 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 145163.CrossRefGoogle Scholar
Mendiratta, A., Dayal, R. & Bartley, J.P. 2005. GC/MS analysis of essential oils of needles and twigs of Cephalotaxus harringtoniana (Knight ex Forbes) Koch var harringtoniana. Journal of Essential Oil Research 17: 308309.CrossRefGoogle Scholar
Meyer, H.W. & Manchester, S.R.. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to its remains. Journal of the Institute Polytechnic Osaka City University Ser D 9: 125150.Google Scholar
Mikolajczak, K.L., Powell, R.G. & Smith, Jr., C.R. 1972. Deoxyharringtonine, a new antitumor alkaloid from Cephalotaxus: structure and synthetic studies. Tetrahedron 28: 19952001.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Morita, H., Arisaka, M., Yoshida, N. & Kobayashi, J. 2000. Cephalezomines A–F, potent cytotoxic alkaloids from Cephalotaxus harringtoniana var. nana. Tetrahedron 56: 29292934.CrossRefGoogle Scholar
Morita, H., Yoshinaga, M. & Kobayashi, J. 2002. Cephalezomines G, H, J, K. L, and M, new alkaloids from Cephalotaxus harringtoniana var nana. Tetrahedron 58: 54895495.CrossRefGoogle Scholar
Neger, F.W. 1907. Cephalotaxaceae. Pp 2330 in Die Nadelhozer (Koniferen) und Ubrigen Gymnospermen. Leipzig: Engelmann.CrossRefGoogle Scholar
O’Brian, S., Kantarjian, H., Keating, M., et al. 1995. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 86: 33223326.Google Scholar
Page, C.N., Kramer, K.U. & Green, P.S. 1990. Coniferophytina. P 279 in Kramer, K.U. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. New York: Springer.Google Scholar
Phillips, E.W.J. 1941. The identification of conifer woods by their microscopic structure. Journal of the Linnean Society Botany 52: 259320.CrossRefGoogle Scholar
Phutdhawong, W., Korth, J., Buddhasukh, D. & Pyne, S.G. 2002. Volatile components from Cephalotaxus griffithii growing in northern Thailand. Flavour and Fragrance Journal 17: 153155.CrossRefGoogle Scholar
Pilger, R. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien. Vol. 13. Leipzig: Engelmann.Google Scholar
Politi, M., Braca, A., De Tommasi, N., et al. 2003. Antimicrobial diterpenes from the seeds of Cephalotaxus harringtoniana var drupacea. Plant Medica 69: 468470.Google ScholarPubMed
Potbury, S., 1935. The La Porte Flora of Plumas County, California. Washington, DC: Carnegie Institute of Washington.Google Scholar
Powell, R.G. 2009. Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents. Journal of Natural Products 72: 516523.CrossRefGoogle ScholarPubMed
Powell, R.G., Weisleder, D. & Smith, Jr., C.R. 1972a. Antitumor alkaloids for Cephalotaxus harringtoniana: structure and activity. Journal of Pharmaceutical Sciences 61: 12271230.CrossRefGoogle Scholar
Powell, R.G., Mikolajczak, K.L., Weisleder, D. & Smith, Jr., C.R. 1972b. Alkaloids of Cephalotaxus wilsoniana. Phytochemistry 11: 33173320.CrossRefGoogle Scholar
Powell, R.G., Miller, R.W. & Smith, Jr., C.R. 1979. Cephalomannine: a new antitumour alkaloid from Cephalotaxus mannii. Journal of the Chemical Society, Chemical Communications 3: 102104.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Quintas-Cardama, A. & Cortes, J. 2008. Omacetaxine mepesuccinate: a semisynthetic formulation of the natural antitumoral alkaloid homoharringtonine, for chronic myelocytic leukemia and other myeloid malignancies. IDrugs 11: 356372.Google ScholarPubMed
Rai, H.S., Reeves, P.A., Peakall, R., Olmstead, R.G. & Graham, S.W. 2008. Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86: 685–669.CrossRefGoogle Scholar
Sanhi, B. 1920. On certain archaic features of the seed of Taxus baccata, with remarks on the antiquity of the Taxineae. Annals of Botany 34: 117133.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Saxton, W.T. 1934. The morphology of Austrotaxus spicata Compton. Annals of Botany 38: 411427.CrossRefGoogle Scholar
Singh, H. 1961. The life history and systematic position of Cephalotaxus drupacea Sieb. et Zucc. Phytomorphology 11: 153197.Google Scholar
Stefanoff, B. & Jordanoff, D. 1935. Studies upon the Pliocene flora of the Plain of Sofia. Sborn. Akad. Nauk. T., Sofia 29: 130.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Sun, N.J., Zhao, Z.F., Chen, R.T., Lin, W. & Zhou, Y.Z. 1981. Isolation and identification of the antitumor agent hainanolide from Cephalotaxus fortunei. Acta Pharmaceutica Sinica 16: 233234 (author’s translation).Google Scholar
Suzuki, M. 1979. The course of resin canals in the shoots of conifers. I. Taxaceae, Cephalotaxaceae and Podocarpaceae. The Botanical Magazine, Tokyo, 92: 235251.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1996a. Alkaloids from Cephalotaxus harringtoniana. Phytochemistry 43: 299303.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1996b. New Cephalotaxus alkaloids from Cephalotaxus harringtoniana var drupacea. Journal of Natural Products 59: 965967.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1997. Ester-type Cephalotaxus alkaloids from Cephalotaxus harringtoniana var drupacea. Phytochemistry 44: 735738.CrossRefGoogle ScholarPubMed
Takhtajan, A.L. 1956. Vjisshie rastenija. Telomophyta I. Psilophytales-Coniferales. Moscow: Editio Academiiae Scientarum USSR (in Russian).Google Scholar
Takhtajan, A.L. 1969. Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Boyd.Google Scholar
Tang, Z.-X. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 453.Google Scholar
Thomas, B.A. & Spicer, R.A. 1987. The Evolution and Palaeobiology of Land Plants. London: Croom Helm.Google Scholar
Tomlinson, B.P. & Zacharias, E.H. 2001. Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus (Coniferales). Botanical Journal of the Linnean Society 135: 215228.CrossRefGoogle Scholar
Van der Burgh, J. 1983. Allochthonous seed and fruit floras from the Pliocene of the Lower Rhine Basin. Review of Palaeobotany and Palynology 40: 3390.CrossRefGoogle Scholar
Van Tieghem, M.P. 1891. Structure et affinities des Cephalotaxus. Bulletin Société Botanique Francaise 38: 184190.CrossRefGoogle Scholar
Wang, C., Wang, Y. & Huang, S. 1994. Study on ex situ conservation of threatened plants of the first national list in Guangxi. Guihaia 14: 3953.Google Scholar
Wang, L.-W., Su, H.-J., Yang, S.-Z., Won, S.-J. & Lin, C.-N. 2004. New alkaloids and a tetraflavenoid from Cephalotaxus wilsoniana. Journal of Natural Products 67: 11821185.CrossRefGoogle Scholar
Wang, X.-P. 1994. Factors caused endangerment of Hainan plumyew (Cephalotaxus mannii) and its conservation means. Guihaia 14: 369372.Google Scholar
Wang, Y.-S. 1992. The preliminary studies on biological and ecological characteristics of Cephalotaxus mannii Hook. F. Journal of Plant Resources and Environment 1: 6364.Google Scholar
Wilde, M.H. 1977. A new interpretation of microsporangiate cones in Cephalotaxaceae and Taxaceae. Phyotomorphology 25: 434450.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Won, H. & Renner, S.S. 2006. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales): clock calibration when outgroup relationships are uncertain. Systematic Biology 55: 610622.CrossRefGoogle Scholar
Yang, H.-L., Zhu, J.-Z., Qi, S. & Zhu, G.-P. 2005. Surface roughness coefficient of forest watershed in the Three Gorges Region. Journal of Beijing Forestry University 27: 3841.Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Yook, C.-S., Jung, J.-H., Jeong, J.-H., Nohara, T. & Chang, S.-Y. 2000. Biflavenoids from the leaves of Cephalotaxus koreana Nakai. Natural Products Sciences 6: 14.Google Scholar
Zeng, J. 1989. A study on the Cephalotaxus fortunei forest of Xiaolian Mountain in Ninglang County, Yunnan. Acta Botanica Yunnanica 11: 426432.Google Scholar
Zhou, D.C., Zittoun, R. & Marie, J.P. 1995. Homoharringtonine: an effective new natural product in cancer chemotherapy. Bulletin du Cancer 82: 987995.Google ScholarPubMed

References

Alvin, K.L., Ferguson, D.K. & Jahnichen, H. 1978. Amentotaxus Pilger from the European Tertiary. Feddes Repertorium 86: 379410.Google Scholar
Chaw, S.-M., Sung, H.-M., Long, H. Zharkikh, A. & Li, W.-H. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chen, H.-L., Wang, L.-W., Su, H.-J., et al. 2006. New terpenoids from Amentotaxus formosana. Cheminform 37: 27.Google Scholar
Chen, Z.-K. & Wang, F.H. 1984. On the systematic position of Amentotaxus from its embryological investigation. Acta Phytotaxonomica Sinica 22: 269276.Google Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Chevalier, A. 1944. Notes sur les Coniferes de l’Indochine. Revue International de Botanique Appliquee et d’Agriculture Tropicale 24: 734.Google Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Bot. Bull. Acad. Sinica II, 4: 10-14.Google Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Day, S.-H., Su, H.-J., Lin, C.-N., & Yang, S.-Z. 2002. Constituents with a novel skeleton isolated from Amentotaxus formosana. Helvetica Chimica Acta 85: 23772382.3.0.CO;2-T>CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology and Palaeoecology 3: 73110.CrossRefGoogle Scholar
Ferguson, D.K. 1971. The Miocene flora of Kreuzau, Western Germany. 1. The leaf-remains. Verh. K. nederl. Akad. Wet. II 60: 1297.Google Scholar
Ferguson, D.K. 1978. Some current research on fossil and recent taxads. Review of Palaeobotany and Palynology 26: 213226.CrossRefGoogle Scholar
Ferguson, D.K. 1985. A new species of Amentotaxus (Taxaceae) from northeastern India. Kew Bulletin 40: 115118.CrossRefGoogle Scholar
Ferguson, D.K. 1989. On Vietnamese Amentotaxus (Taxaceae). Adansonia 3: 315318.Google Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Florin, R. 1940. Notes on the past geographical distribution of the genus Amentotaxus Pilger (Coniferales). Svensk Botanisk Tidskrift 34: 162165.Google Scholar
Florin, R. 1948. On the morphology and relationships of the Taxaceae. Botanical Gazette 110: 3139.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121312.Google Scholar
Frederiksen, N.O. 1984. Stratigraphy, paleoclimatic and paleobiogeographic significance of Tertiary sporomorphs from Massachusetts. U.S. Geological Survey Professional Paper 1308: 1–25.Google Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Hao, D.C., Xiao, P.G., Huang, B.-L., Ge, G.B. & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hu, S.-Y. 1964. Notes on the flora of China. IV. Taiwania 10: 1362.Google Scholar
Janchen, E. 1949. Das System der Konifern. Akad. Wien. Sitz-ber 158: 155262.Google Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of Conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1969. Aspects of the morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. Journal of the Arnold Arboretum 50: 432445.CrossRefGoogle Scholar
Koidzumi, G. 1932. Notes on Amentotaxaceae. Acta Phytotaxonomica Geobotanica 1: 185 (in Japanese).Google Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxonomica Geobotanica 11: 227229 (in Japanese).Google Scholar
Krausel, R. 1935. Palaobotanische Notizen XX: Doe Koniferengattung Amentotaxus Pilg. Im Tertiar der Wetterau. Senckenbergiana 17: 137144.Google Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kudo, Y. & Yamamoto, Y. 1931. Materials for a flora of Formosa IV. Journal of the Society of Tropical Agriculture (Taihoku) 3: 110111.Google Scholar
Kurmann, M.H. 1992. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 2539.CrossRefGoogle Scholar
Kurmann, M.H. & Zavada, M.S. 1994. Pollen morphological diversity in extant and fossil gymnosperms. Pp 123137 in Kurmann, M.H. & Doyle, J.A. (eds.), Ultrastructure of Fossil Spores and Pollen. London: Royal Botanic Gardens, Kew.Google Scholar
Li, H.-L. 1952. The genus Amentotaxus. Journal of the Arnold Arboretum 33: 192198.CrossRefGoogle Scholar
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Nguyen, D.T.L. & Thomas, I.T. 2000. Cay La Kim Viet Nam: Conifers of Vietnam. London: Darwin Initiative.Google Scholar
Pilger, R. 1926. Coniferae. Pp 121409 in Engler, A. & Prantl, K. (eds.), Die Natürlichen Pflänzenfamilien,2nd ed., vol. 13. Leipzig: W. Engelmann.Google Scholar
Potbury, S.S. 1935. The La Porte flora of Plumas County, California. Carnegie Institution of Washington Publications 465: 2981.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Smiley, C.J. 1966. Cretaceous floras from Kuk River area, Alaska: stratigraphic and climatic interpretations. Geological Society of America Bulletin, 77(1): 114.CrossRefGoogle Scholar
Su, H.-J., Wang, L.-W., Lin, C.-N., et al. 2003. Amentotaxus formosana. Helvetica Chimica Acta 86: 26452652.CrossRefGoogle Scholar
Takhtajan, A.L. 1956. The Higher Plants 1: Psilophytales – Coniferales. Moscow: Academia of Sciences of USSR (in Russian).Google Scholar
Tang, Z.-X., Chen, Z.-K. & Wang, F.-H. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 449453 (in Chinese with English abstract).Google Scholar
Unger, F. 1850. Die fossile Flora von Sotzka. Denkschr. Akad. Wiss. Wien 2: 131197.Google Scholar
Unger, F. 1861. Sylloge Plantarum Fossilum. Sammung fossiler Pflanzen besonders aus der Tertiar-formation. Denkschr. Akad. Wiss. Wien 19: 148.Google Scholar
Weyland, H. 1947. Die Koniferengattung Amentotaxus im Oberoligozan von Kreuzau bei Duren (Rhld.). Senckenbergiana 28: 5966.Google Scholar
Xi, Y.-Z. & Wang, F.H. 1989. Pollen exine ultrastructure of extant Chinese gymnosperms. Cathaya 1: 119142.Google Scholar
Xiao, Y. 1988. Preliminary investigation on the common Amentotaxus forest in Bamianshan Mountain of Hunan province. Journal of Ecology, China 7: 711.Google Scholar
Yang, Q., Ye, G., Feng, J.-Q. & Zhao, W.-M. 2007a. New labdane-type diterpenes from Amentotaxus argotaenia. Helvetica Chimica Acta 90: 12301235.CrossRefGoogle Scholar
Yang, Q., Ye, G., Feng, J.-Q. & Zhao, W.-M. 2007b. New labdane-type diterpenes from Amentotaxus argotaenia. Cheminform 38: 43.CrossRefGoogle Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomic Sinica 19: 411415 (in Chinese with English abstract).Google Scholar

References

Alfieri, S.A., Martinez, A.P. & Wehlburg, C. 1967. Stem and needle blight of Florida Torreya, Torreya taxifolia Arn. Proceedings of the Florida State Horticultural Society 80: 428431.Google Scholar
Bell, W.A. 1962. Catalogue of types and figured specimens of fossil plants in the Geological Survey of Canada collections. Department of Mines Technical Survey Canada 1: 1149.Google Scholar
Berry, E.W. 1908. A mid-Cretaceous species of Torreya. American Journal of Science 25: 382.CrossRefGoogle Scholar
Bobrov, A.V., Melikian, A.P., Romanov, M.S. & Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19:3115.Google Scholar
Burke, J.G. 1975. Human use of the California nutmeg tree, Torreya californica, and other members of the genus. Economic Botany 29: 127139.CrossRefGoogle Scholar
Chaw, S.-M, Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chen, Z.-K. & Wang, F.-H. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 2: 449453.Google Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Ching, R.C. 1927a. Synoptical study of Chinese Torreyas: introduction. Contributions from the Biological Laboratory of the Science Society of China 3: 1.Google Scholar
Ching, R.C. 1927b. Synoptical study of Chinese Torreyas: distribution and habitat. Contributions from the Biological Laboratory of the Science Society of China 3: 1019.Google Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Davis, B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 1326.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Gao, Z.W. 1996. Study on the biological character and conservation of endemic species Torreya jackii. Biodiversity Science 5: 206209.Google Scholar
Godfrey, R.K. & Kurz, H. 1962. The Florida Torreya destined for extinction. Science 136: 900902.CrossRefGoogle ScholarPubMed
Hably, L. & Marrón, M.T.F. 2007. The first macrofossil record of Ginkgo from the Iberian Peninsula. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 244: 6570.CrossRefGoogle Scholar
Hao, D.C., Xiao, P.G., Huang, B.-L., Ge, G.B. & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle ScholarPubMed
Heer, O. 1871. Forutskickade anmarkingar ofver Nordgronlands Kriftflora grundade pa den Svenska expeditionens upptacktor, 1870. Ofvers. K. Svensk. Vetenskaps-Akad 28: 11751184.Google Scholar
Heer, O. 1874. Die Kreide-Flora der Arctischen zone, gesammelten pflanzen. K. Svensk. Vetenskaps-Akad, Handl. 12: 1138.Google Scholar
Howell, J.T. 1976. Marin Flora: Manual of the Flowering Plants and Ferns of Marin County, California, 2nd ed. Berkeley, CA: University of California Press.Google Scholar
Hu, H.H. 1927. Synoptical study of Chinese Torreyas. Contributions from the Biological Laboratory of the Science Society of China 3: 210.Google Scholar
Hu, H.H. 1964. Notes on the flora of China. IV. Taiwania 10: 125.Google Scholar
Ito, H., Ito, S., Matsui, T., & Marutani, T. 2006. Effect of fluvial and geomorphic disturbances on habitat segregation of tree species in a sedimentation-dominated riparian forest in warm-temperate mountainous region in southern Japan. Journal of Forest Research, 11(6): 405417.CrossRefGoogle Scholar
Janchen, E. 1949. Das System der Koniferen. Sitzungberichte Osterreichische Akademie der Wissenschaften (Mathematisch-naturwissenschaftliche Klasse) I. Abt 158: 155262.Google Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1969. Aspects of the morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. Journal of the Arnold Arboretum 50: 432445.CrossRefGoogle Scholar
Knowlton, P. 1898. The Potomac or Younger Mesozoic Flora. Monographs of the U.S. Geological Survey 15: 1377.Google Scholar
Knowlton, P. 1883. On the Cretaceous and Tertiary floras of British Columbia and the North-West Territory. Proceedings and Transactions of the Royal Society of Canada 1: 1534.Google Scholar
Kraüsel, R. 1949. Konifereen und andere Gymnospermen aus der Trias von Lunz, Nieder-Österreich. Palaeontographica, Abt. B. 84: 3582.Google Scholar
Kunzmann, L. & Mai, D.H. 2005 Die Koniferen der Mastixioideen-Flora von Wiesa bei Kamenz (Sachsen, Miozan) unter desonderer Berucksichtigung der Nadelblatter. Palaeontographica Abt. B 272: 67135.CrossRefGoogle Scholar
Kurz, H. & Godfrey, R.K. 1962. Trees of Northern Florida. Gainesville, FL: University of Florida Press.Google Scholar
Kvacek, Z. 1984. Tertiary taxads of NW Bohemia. Acta Universitatis Carolinae, Geologica 4: 471491.Google Scholar
Kvacek, Z. & Walther, H. 1998. The Oligocene volcanic flora of Kundratice near Litomerice, Ceske stredohori Volcanic Complex (Czech Republic) – a review. Acta Musei Nationalis Pragae, Ser. B. 54: 142.Google Scholar
Lesquereux, L. 1883 Contributions to the fossil flora of the Western territories. III. Cretaceous and Tertiary floras. Report of the U.S. Geological Survey 8: 1283.Google Scholar
Li, J.M. & Jin, Z.X. 2007. Genetic variation and differentiation in Torreya jackii Chun, an endangered plant endemic to China. Plant Science 172: 10481053.CrossRefGoogle Scholar
Li, J.Y., Sidhu, R.S., Ford, E.J., et al. 1998. The induction of taxol production in the endophytic fungus Periconia sp from Torreya grandifolia. Journal of Industrial Microbiology and Biotechnology 20: 259264.CrossRefGoogle Scholar
Madler, K. 1939. Die Pliozane Flora von Frankfurt am Main. Abh. Senckenberg. Naturforch. Ges. 446: 1202.Google Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Series D 9: 125152.Google Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28(3): 375403.CrossRefGoogle Scholar
Price, R.A. 1990. The genera of Taxaceae in the southeastern United States. Journal of the Arnold Arboretum 71: 6991.CrossRefGoogle Scholar
Roy, S.K. 1972. Fossil wood of Taxaceae from the McMurray formation (Lower Cretaceous) of Alberta, Canada. Canadian Journal of Botany 50(2): 349352.CrossRefGoogle Scholar
Saporta, G. & Marion, A.F. 1876. Recherches sur les vegetaux fossiles de Meximieux. Archives du Museum Histoire Naturelle de Lyon 1: 131335.CrossRefGoogle Scholar
Schmidt, M. & Schneider-Poetsch, H.A.W. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms. Journal of Molecular Evolution 54: 715724.CrossRefGoogle Scholar
Schwartz, M.W., Hermann, S.M. & Vogel, C.S. 1995. The catastrophic loss of Torreya taxifolia: assessing environmental induction of disease hypothesis. Ecological Applications 5: 501516.CrossRefGoogle Scholar
Statler, R. & Dial, S. 1984. Environmental status of the stinking cedar, Torreya taxifolia. Bartonia 50: 4042.Google Scholar
Suzuki, M. 1979. The course of resin canals in the shoots of conifers: I. Taxaceae, Cephalotaxaceae and Podocarpaceae. The Botanical Magazine= Shokubutsu-gaku-zasshi 92:235251.CrossRefGoogle Scholar
Tang, Z.-X. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 453.Google Scholar
Taylor, E.L., Taylor, T.N. & Krings, M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants. New York: Academic Press.Google Scholar
Thornbury, W.D. 1965. Regional Geomorphology of the United States. New York: Wiley.CrossRefGoogle Scholar
Tomlinson, B.P. & Zacharias, E.H. 2001. Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus (Coniferales). 1. Botanical Journal of the Linnean Society 135: 215228.CrossRefGoogle Scholar
Walther, H. 1999. Die Tertiarflora von Kleinsaubarnitz bei Bautzen. Palaeontographica Abt. B, 249: 63174.CrossRefGoogle Scholar
Wilson, E.H. 1916. Conifers and Taxads of Japan. Cambridge: Cambridge University Press.Google Scholar
Yu-Shi, H., Ling-Qiang, G. & Zhong-Xun, T. 1985. Anatomy of the secondary phloem and the crystalliferous phloem fibers in the stem of Torreya grandis. Journal of Integrative Plant Biology 27(6).Google Scholar

References

Abramova, L.N. 1984. Novyie melovvyie khvoynyie severa Sredney Sibri. Yezhegodnik vsesoyuznogo paleontol. Obschestva Leningrad 27: 201218 (in Russian).Google Scholar
Bertoldi, R. 1988. Una sequenza palinologica di esta Rusciniana nei sedimenti lacustri basaali del bacino di Aulla-Olivola (Val di Magra).Google Scholar
Bertoldi, R. 1997. Lineamenti palinostratigrafici de depositi continentali del Pliocene–Pleistocene inferior inizialae dell’italia nord-occidentale. Bollettino Societa Paleontologica Italiana 36: 6373.Google Scholar
Bohlmann, J., Meyer-Gauen, G. & Cotteau, R. 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences of the USA 95: 41264133.CrossRefGoogle ScholarPubMed
Bose, M.N. 1955. Sciadopityes variabilis n.sp. from the Arctic of Canada. Norske Geologiske Tidskrift 35: 5367.Google Scholar
Bose, M.N. & Manum, S.B. 1990. Mesozoic conifer leaves with ‘Sciadopitys-like’ stomatal distribution: a re-evaluation based on fossils from Spitzbergen, Greenland and Baffin Island. Norsk Polarinstitutt Skrifter 192: 181.Google Scholar
Bose, M.N. & Manum, S.B. 1991. Additions to the family Miroviaceae (Coniferae) from the Lower Cretaceous of West Greenland and Germany: Mirovia groenlandica n.sp., Tritaenia crassa (Seward) comb. Nov., and Tritaenia linkii Magdefrau et Rudolph emend. Polar Research 9: 921.Google Scholar
Brunsfield, S.J., Soltis, P.S., Soltis, D.E. et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19:3115.Google Scholar
Chaw, S.M., Zharkikh, A., Sung, H.M., Law, T.C., & Li, W.H. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle ScholarPubMed
Christophel, D.C. 1973. Sciadophyllum canadense gen. et sp. nov.: a new conifer from western Alberta. American Journal of Botany 60: 6166.CrossRefGoogle Scholar
Chuang, T.I. & Hu, W.W.L. 1965. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Combourieu-Nebout, N. 1995. Response de la vegetation de l’Italie meridionaale au seuil climatique de la fin du Pliocene d’apres l’analyse pollinique haute ressolution de la section de Semafro (2.46 a 2.1 Ma). Comptes Rendus, Academie des Sciences, Ser II, Sciences de la Terre et des Planetes 321: 659665.Google Scholar
Croteau, R., Kutchan, T.M. & Lewis, N.G. 2000. Natural products (secondary metabolites). Pp 12501318 in Buchanan, B., Gruissern, W. & Jones, R. (eds.), Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologists.Google Scholar
Czeczott, H. 1961. The flora of the Baltic amber and its age. Prace Museum Ziemi 4: 119145.Google Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Debreczy, Z., Rácz, I. & Musial, K. 2011. Conifers Around the World. Budapest: DendroPress.Google Scholar
Dick, J., Longman, K.A. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodicaeae. Biologia Plantarum 24: 195201.Google Scholar
Dolezych, M. & Schneider, W. 2007. Taxonomy and taphonomy of coniferous woods and cuticulae dispersae in the Second Lusitanian coal seam (Miocene) of the Senftenberg area. Palaeontographica Abteilung B 276: 195.CrossRefGoogle Scholar
Doludenko, M.P. 1963. A new species of Sciadopitys from the Jurassic of western Ukraine. Paleontol. Zh. 1: 123126 (in Russian).Google Scholar
Doludenko, M.P. & Sveshnikova, I.N. 1959. On a find of the remains of the genus Sciadopitys S. et Z. in Upper Cretaceous deposits of the Urals. Dolk. Akad. Nauk. S.S.S.R. 128: 12761278 (in Russian).Google Scholar
Doyle, J.T. 1931. The suspensor of Sciadopitys. Botanical Gazette 92: 243262.Google Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23: 237256.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Enright, N.J. & Hill, R.S. (eds.). 1995. Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Page, C.N. (eds.). 1999. Conifers. Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology and Palaeoecology 3: 73110.CrossRefGoogle Scholar
Florin, R. 1922a. On the geological history of the Sciadopitineae. Svensk Botanisk Tidskrift 16: 260270.Google Scholar
Florin, R. 1922b. Uber das Vorkommen von Sciadopitys im deutschen Tertiar. Senckenbergiana 4.Google Scholar
Florin, R. 1922c. On the geological history of the Sciadopitineae. Svensk Botaniske Tidskrifte 16: 260270.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Gadek, G.A. & Quinn, C.J. 1989. Biflavones of Taxodiaceae. Biochemical Systematics and Ecology 17: 365372.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gothan, W. & Weyland, H. 1973. Lehrbuch der Palöobotanik. Berlin: Akademie Verlag.Google Scholar
Grimaldi, D.A. 1996. Amber: Window to the Past. New York: American Museum of Natural History.Google Scholar
Grimson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Halle, T.G. 1915. Some xerophytic leaf-structures in Mesozoic plants. Geol. Foren. Forhandl. 37: 493520.CrossRefGoogle Scholar
Hansen, B.C.S., Grimm, E.C. & Watts, W.A. 2001. Palynology of the Peace Creek site, Polk county, Florida. Bulletin of the Geological Society of America 113: 682692.2.0.CO;2>CrossRefGoogle Scholar
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.K. 1984. Pollen stratigraphical study of the late Cenozoic sediments in southern Kyushu, Japan. Quaternary Research, Tokyo 23: 120.CrossRefGoogle Scholar
Hayashi, Y. 1960. Taxonomical and Phytogeographical Study of Japanese Conifers. Tokyo: Norin-Shuppan.Google Scholar
Hayata, B. 1931. The Sciadopityaceae represented by Sciadopitys verticillata Sieb. Et Zucc., and endemic species of Japan. Botanical Magazine (Tokyo) 45: 567569.Google Scholar
Heer, O. 1868. Die fossils Flora der Polarländer enthaltend die in Nordgrönland, auf den Melville-Insel, im Banksland, am Mackenzie Island und in Spitzbergen entdekten fossilen Pflanzen. Zürich: Friedrich Schulthess.Google Scholar
Heusser, L.E. 1990. Northeast Asian pollen records for the last 150,000 years from deep-sea cores V28–304 and RC14–99 taken off the Pacific coast of Japan. Review of Palaeobotany and Palynology 65: 18.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishizuka, R. 2001. Flow cytometric determinations of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66: 307311.CrossRefGoogle Scholar
Hsu, C.Y., Wu, C.S. & Chaw, S.M. 2016. Birth of four chimeric plastid gene clusters in Japanese umbrella pine. Genome Biology and Evolution 8: 17761784.CrossRefGoogle ScholarPubMed
Hvaij, A.V. 1997. On the systematics of Mesozoic and Cenozoic representatives of the family Sciadopityaceae (Pinopsida). Bot. Zhurnal 82: 97114 (in Russian).Google Scholar
Igarazshi, Y. & Oba, T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis on IMAGES core MD01–2421. Quaternary Science Reviews 25: 14471459.CrossRefGoogle Scholar
Jiang, Z.-K., Yang, Y.-D., Zheng, S.-L., Zhang, W. & Tian, N. 2012. Occurrence of Sciadopitys-like fossil wood (Coniferales) in the Jurassic of western Liaoning, and its evolutionary implications. Chinese Science Bulletin 6: 569572.CrossRefGoogle Scholar
Johansson, N. 1920. Neue Mesozoische Pflanzen aus Ando in Norwegen. Svensk Bot. Tidskr 14.Google Scholar
Kawase, D., Tsumara, Y., Tomaru, N., Seo, A. & Yumoto, T. 2010. Genetic structure of an endemic Japanese conifer Sciadopitys verticillata (Sciadopityaceae) by microsatellite markers. Journal of Heredity 101: 292297.CrossRefGoogle ScholarPubMed
Kettunen, E., Grabenhorst, H., Gröhn, C., et al. 2015. The enigmatic hyphomycete Torula sensu Caspary revisited. Review of Palaeobotany and Palynology 219: 183193.CrossRefGoogle Scholar
Koidzumi, G. 1942. The classification of the Coniferae. Acta Phytotaxonomica Geobotanica 11: 227229 (in Japanese, with Latin names).Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Krutzsch, W. 1971. Atlas der Mittel- und Jungtertiären dispersen Sporen und Pollen sowie der Mikroplanktonformen des Nördlichen Mitteleuropas. Jena: Gustav Fischer Verlag.Google Scholar
Kvaček, Z. 2010. Forest flora and vegetation of the European early Palaeogene: a review. Bulletin of Geosciences 85: 6376.CrossRefGoogle Scholar
Langenheim, J.H. 1969. Amber: a botanical enquiry. Science 163: 11571169.CrossRefGoogle Scholar
Langenheim, J.H. 1994. Higher plant turpenoids: phytocentric overview of their ecological roles. Journal of Chemical Ecology 20: 12231280.CrossRefGoogle ScholarPubMed
Langenheim, J.H. 2003. Plant Resins, Chemistry, Evolution, Ecology and Ethnobotany. Portland, OR: Timber Press.Google Scholar
Langenheim, J.H. & Beck, C.W. 1965. Infrared spectra as a means of determining botanical sources of amber. Science 149: 52–24.CrossRefGoogle Scholar
Larsson, L.M., Vajda, V. & Rasmussen, E.S. 2006. Early Miocene pollen and spores from western Jylland, Denmark: environmental and climatic implications. GFF 128: 261272.CrossRefGoogle Scholar
Lawson, A.A. 1910. The gametophytes and embryo of Sciadopitys verticillata. Annals of Botany 24: 403421.CrossRefGoogle Scholar
Lemoine-Sebastian, C. 1972. Etude comparative de la vascularisation et du complex seminal chez les Cupressacees. Phytomorphology 22: 246260.Google Scholar
Li, J., Gao, L., Chen, S.S., et al. 2016. Evolution of short invert repeat in cupressophytes, transfer of accD to nucleus in Sciadopitys verticillata and phylogenetic position of Sciadopityaceae. Scientific Reports (Chinese) 6: 20934.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Lopatina, D.A. 2003. Comparative analysis of the Eocene–Miocene micro- and macro-floras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation 11: 7490.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D.H. 1999. The Lower Miocene floras of the Spremberger sequence and the second browncoal horizon in the Lusatica region. I. Waterferns, conifers and monocotyledons. Palaeontographica B 250: 176.CrossRefGoogle Scholar
Manum, S.B. 1962. Studies in the Tertiary flora of Spitzbergen, with notes on Tertiary floras of Ellesmere Island, Greenland and Iceland: a palynological investigation. Norske Polarinstitutt Skrifter 125: 1131.Google Scholar
Manum, S.B. 1987. Mesozoic Sciadopitys-like leaves with observations on four species from Andoya, Northern Norway, and emendation of Sciadopityoides Sveshnikova. Review of Palaeobotany and Palynology 51: 145168.CrossRefGoogle Scholar
Manum, S.B. & Bose, M.N. 1988. Sciadopityaceae: en gammel bartrefamilie belyst ved norske fossiler. Blyttia 46: 189194.Google Scholar
Manum, S.B., Van Konijnenberg-Van Cittert, J.H.A. & Wilde, V. 2000. Tritaenia Magdefrau et Rudolf, Mesozoic ‘Sciadopitys-like’ leaves in mass accumulations. Review of Palaeobotany and Palynology 109: 255269.CrossRefGoogle Scholar
Menzel, P. 1913. Beitrag zur Flora der niederrheiniscchen Braunkohlen-formation. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt zu Berlin 34: 198.Google Scholar
Miki, S. 1955. Successions of Five Native Species in Kiso Based Upon on the Plant Remains. Nagano: Nagano Forest Bureau.Google Scholar
Miller, C.N. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Miyoshi, N., Fujiki, T. & Morita, Y. 1999. Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial-interglacial vegetation change in Japan. Review of Palaeobotany and Palynology 104: 267283.CrossRefGoogle Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene–Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Mossbrugger, V., Gee, C.T., Belz, G. & Ashraf, A.R. 1994. Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwest Germany: new methods in palaeovegetation analysis. Paleogeography, Palaeoclimatology, Palaeoecology 110: 295317.CrossRefGoogle Scholar
Nosova, N.V. 2013. The genus Mirovia Reymanówna (Pinopsida): systematics and characteristics of leaf structure. Palaeobotany 4: 3695 (in Russian).CrossRefGoogle Scholar
Nosova, N.V. & Kiritchkova, A. 2008. First records of the genus Mirovia Reymanówna (Miroviaceae, Coniferales) from the Lower Jurassic of western Kazakhstan (Mangyshlak). Paleontological Journal 42: 13831392.CrossRefGoogle Scholar
Nosova, N.V. & Kiritchkova, A. 2015. New data on the Mesozoic conifer genus Sciadopityoides Sveshnikova (Miroviaceae). Review of Palaeobotany and Palynology 321: 121.CrossRefGoogle Scholar
Nosova, N.V. & Wcislo-Luraniec, E. 2007. A reinterpretation of Mirovia Reymanówna (Coniferales) based on the reconsideration of the type species Mirovia szaferi Reymanówna from the Polish Jurassic. Acta Palaebot 47: 359371.Google Scholar
Ogura, Y. 1932. On the structure and affinities of some Cretaceous plants from Hokkaido, 2D contribution. Journal of the Faculty of Science, Imperial University of Tokyo, Section III, 2: 455483.Google Scholar
Ohsawa, T. 1994. Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae and Sciadopityaceae. Journal of Plant Research 107: 503512.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Otto, A. & Wilde, V. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers: a review. Botanical Reviews 67: 141248.CrossRefGoogle Scholar
Otto, A., White, J.D. & Simmoneit, B.R. 2002. Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297: 15431545.CrossRefGoogle ScholarPubMed
Page, C.N. 1990a. Taxodiaceae. Pp 353361 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants: I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990b. Key to families of Coniferophytina. P 283 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990c. Ginkgoatae. Pp 283289 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990d. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990e. Cephalotaxaceae. Pp 299302 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990f. Cupressaceae. Pp 302316 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990g. Phyllocladaceae. Pp 317319 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990h. Pinaceae. Pp 319331 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990i. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Page, C.N. 1990j. Sciadopityaceae. Pp 346348 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Philippe, M., Meon, H., Lambert, G., et al. 2002. A palm-tree and Sciadopitys swamp forest from the Neogene of Bresse (eastern France). Comptes Rendus Palevol 1: 221225.CrossRefGoogle Scholar
Pierce, A.S. 1936. Anatomical interrelationships of the Taxodiaceae. Tropical Woods 46: 115.Google Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Reymanówna, M. 1985. Mirovia szaferi gen. et sp. nov. (Ginkgoales) from the Jurassic of the Krakow region, Poland. Acta Palaeobotanica 25: 312.Google Scholar
Roman-Jordan, E., Esteban, L.G. de Palacios, P. & Fernandez, F.G. 2017. Comparative wood anatomy of Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa. Plant Systematics and Evolution 303: 203219.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., Stockey, R.A. & Hilton, J. 2013. Diversity of ancient conifers: the Jurassic seed cone Bancroftiastrobus digitata gen et. Sp. nov. (Coniferaales). International Journal of Plant Sciences 174: 937946.CrossRefGoogle Scholar
Rydin, C., Kallersjo, M. & Friis, E.M. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data rooting problems and the monophyly of conifers. International Journal of Plant Sciences 163: 1119711214.CrossRefGoogle Scholar
Sadowski, E.-M., Schmidt, A.R., Kunzmann, L. Gröhn, C. & Seyfullah, L.J. 2016. Sciadopitys cladodes from Eocene Baltic amber. Botanical Journal of the Linnean Society 189: 258268.CrossRefGoogle Scholar
Sadowski, E.-M., Schmidt, A.R., Seyfullah, L.J. & Kunzmann, L.. 2017. Conifers of the ‘Baltic amber forest’ and their palaeoecological significance. Stapfia 106: 173.Google Scholar
Sakai, K. 1992. A new Sciadopityaceous seed cone from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany 79: 989995.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1985a. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 264267.Google Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1985b. Karyological derivation of Sciadopitys verticillata Sieb. & Zucc. from a proto-taxodiaceous ancestor. Botanical Gazette 146: 264276.CrossRefGoogle Scholar
Schmidt, A.H., Beimforde, C., Seyfullah, L.J., et al. 2014. Amber fossils of sooty moulds. Review of Palaeobotany and Palynology 2000: 5364.CrossRefGoogle Scholar
Schmidt, M. & Schneider-Poetsch, H.A.W. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms. Journal of Molecular Evolution 54: 715724.CrossRefGoogle ScholarPubMed
Schneider, W. 1992. Floral succession in Miocene swamps and bogs in central Europe. Zeitschrift für Geologische Wissenschaften 20: 555570.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Seward, A.C. 1926. The Cretaceous plant-bearing rocks of Western Greenland. Philosophical Transactions of the Royal Society of London Ser. B. 215: 57175.Google Scholar
Seward, A.C. 1931. Plant Life Through the Ages: A Geological and Botanical Retrospect. Cambridge: Cambridge University Press.Google Scholar
Srinivasan, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stefanovic, S., Jager, M., Deutsch, J. Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Komarov Botanical Institut, Academy of Science USSR Acta, ser. 8 Palaeobotany, Palaeobotanica 4: 207237 (in Russian with English abstract).Google Scholar
Sveshnikova, I.N. 1981. The new fossil genus Sciadopityoides (Pinopsida). Bot. Zh. S.S.S.R. 66: 17211729 (in Russian).Google Scholar
Tahara, M. 1937. Contributions to the morphology of Sciadopitys verticillata. Cytologia, Fujii Jubilee Volume: 14–19.Google Scholar
Tahara, M. 1940. The gametophytes, fertilisation and proembryo of Sciadopitys verticillata. Science Reports Thhoku University (Biology) 15: 1928.Google Scholar
Takaso, T. & Tomlinson, P.B. 1991. Cone and ovule development in Sciadopitys (Taxodiaceae – Coniferales). American Journal of Botany 78: 417428.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Takhtajan, A.L. 1953. Phylogenetic principles of the system of higher plants. Botanical Review 19: 145.CrossRefGoogle Scholar
Thiergart, F. 1949. Die Sciadopityszone und der Sciadopitys-Vorstoss in der niederrheinischen Braunkohle. Braunkohle, Wärme und Energie 1: 153156.Google Scholar
Trapp, S. & Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annual Review of Plant Physiology and Plant Molecular Biology 52: 689724.CrossRefGoogle ScholarPubMed
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science, New Series 142: 16801681.Google ScholarPubMed
Tsumura, Y.K., Yoshimura, N., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Uemura, K. 1986. A note on Tertiary Sciadopitys (Coniferopsida) from Japan. Bulletin of the National Science Museum Tokyo, Series C, 12: 5359.Google Scholar
Ueno, J. 1951. Morphology of pollen of Metasequoia, Sciadopitys and Taiwania. Journal of the Institute of Polytechnology, Osaka City University, Ser D 2: 2226.Google Scholar
Ueno, J. 1959. Some palynological observations on Taxaceae, Cupressaceae and Araucariaceae. Journal of the Institute of Polytechnics, Osaka City University, Ser. D., 10: 7587.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vávra, N. 2009. The chemistry of amber: facts, findings and opinions. Annalen des Naturhistoriscchen Museums in Wien. Ser. A., Mineralogie, Petrographie, Geologie und Pälaontologie, Anthropologie und Prähistorie. 111: 445473.Google Scholar
Walther, H. & Kvaček, Z. 2007. Early Eocene flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae, ser. B. Historia Naturalis 63: 85174.Google Scholar
Weyland, H., Kilpper, K. & Berendt, W. 1967. Kritische untersuchungen zzur Kutikularanalyse tertarer Blatter V11. Palaeontogr. Abt. B, 120: 151168.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Wolfe, A.P., Tappert, R., Muehlenbachs, K., et al. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society, Biological Sciences 276: 34033412.CrossRefGoogle ScholarPubMed
Yamakawa, C., Momohara, A., Saito, T. & Nunotani, T. 2017. Composition of paleoenvironment of wetland forests dominated by Glyptostrobus and Metasequoia in the latest Pliocene (2.6 Ma) in central Japan. Palaeogeography, Palaeoclimatology and Palaeoecology 467: 191210.CrossRefGoogle Scholar
Zhang, W., Zheng, S.-L. & Ding, Q.-H. 1999. A new genus (Protosciadopityoxylon gen nov.) of Early Cretaceous fossil wood from Liaoning, China. Acta Botanica Sinica 41: 13121316.Google Scholar

References

Aboudun, F. & Beddiaf, M. 2002. Cupressus dupreziana A. Camus: distribution, decline and regeneration on the Tassili n’Ajjer, central Sahara. Comptes Rendus Biologicae 325: 617627.CrossRefGoogle Scholar
Adams, R.P., Bartel, J.A. & Price, R.A. 2009. A new genus, Hesperocyparis, for the cypresses of the Western Hemisphere (Cupressaceae). Phytologia 91: 160185.Google Scholar
An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan plateau since Late Miocene times. Nature 411: 6266.Google Scholar
Barry, J.P. 1970. Essai de monographie du Cupressus dupreziana A. Camus, cypress endemique du Tassili des Alger (Sahara Central). Bulletin Société Histoire Naturelle Afrique du Nord 61: 95178.Google Scholar
Boulter, M.C. & Kvaček, Z. 1989. The Palaeocene flora of the Isle of Mull: incorporating unpublished observations by A.C. Seward and W.N. Edwards. Special Papers in Palaeontology 42: 1149.Google Scholar
Brunsfield, S.J., Soltis, P.S., Soltis, D.E. et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
De Tarade, R. 1980. Cupressus dupreziana from Lebanon (cultivated). International Dendrology Society Yearbook 1979: 97.Google Scholar
Dobry, J. 1998. Cupressus dupreziana. Threatened Plants Newsletter 20: 12.Google Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
El Maataoui, M. & Pichot, C. 1999. Nuclei and cell fusion cause polyploidy in the megagametophyte of common cypress, Cupressus sempervirens L. Planta 208: 345351.Google Scholar
El Maataoui, M. & Pichot, C. 2001. Microsporogenesis in the endangered Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta 213: 543549.Google ScholarPubMed
El Maataoui, M., Pichot, C., Alzubi, H. & Grimauld, N. 1998. Cytological basis for a tetraspory in Cupressus sempervirens L. megagametogenesis and its implications in genetic studies. Theoretical and Applied Genetics 96: 776779.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Gadek, P.A & Quinn, C.J. 1985. Biflavenoids of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A & Quinn, C.J. 1987. Biflavones and the affinities of Cupressus funebris Endl. Phytochemistry 26: 25512552.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Guo, K., Liu, C. & Dong, M. 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of South-west China. Chinese Journal of Plant Ecology 35(10): 991999.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hrib, J. & Dobry, J. 1984. An explant culture of Tassilian cypress, Cupressus dupreziana. Forest Ecology and Management 8: 235–224.CrossRefGoogle Scholar
Kvaček, Z., Velitzelos, D. & Velitzelos, D. 2002. Late Miocene Flora of Vegora, Macedonia, N. Greece. Athens: University of Athens.Google Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Little, D.P., Thomas, P., Nguyen, H.T. & Phan, L.K. 2011. Before it had a name: diagnostic characteristics, geographic distribution, and the conservation of Cupressus tonkinensis (Cupressaceae). Brittonia 63: 171196.CrossRefGoogle Scholar
Liu, C.-G. & Xue, J.-H. 2011. Basic soil properties and comprehensive evaluation in different plantations in rocky desertification sites of the karst region of Guizhou Province, China. Chinese Journal of Plant Ecology 35: 10501060.Google Scholar
McIver, E.E. 1994. An early Chamaecyparis (Cupressaceae) from the Late Cretaceous of Vancouver Island, British Columbia, Canada. Canadian Journal of Botany 72(12): 17871796.CrossRefGoogle Scholar
Mehra, P.N. & Malhotra, R.K. 1947. Stages in the embryology of Cupressus sempervirens Linn. with particular reference to the occurrence of multiple male cells in the male gametophyte. Proceedings of the National Academy of Sciences, India 17: 129153.Google Scholar
Nguyen Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Page, C.N. & Rushforth, K.D. 1980. Picea farreri, a new temperate conifer from Upper Burma. Notes from the Royal Botanic Garden Edinburgh 38(1): 129136.Google Scholar
Papageorgiou, A.C. 1998. Diploid sporophytic tissue in the seed of Cupressus sempervirens L. Heredity 81: 586590.CrossRefGoogle Scholar
Pichot, C. & El Maataoui, M. 1997. Flow cytometric evidence for multiple ploidy levels in the endosperm of some gymnosperm species. Theoretical and Applied Genetics 94: 865870.CrossRefGoogle Scholar
Pichot, C. & El Maataoui, M. 2000. Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theoretical and Applied Genetics 101: 574579.CrossRefGoogle Scholar
Rushforth, K.D., Adams, R.P., Zhong, M., Quiang, X.M. & Pandey, R.M. 2003. Variation among Cupressus species from the eastern hemisphere based on random amplified polymorphic DNAs (RAPDs). Biochemical Systematic Ecology 31: 1724.CrossRefGoogle Scholar
Shi, G., Zhou, Z. & Xie, Z. 2011. Cupressus foliage shoots and associated seed cones from the Oligocene Ningming Formation of Guangxi, South China. Review of Palaeobotany and Palynology 166(3–4): 325334.CrossRefGoogle Scholar
Silba, J. 1994. The trans-Pacific relationship of Cupressus in India and North America. Journal of the International Conifer Preservation Society 1: 128.Google Scholar
Stewart, P.J. 1970. Cupressus dupreziana, threatened conifer of the Sahara. Biological Conservation 2: 1012.CrossRefGoogle Scholar
Stockey, R.A., Kvaček, J., Hill, R.S., Rothwell, G.W. & Kvaček, Z. 2005. The Fossil Record of Cupressaceae s. lat. Kew: n.p.Google Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9(2): 375382.Google Scholar
Xiang, Q. & Farjon, A. 2003. Cuticle morphology of a newly discovered conifer, Xanthocyparis vietnamensis (Cupressaceae), and a comparison with some of its nearest relatives. Botanical Journal of the Linnean Society 143(3): 315322.CrossRefGoogle Scholar
Xu, T.-T., Abbott, R.J., Milne, R.I., et al. 2010. Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evolutionary Biology 10: 194204.CrossRefGoogle Scholar
Yanni, A.S. & Mohharam, A.M. 1990. Synthesis and biological activity of some 5‐substituted aminomethyl‐8‐hydroxyquinoline‐7‐sulphonic acids. Journal of Chemical Technology & Biotechnology 49(3): 243247.CrossRefGoogle ScholarPubMed
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History 30(1): 2936.CrossRefGoogle Scholar

References

Adams, R.P., Bartel, J.A., & Price, R.A. 2009. A new genus, Hesperocyparis, for the cypresses of the Western hemisphere (Cupressaceae). Phytologia 91: 160185.Google Scholar
Axelrod, D.J. 1957. Late Tertiary floras of the Sierra Nevada uplift. Bulletin of the Geological Society of America 68: 1946.CrossRefGoogle Scholar
Axelrod, D.J. 1958. Evolution of the Madro-Tertiary geoflora. Botanical Review 24: 434509.CrossRefGoogle Scholar
Axelrod, D.I. 1964 The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Sciences 51: 1148.Google Scholar
Axelrod, D.I. 1990. Age and origin of subalpine forest zone. Paleobiology 16(3): 360369.CrossRefGoogle Scholar
Bartel, J.A., Adams, R.P., James, S.A., Mumba, L.E. & Pandey, R.N. 2003. Variation among Cupressus species from the western hemisphere based on random amplified polymorphic DNAs. Biochemical Systematics and Ecology 31: 693702.CrossRefGoogle Scholar
Becarra, J.X. 2005. Timing the origin and expansion of the Mexican tropical dry forest. Proceedings of the National Academy of Sciences USA 102: 1091910923.CrossRefGoogle Scholar
Brown, R.W. 1934. The Recognizable Species of the Green River Flora. Washington, DC: Government Printing Office.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Cartron, J.L., Ceballos, G. & Felger, R.S. (eds). 2005. Biodiversity, Ecosystems and Conservation in Northern Mexico. Oxford: Oxford University Press.CrossRefGoogle Scholar
Contreras-Medina, R., Luna Vega, I., & Morrone, J.J. 2007. Gymnosperms and cladistic biogeography of the Mexican Transition Zone. Taxon 56: 905915.CrossRefGoogle Scholar
De Gouvenain, R.C. & Ansary, A.A. 2006. Association between fire return interval and population dynamics in four California populations of Tecate cypress (Cupressus forbesii). Southwestern Naturalist 51: 447454.CrossRefGoogle Scholar
Debreczy, Z., Musial, K., Price, R.A. & Racz, I. 2009. Relationships and nomenclatural status of the Nootka cypress (Callitropsis nootkatensis, Cupressaceae). Phytologia 91: 140159.Google Scholar
DeBuno, L.F. 1989. Effects of fire on chaparral soils in Arizona and California and postfire management implications. USDA Forest Service General Technical Report PSN-109.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Escobar, P.R., Gernandt, D.S., Pinero, D. & Garcillan, P.P. 2011. Plastid DNA diversity is higher in the island endemic Guadalupe cypress than in the continental Tecate cypress. PLoS One 6: e16133.CrossRefGoogle Scholar
Esser, L. 1994. Hesperocyparis goveniana. In Fire Effects Information System. Washington, DC: USDA.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. London: Royal Botanic Gardens.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Goldman, E.A. & Moore, R.T. 1945. The biotic provinces of Mexico. Journal of Mammalogy 26(4): 347360.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Kruckeberg, A.R. 1984. California serpentines: flora, vegetation, geology, and management problems. University of California Publications in Botany 78: 1180.Google Scholar
Lal, R. 2004. Carbon sequestration in dryland ecosystems. Environmental Management 33: 528544.CrossRefGoogle ScholarPubMed
Lazarus, B.E., Richards, J.H., Claassen, V.P., O’Dell, R.E. & Ferrell, M.A. 2011. Species specific plant–soil interactions influence plant distribution on serpentine soils. Plant and Soil 342: 327344.CrossRefGoogle Scholar
Lewis, H. 1962. Catastrophic selection as a factor in speciation. Evolution 16: 257271.CrossRefGoogle Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, R.P. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91(11): 18721881.CrossRefGoogle ScholarPubMed
MacGintie, H.D. 1953. Fossil plants of the Florissant beds, Colorado. Carnegie Institute of Washington Publication 599Google Scholar
Marshall, C.J. & Liebherr, J.K. 2000. Cladistic biogeography of the Mexican transition zone. Journal of Biogeography 27(1): 203216.CrossRefGoogle Scholar
Martinez, M. 1947. Los Cupressus de Mexico. Annals of the Institute of Biology [Mexico] 18: 71149.Google Scholar
Martinez, M. 1963. Las Pinaceas Mexicanas. Mexico City: Cindad Univesidad de Mexico.Google Scholar
McIver, E.E. 2001. Cretaceous Widdringtonia Endl.(Cupressaceae) from North America. International Journal of Plant Sciences 162(4): 937961.CrossRefGoogle Scholar
Morrone, J.J. 2010. Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecogeography 33: 355361.CrossRefGoogle Scholar
Rehfeldt, G.E. 1997. Quantitative analyses of the genetic structure of closely related conifers with disparate distributions and demographics: the Cupressus arizonica (Cupressaceae) complex. American Journal of Botany 84: 190200.CrossRefGoogle ScholarPubMed
Rushforth, K., Adams, R.P., Zhong, M. & Pandey, R.N. 2003. Variation among Cupressus species from the eastern hemisphere based on random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology 31(1): 1724.CrossRefGoogle Scholar
Silba, J. 1994. The trans-Pacific relationship of Cupressus in India and North America. Journal of the International Conifer Preservation Society 1: 128.Google Scholar
Silba, J. 1998. A monograph of the genus Cupressus L. Journal of the International Conifer Preservation Society 5: 198.Google Scholar
Silba, J. 2005. A monograph of the genus Cupressus L. in the twenty first century. Journal of the International Conifer Preservation Society 12: 31103.Google Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA.CrossRefGoogle Scholar
Wolfe, C.B. 1948. The New World cypresses. Aliso 1: 1250.CrossRefGoogle Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9(2): 375382.Google Scholar
Zanoni, T.A. 1982. Cupressaceae. Flora de Veracruz 23: 27.Google Scholar
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History 30(1): 2936.CrossRefGoogle Scholar

References

Akashi, N. 1996. The spatial pattern and canopy-understorey association of trees in a cool temperate, mixed forest in western Japan. Ecological Research 11: 311319.CrossRefGoogle Scholar
Allison, S.K. & Ehrenfeld, J.G. 1999. The influence of microhabitat variation on seedling recruitment of Chamaecyparis thyoides and Acer rubrum. Wetlands 19: 383393.CrossRefGoogle Scholar
Al-Sheriff, K.A. 1952. Histological studies on the shoot apices and leaves of certain Cupressaceae. PhD dissertation, University of California at Berkeley.Google Scholar
Aoki, H., Wada, H. & Niitsuma, N. 1995. Stable carbon isotope composition of tree rings of Japanese cypress from the Old-Fuji mudflow, of the last glacial period. Geoscience Reports, Shizuoka University 22: 3746.Google Scholar
Briles, C.E., Whitlock, C., Skinner, C.N. & Mohr, J. 2011. Holocene forest development and maintenance on different substrates in the Klamath Mountains, northern California, USA. Ecology 92: 590601.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Carter, F.L. & Smythe, R.V. 1974. Feeding and survival responses of Reticulitermes flavipes (Kollar) to extractives of wood from 11 coniferous genera.Wood Research and Technology 28(2).Google Scholar
Chang, S.C., Lai, I.L. & Wu, J.T. 2002. Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research 64(1–4): 159167.CrossRefGoogle Scholar
Chen, S.H. & Wu, J.T. 1999. Paleolimnological environment indicated by the diatom and pollen assemblages in an alpine lake in Taiwan. Journal of Paleolimnology 22: 149158.CrossRefGoogle Scholar
Chen, Y.-J., Lin, C.-Y., Cheng, S.-S. & Chang, S.-T. 2011. Phylogenetic relationships of the genus Chamaecyparis inferred from leaf essential oil. Chemistry and Biodiversity 8: 10831097.CrossRefGoogle ScholarPubMed
Cheng, S.S., Chang, H.T., Wu, C.L. & Chang, S.T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98(2): 456459.CrossRefGoogle ScholarPubMed
Dorofeev, P.I. 1970. Treticnye flory Urala. Leningrad: Nauka (in Russian).Google Scholar
Ehrenfeld, J.G. 1995. Microtopography and vegetation in Atlantic white cedar swamps: the effects of natural disturbance. Canadian Journal of Botany 73: 474484.CrossRefGoogle Scholar
Erspamer, J.L. 1952. Ontogeny and morphology of the microsporangia in certain genera of the Coniferales. PhD dissertation, University of California at Berkeley.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural Vegetation of Oregon and Washington. Washington, DC: US Government Printing Office.Google Scholar
Gadek, P.A. & Quinn, C.J. 1987. Biflavones and the affinities of Cupressus funebris. Phytochemistry 26: 25512552.CrossRefGoogle Scholar
Gengarelly, L.M. & Lee, T.D. 2005. The role of microtopography and substrate in survival and growth of Atlantic white cedar seedlings. Forest Ecology and Management 212: 135144.CrossRefGoogle Scholar
Gengarelly, L.M. & Lee, T.D. 2006. Dynamics of Atlantic white-cedar populations at a northern New England coastal wetland. Natural Areas Journal 26: 516.CrossRefGoogle Scholar
Guan, B.T. & Cheng, Y.-J. 2003. Ground level diameter as an indicator of sapling structural root characteristics for Chamaecyparis obtusa var formosana in northeastern Taiwan. Forest Ecology and Management 173: 227234.CrossRefGoogle Scholar
Haas, M.J. & Kuser, J.E. 2003. Establishment of Chamaecyparis thyoides on an extremely low-nutrient sandy site on the Atlantic Coastal Plain, U.S.A. Restoration Ecology 11: 231238.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2001. Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 152: 3143.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2002. Dynamics of major conifer and broadleaved tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 159: 133144.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2003. Effects of canopy conditions on the regeneration of major tree species in an old-growth Chamaecyparis obtusa forest in central Japan. Forest Ecology and Management 175: 141152.CrossRefGoogle Scholar
Hwang, S.Y., Lin, H.W., Kuo, Y.S. & Lin, T.P. 2001. RAPD variation in relation to population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis. Botanical Bulletin of Academica Sinica 42: 173179.Google Scholar
Igarashi, T. & Kiyono, Y. 2008. The potential of hinoki (Chamaecyparis obtusa [Sieb. & Zucc.] Endlicher) plantation forests for the restoration of the original plant community in Japan. Forest Ecology and Management 255: 183192.CrossRefGoogle Scholar
Jerabkova, L., Prescott, C. & Kishchuk, B. 2006. Nitrogen availability in soil and forest floor of contrasting types of boreal mixedwood forests. Canadian Journal of Forest Research 36: 112122.CrossRefGoogle Scholar
Jiang, Z. & Wang, H. 2000. Japanese cedar (Chamaecyaris obtusa) grown in China. Forest Research 13: 308315.Google Scholar
Klemm, O., Chang, S.C. & Hsia, Y.J. 2006. Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management 224(1–2): 510.CrossRefGoogle Scholar
Kotyk, M., Basinger, J. & McIver, E. 2003. Early Tertiary Chamaecyparis Spach from Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Botany 81: 113130.CrossRefGoogle Scholar
Kunimatsu, T., Hamabata, E., Sudo, M. & Hida, Y. 2001. Comparison of nutrient budgets between three forested mountain watersheds on granite bedrock. Water, Science and Technology 44: 129140.CrossRefGoogle ScholarPubMed
Kusumoto, D. & Suzuki, K. 2003. Spatial distribution and time-course of polyphenol accumulation as a defense response induced by wounding in the phloem of Chamaecyparis obtusa. New Phytologist 159: 167173.CrossRefGoogle ScholarPubMed
Kvaček, Z. 2004. Revisions to the Early Oligocene flora of Flörsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carollinae Geologica 44: 7585.Google Scholar
Lai, I.-L., Scharr, H., Chavarria-Krauser, A., et al. 2005. Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant Cell and Environment 28: 14961505.CrossRefGoogle Scholar
Lai, I.-L., Schroder, W.H., Wu, J.-T., et al. 2007. Can fog contribute to the nutrition of Chamaecyparis obtusa var formosana? Uptake of a fog solute tracer into foliage and transport to roots. Tree Physiology 27: 10011009.CrossRefGoogle Scholar
Laidig, K.J. & Zampella, R.A. 1999. Community attributes of Atlantic white cedar (Chamaecyparis thyoides) swamps in disturbed and undisturbed Pinelands watersheds. Wetlands 19: 3549.CrossRefGoogle Scholar
Laing, J.M., Shear, T.H., & Blazich, F.A. 2011. How management strategies have affected Atlantic white-cedar forest recovery after massive wind damage in the Great Dismal Swamp. Forest Ecology and Management 262: 13371344.CrossRefGoogle Scholar
Li, J.H., Zhang, D.L. & Donoghue, M.J. 2003. Phylogeny and biogeography of Chamaecyparis (Cupressaceae) inferred from DNA sequences of the nuclear ribosomal ITS region. Rhodora 105: 106117.Google Scholar
Lin, J.-X & Hu, Y.-S. 1999. Species accounts: white berry yew (Pseudotaxus chienii (W.C.Cheng) W.C.Cheng). Pp 106107 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Little, D.P., Schwarzbach, A.E., Adams, R.P. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91(11): 18721881.CrossRefGoogle ScholarPubMed
Liu, Y.-S., Mohr, B.A.R. & Basinger, J.F. 2009. Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeodiversity and Palaeoenvironments 89: 203209.CrossRefGoogle Scholar
Maeta, T. & Yamamoto, C. 1981. Interspecific hybridization among Chamaecyparis species. In XVII IUFRO World Congress, Japan.Google Scholar
Mai, D.H. & Ferguson, D.K. 2004. Emanuel Palamarev (1933–2004). Taxon 53: 605606.CrossRefGoogle Scholar
Manter, D.K., Karchesy, J.J. & Kelsey, R.G. 2006. The sporicidal activity of yellow-cedar heartwood, essential oil and wood constituents towards Phytophthora ramorum in culture. Forest Pathology 36: 297308.CrossRefGoogle Scholar
Martinetto, E. & Ravazzi, C. 1997. Plant biochronology of the Valle della Fornace succession (Varese) based on the Plio–Pleistocene record in northern Italy. Geology Insubria 2(2): 8198.Google Scholar
Matsumoto, A., Uchida, K., Taguchi, Y., Tani, N. & Tsumura, Y. 2010. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. Journal of Plant Research 123: 689699.CrossRefGoogle Scholar
McIver, E.E. 1994. An early Chamaecyparis (Cupressaceae) from the Late Cretaceous of Vancouver Island, British Columbia, Canada. Canadian Journal of Botany 72: 17871796.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65: 23382351.CrossRefGoogle Scholar
Michener, D.C. 1993. Chamaecyparis. Pp 408410 in Flora of North America Editorial Committee (eds.), Flora of North America. Vol. 2. Oxford: Oxford University Press.Google Scholar
Miki, S. 1957. Of Japan, with special reference to its remains. Journal of the Institute of Polytechnics, Osaka City University 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnical Osaka City University Series D, Biology 9: 125-152.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Moriyami, Y. & Yamamoto, S. 1994. Occurrence pattern and size structure of clonal patches of Chamaecyparis pisifera under a closed canopy gap in an old-growth C. pisifera forest. Journal of Japan Forestry Society 76: 426432.Google Scholar
Munz, P.A. & Keck, D.D. 1959. A California Flora. Berkeley, CA: University of California Press.Google Scholar
Murakami, S. 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319: 7282.CrossRefGoogle Scholar
Mylecraine, K.A., Kuser, J.E., Smouse, P.E. & Zimmermann, G.L. 2004. Geographic allozyne variation in Atlantic white-cedar, Chamaecyparis thyoides, Cupressaceae. Canadian Journal of Forest Research 34: 24432454.CrossRefGoogle Scholar
Mylecraine, K.A., Kuser, J.E., Zimmermann, G.L. & Smouse, P.E. 2005. Rangewide provenance variation in Atlantic white-cedar (Chamaecyparis thyoides): early survival and growth in New Jersey and North Carolina plantations. Forest Ecology and Management 216: 91104.CrossRefGoogle Scholar
Nakawatase, J. & Peterson, D. 2006. Spatial variability in forest growth: climate relationships in the Olympic Mountains. Canadian Journal of Forest Research 36: 7791.CrossRefGoogle Scholar
Osono, T., Ono, Y. & Takeda, H. 2003. Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biology and Biochemistry 35: 14231431.CrossRefGoogle Scholar
Saporta, M. G. de. 1889. Dernières adjonctions a la flore fossile d’Aix-En-Provence. In Masson, G. (ed.) Annales Des Sciences Naturelles-Botanique, Vol. 10. Paris: Librairie de l’Académie de Médecine.Google Scholar
Sato, K. & Wakamatsu, T. 2000. Soil solution chemistry in forests with granite bedrock in Japan. In Acid Rain 2000: Proceedings from the 6th International Conference on Acidic Deposition: Looking Back to the Past and Thinking of the Future, Japan.CrossRefGoogle Scholar
Savill, P.S. 1991. The Silviculture of Trees used in British Forestry. Oxford: C.A.B. International.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schulz, C. & Stützel, T. 2006. Variability of male cones in Chamaecyparis as an example for Cupressaceae male cones. Feddes Repertorium: Zeitschrift für botanische Taxomonie und Geobotanik 117(1–2): 146157.CrossRefGoogle Scholar
Stan, A.B., Maertens, T.B., Daniels, L.D. & Zeglen, S. 2011. Reconstructing population dynamics of yellow-cedar in declining stands: baseline information from tree rings. Tree Ring Research 67: 1325.CrossRefGoogle Scholar
Stockwell, K.D. 1999. Structure and history of the Atlantic white cedar stands at Appleton Bog, Knox County, Maine, USA. Natural Areas Journal 19: 4756.Google Scholar
Straus, A. 1952. Beiträge zur Pliocänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeontographica Abteilung B 93: 144.Google Scholar
Szafer, W. 1947. The Pliocene flora of Kroscienko in Poland. Polska Akademia Umiejetnosi Rozprawy Wydzialu Matematyczno-Przyrodniczego Dzial B 72: 1213.Google Scholar
Szafer, W. 1954. Pliocene flora from the vicinity of Czorsztyn and its relationship to the Pleistocene. Prace Instytutu Geologicznego 11: 1238 (in Polish with English summary).Google Scholar
Takahashi, H.A., Yonenobu, H., Nakamura, T. & Wada, H. 2001. Seasonal fluctuation of stable carbon isotopic composition in Japanese cypress tree rings from the last glacial period–possibility of paleoenvironment reconstruction. Radiocarbon 43(2A): 433438.CrossRefGoogle Scholar
Takeda, H. 1995. A 5 year study of litter decomposition processes in a Chamaecyparis obtusa Endl. Ecological Research 10: 95104.CrossRefGoogle Scholar
Torgeson, D.C. (ed.) 1967. Fungicides: An Advanced Treatise, Vol. 1–2. New York: Academic Press.Google Scholar
Tseng, M.-H., Lai, W.-R. Hsieh, C.-L. & Kuo, Y.-H. 2007. Allelopathy on bark of downed logs of Chamaecyparis obtusa Sieb. & Zicc. var formosana (Hayata) Rehder. Journal of Chemical Ecology 33: 12831296.CrossRefGoogle Scholar
Tsumura, Y. 2006. The phylogeographic structure of Japanese coniferous species as revealed by genetic markers. Taxon 55: 5366.CrossRefGoogle Scholar
Tsumura, Y., Matsumoto, A., Tani, N., et al. 2007. Genetic diversity and genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation. Heredity 99: 161172.CrossRefGoogle ScholarPubMed
Ueda, H., Takatsuki, S. & Takahashi, Y. 2003. Seasonal change in browsing by sika deer on hinoki cypress trees on Mount Takahara, central Japan. Ecological Research 18: 355364.CrossRefGoogle Scholar
Van der Burgh, J. & Zetter, R. 1998. Plant mega-and microfossil assemblages from the Brunssumian of Hambach’near Düren, BRD. Review of Palaeobotany and Palynology 101(1–4): 209256.CrossRefGoogle Scholar
Vepakomma, U., Kneeshaw, D. & St-Onge, B. 2010. Interactions of multiple disturbances in shaping boreal forest dynamic: a spatially explicit analysis using multi-temporal lidar data and high-resolution imagery. Journal of Ecology 98: 526539.CrossRefGoogle Scholar
Vikulin, S.V., Zhilin, S.G. & Potapova, Y.Y. 1995. Leaf whorls of Cupressaceae from the Maastrichtian of central Kazakhstan. Paleontological Journal 29: 185193.Google Scholar
Wang, W.-P., Hwang, C.-Y., Lin, T.-P. & Hwang, S.-Y. 2003. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematics and Evolution 241(suppl.): 1328.CrossRefGoogle Scholar
Watt, A.S. 1947. Pattern and process in the plant community. Journal of Ecology 35: 122.CrossRefGoogle Scholar
Welch, H.J. 1966. Dwarf Conifers: A Complete Guide. London: Faber.Google Scholar
Whigham, D.F. & Richardson, C.J. 1988. Soil and plant chemistry of an Atlantic white cedar wetland on the Inner Coastal Plain of Maryland. Canadian Journal of Botany 66: 568576.CrossRefGoogle Scholar
White, P.S. 1979. Pattern, process, and natural disturbance in vegetation. Botanical Review 45: 229299.CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wu, S.P. & Chen, Z.-S. 2005. Characteristics and genesis of inceptisols with placic horizons in the subalpine forest soils of Taiwan. Geoderms 125: 331341.CrossRefGoogle Scholar
Yamamoto, S.I. 1992. The gap theory in forest dynamics. The Botanical Magazine= Shokubutsu-gaku-zasshi 105: 375383.CrossRefGoogle Scholar
Yamamoto, S.I. 1993. Gap characteristics and gap regeneration in a subalpine coniferous forest on Mt Ontake, central Honshu, Japan. Ecological Research 8(3): 277285.CrossRefGoogle Scholar
Yamamoto, S. 1998. Regeneration ecology of Chamaecyparis obtusa and Chamaecyparis pisifera (Hinoki and Sawara cypress), Japan. Pp 3953 in Laderman, A.D. (ed.), Coastally Restricted Forests. Oxford: Oxford University Press.Google Scholar
Yamamoto, S. 2000. Forest gap dynamics and tree regeneration. Journal of Forest Research 5: 223229.CrossRefGoogle Scholar
Yamamoto, S. & Moriyama, Y. 1997. Stand structure and the regeneration of Chamaecyparis pisifera (Sieb. et Zucc.) Endlicher on sites with different soil development in an old-growth coniferous forest, central Japan. Journal of Forestry Research 2: 133140.CrossRefGoogle Scholar
Yamamoto, S. & Suto, A. 1994. Occurrence pattern of Thujopsis dolobrata saplings in the understorey of an old-growth Chamaecyparis forest. Akasawa Forest Reserve, Central Japan. Journal of the Japanese Forestry Society 76: 553559.Google Scholar
Yamashita, T., Kasuya, N., Nishimura, S. & Takeda, H. 2004. Comparison of two coniferous plantations in central Japan with respect to forestry productivity, growth phenology and soil nitrogen dynamics. Forest Ecology and Management 200: 215226.CrossRefGoogle Scholar
Yulin, J., Wenbi, M., Xiaoliang, S., et al. 1999. Bioengineering for high-grade highway infrastructure development in southwest China. Proceedings of the Conference of the International Erosion Control Association, Nashville, pp. 39–44.Google Scholar
Zablocki, J. 1930. Tertiare Pflanzen des Salzlagers von Wieliczka. II. Acta Societatis Botanicorum Poloniae 7: 139150.CrossRefGoogle Scholar
Zampella, R.A. & Lathrop, R.G. 1997. Landscape changes in Atlantic white-cedar (Chamaecyparis thyoides) wetlands in the New Jersey pinelands. Landscape Ecology 12: 397408.CrossRefGoogle Scholar
Zavarin, E. & Anderson, A.B. 1956. Extrahierbare Bestandteile Kernholzes der Kalifornischen Flußzeder (Incense‐Cedar, Libocedrus decurrens Torrey) IV. Vorkommen und Chromatographie von Thujaplicinen. Chemische Berichte 89(2): 545549.CrossRefGoogle Scholar
Zhang, Q., Hu, Y.-S. & Lin, J.-X. 2004. Female cone development in Fokienia, Cupressus, Chamaecyparis and Juniperus (Cupressaceae). Acta Botanica Sinica 46: 10751082.Google Scholar
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History 30(1): 2936.CrossRefGoogle Scholar
Zobel, D.B. 1998. Chamaecyparis forests: a comparative analysis. Pp 3953 in Laderman, A.D. (ed.), Coastally Restricted Forests. Oxford: Oxford University Press.Google Scholar
Zobel, D.B. & Hawk, G.M. 1980. The environment of Chamaecyparis lawsoniana. American Midland Naturalist 103: 280297.CrossRefGoogle Scholar
Zobel, D., Roth, L. & Hawk, G. 1985. Ecology, pathology, and management of Port-Orford-Cedar (Chamaecyparis lawsoniana). General Technical Report PNW-GTR-184, US Forest Service.Google Scholar
Zobel, D.B., Kitzmiller, J., Sniezko, R. & Riley, L. 2002. Range-wide genetic variation in Port-Orford cedar (Cupressaceae, Chamaecyparis lawsoniana): II. Timing in height growth. Journal of Sustainable Forestry 14: 3350.CrossRefGoogle Scholar

References

Chen, K.-H., Luo, Q., Liu, C.-C. & Shao, S.-G. 2007. Spermatophyte flora of Dafang Fokienia hodginsii National Reserve. Chinese Journal of Ecology 26: 628633.Google Scholar
Chen, K-Y. 1983. Chromosome numbers of Fokienia hodginsii. Acta Botanica Sinica 25: 120122.Google Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hou, B.-X., Lin, F., Yu, G.-F., Zhang, X.-H. & Tao, S.-M. 2006. Result on geographical provenance trials at young Fokienia hodginsii stand in Hunan. Forest Research 19: 2126.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Mathewes, R.W. & Mustard, P. 2007. Plant macrofossils and palyumorphs from Kanaka Creek, southwestern British Columbia; Paleocene or Eocene? Abstracts with Programs. Geological Society of America.Google Scholar
McIver, E.E. & Basinger, J.F. 1990. Fossil seed cones of Fokienia (Cupressaceae) from the Paleocene Ravenscrag Formation of Saskatchewan, Canada. Canadian Journal of Botany 68: 16091618.CrossRefGoogle Scholar
Morris, G. & Hieu, P.S. 2008. Factors affecting the sustainable development of community-managed nurseries for promoting rare conifer species in North-West Vietnam. Small Scale Forestry 7: 369386.CrossRefGoogle Scholar
Nguyen, Duc To Luu & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Rushforth, K.D. 2007. Notes on the Cupressaceae in Vietnam. Tap Chi Sinh Hoc 29: 3239.Google Scholar
Sano, M., Buckley, B.M. & Sweda, T. 2008. Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Climate Dynamics 33: 331340.CrossRefGoogle Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Thomas, P. & Yang, Y. 2013. Fokienia hodginsii. The IUCN Red List of Threatened Species.Google Scholar
Yang, X., Yu, M., Ding, B., Xu, S. & Ye, L. 2005. Population structure and community characteristics of Pseudotaxus chienii in Fengyangshan National Natural Reserve. Ying Yong Sheng tai xue bao = The Journal of Applied Ecology 16(7): 11891194.Google ScholarPubMed
Yang, Z.-W., Zheng, R.H., Hou, B.-X., et al. 2003. A study on the biomass variance and comprehensive evaluation at the seedling stage of Fokienia hodginsii provenances. Forest Research 16: 3944.Google Scholar
Zavarin, E. & Anderson, A.B. 1956. Extrahierbare Bestandteile Kernholzes der Kalifornischen Flußzeder (Incense‐Cedar, Libocedrus decurrens Torrey) IV. Vorkommen und Chromatographie von Thujaplicinen. Chemische Berichte 89(2): 545549.CrossRefGoogle Scholar
Zhang, Q., Hu, Y.-S. & Lin, J.-X. 2004. Female cone development in Fokienia, Cupressus, Chamaecyparis and Juniperus (Cupressaceae). Acta Botanica Sinica 46: 10751082.Google Scholar

References

Ahn, Y.-J., Lee, S.-B., Lee, H.-S. & Kim, G.-H. 1998. Insecticidal and acaricidal activity of carvacerol and thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. Journal of Chemical Ecology 24: 8190.CrossRefGoogle Scholar
Akashi, N. 1996. The spatial pattern and canopy–understory association of trees in a cool temperate, mixed forest in western Japan. Ecological Research 11: 311319.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Sotis, D.E., et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Farjon, A. & Hunt, D.R. 1994. Proposal to conserve Thujopsis Endl. against Dolophylum Salisb. (Cupressaceae). Taxon 43: 291292.CrossRefGoogle Scholar
Franklin, J.F., Maeda, T., Ohsumi, Y., et al. 1979. Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs 49(3): 311334.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hashimoto, R., Katou, T. & Shirahata, M. 2006. Light response of juvenile seedlings of Thijopsis dolabrata var hondai Makino evaluated from chlorophyll a fluorescence analyses. Environmental Control in Biology 44: 233244.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2001. Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 152: 3143.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2002. Dynamics of conifer and broadleaved tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 159: 133144.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2003. Effects of canopy conditions on the regeneration of major tree species in an old-growth Chamaecyparis obtusa forest in central Japan. Forest Ecology and Management 175(1–3): 141152.CrossRefGoogle Scholar
Inamori, Y., Morita, Y., Sakagami, Y., Toshihoro, O. & Nakao, I. 2006. The excellence of Aomori hiba (Hinokiasunaro) in its use as building materials of Buddhist temples and Shinto shrines. Biocontrol Science 11: 4954.CrossRefGoogle ScholarPubMed
Kajimoto, T., Hitsuma, G., Masaki, T. & Kanazashi, T. 2006. Growth pattern analysis and stemwood production in an unmanaged old plantation of hiba, Thujopsis dolabrata, in northern Japan. Journal of Forest Research 11: 107116.CrossRefGoogle Scholar
Kisumi, J., Tsumara, Y., Yoshimura, H. & Tachida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto base on matK gene, chlL gene, trnL–trnF IGS region and trnL intron sequences. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kurata, S. 1966. Typical Forests in Japan. Tokyo: Chikyu Shuppan Co. Ltd.Google Scholar
Kusumi, J., Tsumara, Y., Yoshimaru, H. & Tachida, H. 2002. Molecular evolution of nuclear genes in Cupressaceae, a group of conifer trees. Molecular Biology and Evolution 19: 736747.CrossRefGoogle Scholar
Lee, S.G., Kim, S.I., Ahn, Y.J., Kim, J.B. & Lee, B.Y. 1999. Effectiveness of carvacerol derived from Thujopsis dolobrata var. hondai sawdust against Thecodiplosis japonensis (Diptera: Cecidomyiidae). Pesticide Science 49: 119124.3.0.CO;2-A>CrossRefGoogle Scholar
Matsumura, E., Morita, Y., Date, T., et al. 2001. Cytotoxicity of the hinokitiol-related compounds, gamma-thujaplicin and beta-dolabrin. Biological and Pharmaceutical Bulletin 24: 299302.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Ser D 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Ser D 9: 125152.Google Scholar
Morita, Y., Matsumura, E., Tsuijbo, H. et al. 2001. Biological activity of alpha-thujaplicin, the minor component of Thujopsis dolabrata Sieb. Et Zucc, var hondai Makino. Biological and Pharmaceutical Bulletin 24: 607611.CrossRefGoogle Scholar
Murray, B. 1998. Nuclear DNA amounts in gymnosperms. Annals of Botany 82 (Suppl. A.): 315.CrossRefGoogle Scholar
Nagahama, S., Tajima, M. & Nishimura, K. 1996. Chemotaxonomy of Ate (Thujopsis dolabrata) of Noto, Ishikawa Prefecture. Mokuzai Gakkaishi 42: 698702.Google Scholar
Ngee, P.S., Yoshimura, T. & Lee, C.Y. 2004. Foraging populations and control strategies of subterranean termites in the urban environment, with special reference to baiting. Japanese Journal of Environmental Entomology and Zoology 15(3): 197215.Google Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Okamatu, T., Daimaru, H., Ikeda, S. & Yoshinaga, S. 2000. Human impact on the formation of the buried forests of Thujopsis dolabrata var hondai in the northeastern part of Shimokita peninsula, northeastern Japan. Quaternary Research (Tokyo) 39: 215226.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Suzuki, M. 1973. Fossil woods from the Pleistocene of Shobara Tochigi Prefecture, Japan. Journal of Japanese Botany 48: 173182.Google Scholar
Takahashii, K., Nagahama, S., Nakashima, T. & Suenaga, H. 2001. Chemotaxonomy on the leaf constituents of Thujopsis dolabrata Sieb. Et Zucc.: analysis of neutral extracts (diterpene hydrocarbon). Biochemical Systematics and Ecology 29: 837848.CrossRefGoogle Scholar
Takahashii, K., Nagahama, S., Nakashima, T. & Suenaga, H. 2003. Chemotaxonomy on the leaf constituents of Thujopsis dolabrata Sieb. Et Zucc.: analysis of acidic extracts. Biochemical Systematics and Ecology 31: 723738.CrossRefGoogle Scholar
Tanabe, H. & Onodera, H. 1996. Survival strategy of hiba (Thujopsis dolabrata var hondae) and two broadleaves trees in northern Japan in response to creep and glide pressures of snow. Tree Physiology 16: 301305.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Yamaji, K., Mori, S., Akiyama, M., Kato, A. & Nakashima, T. 2007. The antifungal compound totarol of Thujopsis dolabrata var hondai seeds selects for fungi on seedling root surfaces. Journal of Chemical Ecology 33: 22542265.CrossRefGoogle ScholarPubMed
Yamamoto, S. 1993. Structure and dynamics of an old-growth Chamaecyparis forest in the Akasawa Forest Reserve, Kiso district, Central Japan. Japan Journal of Forest and Environment 35: 3241.Google Scholar
Yamamoto, S. & Suto, A. 1994. Occurrence pattern of Thujopsis dolobrata saplings in the understorey of an old-growth Chamaecyparis forest. Akasawa Forest Reserve, Central Japan. Journal of the Japanese Forestry Society 76: 553559.Google Scholar
Yamamoto, S.-I. & Moriyama, Y. 1997. Stand structure and the regeneration of Chamaecyparis pisifera (Sieb. & Zucc.) Endl. on sites with different soil development in an old-growth coniferous forest, Central Japan. Journal of Forest Research 2: 133140.CrossRefGoogle Scholar

References

Acker, S.A., Gregory, S.V., Lienkaemper, G. et al. 2003. Composition, complexity, and tree mortality in riparian forests in the central Western Cascades of Oregon. Forest Ecology and Management 173: 293308.CrossRefGoogle Scholar
Akhmetiev, M.A. 1973. Miocene Flora of the Sikhote-Alin (Botchi River). Moscow: Nauka.Google Scholar
Bennike, O. 1990. The Kap Kobenhavn Formation: stratigraphy and palaeobotany of a Plio-Pleistocene sequence in Peary Land, north Greenland. Meddelelser om Gronland Geoscience 23: 185.Google Scholar
Biswas, R., Mandai, S.K., Dutta, S., et al. 2011. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: evidence from in vitro studies on A375 cells. Evidence-Based Complementary and Alternative Medicine 2011: 568148.CrossRefGoogle ScholarPubMed
Blevins, L.L., Prescott, C.E. & Van Niejenhuis, A. 2006. The roles of nitrogen and phosphorous in increasing productivity of western hemlock and western red cedar plantations on northern Vancouver Island. Forest Ecology and Management 234: 119122.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Denneler, B., Berrgeron, Y. Begin, Y. & Asselin, H. 2008. Growth responses of riparian Thuja occidentalis to damming of a large boreal lake. Botany 86: 5362.CrossRefGoogle Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Franklin, J.F., Maeda, T., Ohsumi, Y., et al. 1979. Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs 49: 311344.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Guo, Q.-S., Wang, X.-F., Guli, B. & Wan, Q.-X. 2007. Interspecific relationships of dominant tree species in Thuja sutchuenensis community. Shengtaixue Zazhi 26: 19111917 [seen as abstract only].Google Scholar
Guo, Q.-S., Wang, X.-F., Bar, G., et al. 2009. Life form spectra, leaf character, and hierarchical-synusia structure of vascular plants in Thuja sutchuenensis community. Yingyong Shengtai Xuebao 20: 20572062.Google ScholarPubMed
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Huzioka, K. & Uemura, K. 1973. The Late Miocene Miyata flora of Akita Prefecture, Northeast Honshu, Japan. Bulletin of the National Science Museum, Tokyo 16: 661738.Google Scholar
Kushla, J.D. & Ripple, W.J. 1997. The role of terrain in a fires mosaic of temperate coniferous forest. Forest Ecology and Management 95: 97107.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL-trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Larson, A.J. & Franklin, J.F. 2005. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218: 2536.CrossRefGoogle Scholar
Lei, H.P., Wang, Y.G., Su, C. et al. 2010. Chemical composition and antifungal activity of essential oils of Thuja sutchuenensis, a critical endangered species endemic to China. Natural Products Communications 5: 1673-1676.Google ScholarPubMed
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae 615: 2952.CrossRefGoogle Scholar
Lesher, R.D. & Henderson, J.A. 2010. Ecology and distribution of Western redcedar and Alaska yellowcedar in northwestern Washington. US Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR 828.Google Scholar
Li, J.H. & Xiang, Q.P. 2005. Phylogeny and biogeography of Thuja L. (Cupressaceae), an eastern Asian and North American disjunct genus. Journal of Integrative Plant Biology 47: 651659.CrossRefGoogle Scholar
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
McIver, E.E. & Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65(11): 23382351.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1989. The morphology and relationships of Thuja polaris sp. nov.(Cupressaceae) from the early Tertiary, Ellesmere Island, Arctic Canada. Canadian Journal of Botany 67(6): 19031915.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Ser D 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Ser D 9: 125152.Google Scholar
Murray, B. 1998. Nuclear DNA amounts in gymnosperms. Annals of Botany 82 (Suppl. A.): 315.CrossRefGoogle Scholar
Nichols, D.J. 2003. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America. Journal of Asian Earth Sciences 21(8): 823833.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Peng, D. & Wang, X.-Q. 2008. Reticulate evolution in Thuja inferred from multiple gene sequences: implications for the study of biogeographical disjunctions between eastern Asia and North America. Molecular Phylogenetics and Evolution 47: 11901202.CrossRefGoogle Scholar
Rooney, T.P., Solheim, S.L. & Waller, D.M. 2002. Factors affecting the regeneration of northern white cedar in lowland forests of the Upper Great Lakes region, USA. Forest Ecology and Management 163: 119130.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schweitzer, H.J. 1974 Die “Tertifiren” koniferen spitzberg. Paleontographica 149B: 189Google Scholar
Stan, A.B. & Daniels, L.D. 2010. Growth releases of three shade‐tolerant species following canopy gap formation in old‐growth forests. Journal of Vegetation Science 21(1): 7487.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle Scholar
Wang, X.-F., Guo, Q.-S., Liu, Z.-Y., et al. 2007. A composition analysis of seed plant flora in Thuja sutchuenensis community. Forestry Research 20: 755762.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiang, Q.-P., Farjon, A., Li, Z.-Y., Fu, L.-K. & Liu, Z.-Y. 2002a. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society 139: 305310.Google Scholar
Xiang, Q.-P., Farjon, A., Li, Z.-Y., Fu, L.-K. & Liu, Z.-Y. 2002b. Erratum. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society 140: 93.Google Scholar

References

Adams, R.P., Thomas, P. & Rushforth, K. 2007. The leaf essential oils of the new conifer genus Xanthocyparis: Xanthocyparis vietnamesis and X. nootkatensis. Journal of Essential Oil Research 19: 3033.CrossRefGoogle Scholar
Adams, R.P., Bartel, J.A. & Price, R.A. 2009. A new genus, Hesperocyparis, for the cypresses of the Western Hemisphere (Cupressaceae). Phytologia 91(1): 160185.Google Scholar
Antos, J.A. & Zobel, D.B. 1986. Habitat relationships of Chamaecyparis nootkatensis in southern Washington, Oregon and California. Canadian Journal of Botany 64: 18981909.CrossRefGoogle Scholar
Antos, J.A., Guest, H.J. & Parish, R. 2005. The tree seedling back in an ancient montane forest: stress tolerators in a productive habitat. Journal of Ecology 93: 536543.CrossRefGoogle Scholar
Auclair, A.N.D., Martin, H.C. & Walker, S.L. 1990. A case study of forest decline in Western Canada and the adjacent United States. Water, Air and Soil Pollution 53: 1331.CrossRefGoogle Scholar
Averyanov, L.V., Hiep, N.T., Harder, D.K. & Loc, P.K. 2002. The history of discovery and natural habitats of Xanthocyparis vietnamensis (Cupressaceae). Turczaninowia 5: 3139.Google Scholar
Banner, A., Pojar, J. & Rouse, G.E. 1983. Postglacial paleoecology and successional relationships of a bog woodland near Prince Rupert, British Columbia. Canadian Journal of Forest Research 13: 938947.CrossRefGoogle Scholar
Bartel, J.A., Adams, R.P., James, S.A., Mumba, L.E. & Pandey, R.N. 2003. Variation among Cupressus species from the western hemisphere based on random amplified polymorphic DNAs. Biochemical Systematics and Ecology 31: 693702.CrossRefGoogle Scholar
Beier, C.M., Sink, S.E., Hennon, P.E. D’Amore, D.V. & Juday, G.P. 2008. Twentieth century warming and the dendroclimatology of declining yellow-cedar forests in southeastern Alaska. Canadian Journal of Forest Research 38: 13191334.CrossRefGoogle Scholar
Brummitt, R.K. 2007. Report of the Nomenclature Committee for Vascular Plants: 59. Taxon 56: 12891296.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Dallimore, W. & Jackson, A.B. 1966. A Handbook of the Coniferae and Ginkgoaceae. Revised by S.G. Harrison. London: Edward Arnold.Google Scholar
De Laubenfels, D.J. 2009. Nomenclatural actions for the New World cypresses (Cupressaceae). Novon 19 (3): 300306.CrossRefGoogle Scholar
Earl, C. 2009. Xanthocyparis nootkatensis. The Gymnosperm Database. www.conifers.org/cu/xa/nootkatensis.htm.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Edmonds, R.L., Thomas, T.B., & Maybury, K.P. 1993. Tree population-dynamics, growth and mortality in old growth forests in the western Olympic Mountains, Washington. Canadian Journal of Forest Research 23: 512519.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A., Hiep, N.T., Harder, D.K., Loc, P.K. & Averyanov, L. 2002. A new genus and species in Cupressaceae (Coniferales) from Northern Vietnam, Xanthocyparis vietnamensis. Novon 12: 179189.CrossRefGoogle Scholar
Farjon, A., Thomas, P. & Luu, N.D.T. 2004. Conifer conservation in Vietnam: three potential flagship species. Oryx 38: 257265.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gavin, D.G., McLachlan, J.S., Brubaker, L.B. & Young, K.A. 2001. Postglacial history of subalpine forests, Olympic peninsula, Washington, USA. Holocene 11: 177188.CrossRefGoogle Scholar
Hawkins, B.J., Russell, J. & Sortt, R. 1994. Effect of population, environment, and maturation on the frost hardiness of yellow-cedar (Chamaecyparis nootkatensis). Canadian Journal of Forest Research 24: 945953.CrossRefGoogle Scholar
Hebda, R.J. 1983. Late-glacial and postglacial vegetation history at Bear Cove Bog, northeast Vancouver Island, British Columbia. Canadian Journal of Botany 61: 31723192.CrossRefGoogle Scholar
Hennon, P.E. & Shaw, C.G. III. 1997. The enigma of the yellow-cedar decline: what is killing these long-lived defensive trees? Journal of Forestry 95: 410.CrossRefGoogle Scholar
Hennon, P.E. & Shaw, C.G. III. 2007. Did climatic warming trigger the onset and development of yellow-cedar decline in southeast Alaska. European Journal of Forest Pathology 24: 399418.CrossRefGoogle Scholar
Hennon, P.E. & Trummer, L.M. 2001. Yellow-cedar (Chamaecyparis nootkatensis) at the northwest limits of its natural range in Prince William Sound, Alaska. Northwest Science 75: 6171.Google Scholar
Hennon, P.E., Shaw, C.G. III & Hansen, E.M. 1990a. Dating decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Forest Science 36: 502515.CrossRefGoogle Scholar
Hennon, P.E., Hansen, E.M, & Shaw, C.G. III 1990b. Dynamics of decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Canadian Journal of Botany 68: 651662.CrossRefGoogle Scholar
Hennon, P.E., D’Amorte, D.V., Witter, D.T. & Lamb, M.B. 2010. Influence of forest canopy and snow on microclimate in declining yellow-cedar forest in southeast Alaska. Northwest Science 84: 7387.CrossRefGoogle Scholar
Jackson, A.B. & Dallimore, W. 1926. A new hybrid conifer. RBG Kew Bulletin of Miscellaneous Information 3: 113115.CrossRefGoogle Scholar
Johnson, A.C. & Wilcock, P. 2002. Association between cedar decline and hillslope stability in mountainous regions of southeast Alaska. Geomorphology 46: 129142.CrossRefGoogle Scholar
Kellner, A.M.E., Laroque, C.P. & Harestad, A.S. 2000. Chronological dating of high-elevation dead and dying trees on northern Vancouver Island, British Columbia. Northwest Science 74: 242247.Google Scholar
Klinka, K. & Brett, R.B. 1998. A transition from gap to tree-island regeneration patterns in the subalpine forest of south-coastal British Columbia. Canadian Journal of Forest Research 28: 18251831.Google Scholar
Kodrul, T.M., Tekleva, M.V. & Krassilov, V.A. 2006. A new conifer species, Mesocyparis rosanovii sp. nov. (Cupressaceae, Coniferales) and transberingian floristic connections. Paleontological Journal 40: 328338.CrossRefGoogle Scholar
Kotyk, M.E.A., Basinger, J.F. & McIver, E.E. 2003. Early Tertiary Chamaecyparis Spach from Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Botany 81: 113130.CrossRefGoogle Scholar
Krassilov, V.A., Kodrul, T.M. & Maslova, N.P. 2010. Plant systematics and differentiation of species over trans-Beringian land connections including a newly recognized cupressaceous conifer Ditaxocladus Guo & Sun. Bulletin of Geosciences 85: 95110.CrossRefGoogle Scholar
Lacourse, T. 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Reviews 24: 105121.CrossRefGoogle Scholar
Laderman, A.D. (ed.). 1998. Coastally Restricted Forests. New Haven, CT: School of Forestry and Environmental Studies, Yale.Google Scholar
Lamb, E.G. & Megill, W. 2003. The shoreline fringe forest and adjacent peatlands of the southern central British Columbia coast. Canadian Field Naturalist 117: 209217.CrossRefGoogle Scholar
Laroque, C.P. & Smith, D.J. 1999. Tree-ring analysis of yellow cedar (Chamaecyparis nootkatensis) on Vancouver Island, British Columbia. Canadian Journal of Forest Research 29: 115123.CrossRefGoogle Scholar
Laroque, C.P. & Smith, D.J. 2005. A dendroclimatological reconstruction of climate since AD 1700 in the Mt. Waddington area, British Columbia Coast Mountains, Canada. Dendrochronologia 22: 93106.CrossRefGoogle Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E., & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Liu, Y.-S., Mohr, B.A.R. & Basinger, J.F. 2009. Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeodiversity and Palaeoenvironments 89: 203209.CrossRefGoogle Scholar
McIver, E.E. 1994. An early Chamaecyparis (Cupressaceae) from the Late Cretaceous of Vancouver Island, British-Columbia, Canada. Canadian Journal of Botany 72: 17871796.CrossRefGoogle Scholar
McIver, E.E. 2001. Cretaceous Widdringtonia Endl. (Cupressaceae) from North America. International Journal of Plant Sciences 162: 937961.CrossRefGoogle Scholar
McIver, E.E. & Aulenback, K.R. 1994. The morphology and relationships of Mesocyparis umbonata sp. nov.: fossil Cupressaceae from the Late Cretaceous of Alberta, Canada. Canadian Journal of Botany 72: 273295.CrossRefGoogle Scholar
Mill, R.R. & Farjon, A. 2006. (1710) Proposal to conserve the name Xanthocyparis against Callitropsis oerst. (Cupressaceae). Taxon 55: 227238.CrossRefGoogle Scholar
Mitchell, A.F. 1970. A note on two hybrid cypresses. Journal of the Royal Horticultural Society 95: 453454.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Nguyen, Duc To Luu & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Parish, R. & Antos, J.A. 2004. Structure and dynamic of an ancient montane forest in coastal British Columbia. Oecologia 141: 562576.CrossRefGoogle ScholarPubMed
Parish, R. & Antos, J.A. 2006. Slow growth, long-lived trees, and minimal disturbance characterize the dynamics of ancient montane forests in British Columbia. Canadian Journal of Forest Research 36: 28262838.CrossRefGoogle Scholar
Parish, R., Nigh, G.D. & Antos, J.A. 2008. Allometry and size structure of trees in two ancient snow forests in coastal British Columbia. Canadian Journal of Forest Research 38: 278288.CrossRefGoogle Scholar
Raimondi, N. and Kermode, A.R. 2004. Seedling growth and establishment in natural stands of yellow cedar (Chamaecyparis nootkatensis) seedlings derived from the use of modified seed dormancy-breaking treatments. New Forests 27: 5567.CrossRefGoogle Scholar
Ritland, C., Pape, T. & Ritland, K. 2001. Genetic structure of yellow cedar (Chamaecyparis nootkatensis). Canadian Journal of Botany 79: 822828.CrossRefGoogle Scholar
Wang, W.-P., Hwang, C.-Y., Lin, T.-P. & Hwang, S.-Y. 2003. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematics and Evolution 241(Suppl.): 1328.CrossRefGoogle Scholar
Xiang, Q.P. & Farjon, A. 2003. Cuticle morphology of a newly discovered conifer, Xanthocyparis vietnamensis (Cupressaceae), and a comparison with some of its nearest relatives. Botanical Journal of the Linnean Society 143: 315322.CrossRefGoogle Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9(2): 375382.Google Scholar
Zavarin, E. & Anderson, A.B. 1956. Extrahierbare Bestandteile Kernholzes der Kalifornischen Flußzeder (Incense‐Cedar, Libocedrus decurrens Torrey) IV. Vorkommen und Chromatographie von Thujaplicinen. Chemische Berichte 89(2): 545549.CrossRefGoogle Scholar
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History, 30(1): 2936.CrossRefGoogle Scholar

References

Adams, R.P. 1982. A comparison of multivariate methods for the detection of hybridisation. Taxon 31: 649661.CrossRefGoogle Scholar
Adams, R.P. 1983. Interspecific terpenoid variation in Juniperus scopulorum: evidence for Pleistocene refugia and recolonization in western North America. Taxon 32: 3046.CrossRefGoogle Scholar
Adams, R.P. 1990. Juniperus procera of East Africa: volatile leaf oil composition and putative relationship to Juniperus excelsa. Biochemical Systematics and Ecology 18: 207210.CrossRefGoogle Scholar
Adams, R.P. 2000. Systematics of Juniperus section Juniperus based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology 28(6): 515528.CrossRefGoogle Scholar
Adams, R.P. 2001. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream, IL: Allured Publishing.Google Scholar
Adams, R.P. 2006. DNA fingerprinting and terpenoid analysis of Juniperus blancoi var huehuentensis (Cupressaceae), a new subalpine variety from Durango, Mexico. Biochemical Systematics and Ecology 34: 205211.CrossRefGoogle Scholar
Adams, R.P. 2008. The Junipers of the World: The Genus Juniperus, 2nd edn. Victoria, BC: Trafford Publishing.Google Scholar
Adams, R.P. 2011. Junipers of the World: The Genus Juniperus, 3rd edn. Bloomington, IN: Trafford Publishing.Google Scholar
Adams, R.P. & Demeke, T. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553571.CrossRefGoogle Scholar
Adams, R.P. & Kistler, J.R. 1991. Hybridisation between Juniperus erythrocarpa Coru and Juniperus pinchotii Sudworth in the Chisos Mountains, Texas. Southwestern Naturalist 36: 295301.CrossRefGoogle Scholar
Adams, R.P., Hsieh, C.F., Murata, J. & Pandey, R.N. 2002. Systematics of Juniperus from eastern Asia based on random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology 30(3): 231241.CrossRefGoogle Scholar
Adams, R.P., Ruiz, B.R., Fontinha, S.S. & Nogales, M. 2010. Geographic variation in the leaf essential oils of Juniperus cedrus Webb & Berthel: from Madeira and the Canary Islands. Phytologia 92: 3143.Google Scholar
Ahuja, M.R. 2005. Polyploidy in gymnosperms: revisited. Silvae Genetica 54(1–6): 5969.CrossRefGoogle Scholar
Anderson, R.S. & Feiler, E. 2009. Holocene vegetation and climate change on the Colorado Great Plains, USA, and the invasion of Colorado piñon (Pinus edulis). Journal of Biogeography 36(12): 22792289.CrossRefGoogle Scholar
Broome, A.C. 2003. Growing Juniper: Propagation and Establishment Practices. Edinburgh: Forestry Commission.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buzek, F. & S̆rámek, J. 1985. Sulfur isotopes in the study of stone monument conservation. Studies in Conservation 30: 171.CrossRefGoogle Scholar
Chavez-Ramirez, F. & Slack, R.D. 1993. Carnivore fruit-use and seed dispersal of two selected plant species of the Edwards Plateau, Texas. The Southwestern Naturalist 38: 141145.CrossRefGoogle Scholar
Dar, G.H. & Christensen, K.I. 2003. Gymnosperms of the Western Himalayas. I. The genus Juniperus (Cupressaceae). Pakistan Journal of Botany 35: 283311.Google Scholar
De Nascimento, L., Willis, K.J., Fernández‐Palacios, J.M., Criado, C. & Whittaker, R.J. 2009. The long‐term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography 36(3): 499514.CrossRefGoogle Scholar
Dias, E. & Melo, C. 2010. Factors influencing the distribution of Azorean mountain vegetation: implications for nature conservation. Biodiversity and Conservation 19: 33113326.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Dzialuk, A., Mazur, M., Boratynska, K., et al. 2011. Population genetic structure of Juniperus phoenicea (Cupressaceae) in the western Mediterranean Basin: gradient of diversity on a broad geographical scale. Annals of Forest Science 68: 13411350.CrossRefGoogle Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Elias, R.B. & Dias, E. 2009. Gap dynamics and regeneration strategies in JuniperusLaurus forests of the Azores Islands. Plant Ecology 200: 179189.CrossRefGoogle Scholar
Elias, R.B., Dias, E. & Pereira, F. 2011. Disturbance, regeneration and the spatial pattern of tree species in Azorean mountain forests. Community Ecology 12: 2330.CrossRefGoogle Scholar
Farjon, A. 1992. The taxonomy of multiseed junipers (Juniperus sect. Sabina) in southwest Asia and east Africa. Edinburgh Journal of Botany 49: 251283.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz Garcia, S. 2002. Towards the minimal conifer cone: ontogeny and trends in Cupressus, Juniperus and Microbiota (Cupressaceae s. str.). Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Planzengeographie 124: 129147.CrossRefGoogle Scholar
Ferreira, R.E.C. & Wormell, P. 1971. Fertiliser response of vegetation on ultrabasic terraces on Rhum. Transactions of the Botanical Society of Edinburgh 41(2): 149154.CrossRefGoogle Scholar
Flake, R.H., Urbaysch, L. & Turner, B.L. 1978. Chemical documentation of allopatric introgression in Juniperus. Systematic Botany 3: 129144.CrossRefGoogle Scholar
Fleishmann, E. & Dobkin, D.S. 2009. Current and potential future elevation distributions of birds associated with pinyon–juniper woodlands in the central Great Basin, USA. Restoration Ecology 17: 731739.CrossRefGoogle Scholar
Frenzel, B., Bräuning, A. & Adamczyk, S. 2003. Possible last-glacial forest-refuge areas within the deep valleys of eastern Tibet. Erdkunde 57: 182198.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Garcia, D. 2001. Effects of seed dispersal on Juniperus communis recruitment on a Mediterranean mountain. Journal of Vegetation Science 12: 839848.CrossRefGoogle Scholar
Gómez‐Aparicio, L. 2008. Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. Journal of Ecology 96(6): 11281140.CrossRefGoogle Scholar
Gómez-Aparicio, L., Zamora, R., Gómez, J.M., et al. 2004. Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants. Ecological Applications 14(4): 11281138.CrossRefGoogle Scholar
Grubb, P.J., Lee, W.G., Lollman, J. & Wilson, J.B. 1996. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall shrub species and Fagus sylvatica. Journal of Ecology 84: 827840.CrossRefGoogle Scholar
Gupta, S.K. & Sharma, P. 1992. On the nature of the ice cap on the Tibetan Plateau during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 97(4): 339343.CrossRefGoogle Scholar
Hall, J.B. 1984. Juniperus excelsa in Africa: a biogeographical study of an Afromontane tree. Journal of Biogeography 11: 4761.CrossRefGoogle Scholar
Hall, M.T. 1952. A hybrid swarm in Juniperus. Evolution 6: 374–366.CrossRefGoogle Scholar
Hojjati, F., Zarre, S. & Assadi, M. 2009. Isoenzyme diversity and cryptic speciation in Juniperus excelsa (Cupressaceae) complex in Iran. Biochemical Systematic and Ecology 37: 193200.CrossRefGoogle Scholar
Holthuijzen, A.M. & Adkisson, C.S. 1984. Passage rate, energetics, and utilization efficiency of the Cedar Waxwing. The Wilson Bulletin 96: 680684.Google Scholar
Holthuijzen, A.M. & Sharik, T.L. 1985. The avian seed dispersal system of eastern red cedar (Juniperus virginiana). Canadian Journal of Botany 63(9): 15081515.CrossRefGoogle Scholar
Holthuijzen, A.M., Sharik, T.L. & Fraser, J.D. 1987. Dispersal of eastern red cedar (Juniperus virginiana) into pastures: an overview. Canadian Journal of Botany 65(6): 10921095.CrossRefGoogle Scholar
Imkhanitskaya, N.N. 1990. Taxonomic note on Juniperus excelsa (Cupressaceae). Botanicheskii Zhurnal 75: 402409 (in Russian).Google Scholar
Islebe, G.A., Velázquez, A. & Cleef, A.M. 1995. High elevation coniferous vegetation of Guatemala: a phytosociological approach. Vegetatio 116: 723.CrossRefGoogle Scholar
Jensen, H. & Levan, A. 1941. Colchicine‐induced tetraploidy in Sequoia gigantea. Hereditas 27(3–4): 220224.CrossRefGoogle Scholar
Jiminez, J.F., Werner, O., Sanchez-Gomez, P. & Fernandez, S. 2003. Genetic variations and migration pathway of Juniperus thurifera L. (Cupressaceae) in the western Mediterranean region. Israel Journal of Plant Sciences 51: 1122.Google Scholar
Jordano, P. 1993. Geographical ecology and variation of plant-seed disperser interactions: southern Spanish junipers and frugivorous thrushes. Vegetatio 107: 85104.CrossRefGoogle Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Kasaian, J., Behravan, J., Hasany, M., et al. 2011. Molecular characterisation and RAPD analysis of Juniperus species from Iran. Genetics and Molecular Research 10: 10691074.CrossRefGoogle ScholarPubMed
Kerfoot, O. 1975. Origin and speciation of the Cupressaceae in Sub-Saharan Africa. Boissiera 24a: 145150.Google Scholar
Khoshoo, T.N. 1959. Polyploidy in the gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 19.Google Scholar
Knyazeva, S.G. 2010. Intraspecific variability of common juniper in Siberia and in the Far East. Lesovedenie 5: 3644.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Lancucka-Srodoniowa, M. & Zastawniak, E. 1997. The Middle-Miocene flora of Wieliczka revision of Jan Zablocki’s collection. Acta Palaeobotanica 37(1): 1749.Google Scholar
Leuschner, C. 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123: 193206.CrossRefGoogle Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E., & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Liu, B., Liang, E.Y. & Zhu, L.P. 2011. Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountains, southeastern Tibet Plateau. Mountain Research and Development 31: 4553.CrossRefGoogle Scholar
Livingstone, R.B. 1972. Influence of birds, stones and soil on the establishment of Juniperus communis and J. virginiana in New England pastures. Ecology 53: 11411147.Google Scholar
Longman, A., Dick, J. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodiaceae. Biologia Plantarum 24: 195201.CrossRefGoogle Scholar
Mao, K.S., Hao, G., Liu, J.Q. & Adams, R.P. 2010. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254272.CrossRefGoogle ScholarPubMed
Martinez, M. 1947. Los Cupressus de Mexico. Annals of the Institute of Biology [Mexico] 18: 71149.Google Scholar
Martinez, M. 1963. Las Pinaceas Mexicanas. Mexico City: Cindad Univesidad de Mexico.Google Scholar
Massini, J.G. & Jacobs, B.F. 2011. The effects of volcanism on Oligocene-age plant communities from the Ethiopian Plateau, and implications for vegetational resilience in a heterogeneous landscape. Review of Palaeobotany and Palynology 164(3–4): 211222.CrossRefGoogle Scholar
Mathews, A.C. 1919. The morphological and cytological development of the sporophyll and seed of Juniperus virginiana L. Journal of the Elisha Mitchell Science Society 55: 762.Google Scholar
Meulenkamp, J.E. & Sissingh, W. 2003. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeography, Palaeoclimatology, Palaeoecology 196(1–2): 209228.CrossRefGoogle Scholar
Miehe, G., Miehe, S., Vogel, J. & La, D. 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development 27(2): 169173.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Series D 9: 125152.Google Scholar
Muratova, E.N., Sedel’nikova, T.S., Karpyuk, T.V., et al. 2008. Karyological and cytogenetic studies of conifers from West Siberia and Far East. Contemporary Problems of Ecology 1: 263271.CrossRefGoogle Scholar
Narama, C. 2002. Late Holocene variation of the Raigorodskogo Glacier and climate change in the Pamir–Alai, central Asia. Catena 48(1–2): 2137.CrossRefGoogle Scholar
Nichols, G.E. 1910. A morphological study of Juniperus communis ver depressa. Beih. Bot. Zbl. 25: 201241.Google Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Ohsawa, M., Nainggolan, P.H.J., Tanaka, N. & Anwar, C. 1985. Altitudinal zonation of forest vegetation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of east Asia. Journal of Tropical Ecology 1: 193216.CrossRefGoogle Scholar
Opgenoorth, L., Vendramin, G.G., Mao, K., et al. 2010. Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the Last Glacial Maximum. New Phytologist 185(1): 332342.CrossRefGoogle ScholarPubMed
Otto, R., Krusi, B.O., Delgado, J.D., et al. 2010. Regeneration niche of the Canarian juniper: the role of adults, shrubs and environmental conditions. Annals of Forest Science 67: 19.CrossRefGoogle Scholar
Owens, J.N., Catalano, G.L., Morris, S.J. & Aitken-Christie, J. 1995. The reproductive biology of kauri (Agathis australis). I. Pollination and prefertilisation development. International Journal of Plant Sciences 156: 257269.CrossRefGoogle Scholar
Ozkan, K., Gulsoy, S., Aerts, R. & Muys, B. 2010. Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south-western Anatolia, Turkey. Journal of Environmental Biology 31: 97100.Google Scholar
Padien, D.J. & Lajtha, K. 1992. Plant spatial pattern and nutrient distribution in pinyon–juniper woodlands along an elevational gradient in northern New Mexico. International Journal of Plant Science 153: 425433.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Palmaotal, M., Mooore, W.S., Adams, R.P. & Joswiak, G.R. 1983. Morphological, chemical and biogeographical analyses of a hybrid zone involving Juniperus virginiana and J. horizontalis in Wisconsin. Canadian Journal of Botany 61: 27332746.CrossRefGoogle Scholar
Peng, J.-F., Gou, X.-H., Chen, F.-H., et al. 2008. Difference in tree growth response to climate at the upper tree line: Quilian juniper in the Anyemaquen Mountains. Journal of Integrative Plant Biology 50: 982990.CrossRefGoogle Scholar
Phillips, F.J. 1910. The dissemination of junipers by birds. Forest Quarterly 8: 6073.Google Scholar
Poddar, S. & Lederer, R.J. 1982. Juniper berries as an exclusive winter forage for Townsend’s Solitaires. American Midland Naturalist 108: 3440.CrossRefGoogle Scholar
Poulos, H.M., Gatewood, R.G., and Camp, A.E. 2009. Fire regimes of the piñon―juniper woodlands of Big Bend National Park and the Davis Mountains, west Texas, USA. Canadian Journal of Forest Research 39(6): 12361246.CrossRefGoogle Scholar
Raspopov, O.M., Dergachev, V.A., Esperc, J., et al. 2008. The influence of the de Vries (similar to 200-year) solar cycle on climate variations: results from the Central Asian Mountains and their global link [Juniperus turkestanica, J. przewalskii]. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 616.CrossRefGoogle Scholar
Ribera, I. & Blasco-Zumeta, J. 1998. Biogeographical links between steppe insects in the Monegros region (Aragon, NE Spain), the eastern Mediterranean, and Central Asia. Journal of Biogeography 25: 969986.CrossRefGoogle Scholar
Rumeu, B. 2011. Differential seed dispersal systems of endemic junipers in two oceanic Macaronesian archipelagos: the influence of biogeographic and biological characteristics. Plant Ecology 212: 911921.CrossRefGoogle Scholar
Santos, T. & Telleria, J.L. 1994. Influence of forest fragmentation on seed consumption and dispersal of Spanish juniper, Juniperus thurifera. Biological Conservation 70: 129134.CrossRefGoogle Scholar
Santos, T., Telleria, J.L. & Virgos, E. 1999. Dispersal of Spanish juniper, Juniperus thurifera, by birds and mammals in a fragmented landscape. Ecography 22: 193204.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schulz, C., Jagel, C. & Stutzel, T. 2003. Cone morphology in Juniperus in the light of cone evolution in the Cupressaceae s.l. Flora 198: 161177.CrossRefGoogle Scholar
Shao, X.-M., Wang, S.-Z., Zhu, H.-F., et al. 2009. A 3585-year ring-width dating chronology of Quilian juniper from the northeastern Quinghai-Tibetan Plateau [Juniperus przewalskii]. Iawa Journal 30: 379394.CrossRefGoogle Scholar
Sharew, H., Legg, C.J. & Grace, J. 1997. Effects of ground preparation and microenvironment on germination and natural regeneration of Juniperus procera and Afrocarpus gracilior in Ethiopia. Forest Ecology and Management 93: 215225.CrossRefGoogle Scholar
Shukla, M.K., Lal, R., Ebinger, M. & Meyer, C. 2006. Physical and chemical properties of soils under some piñon–juniper–oak canopies in a semi-arid ecosystem in New Mexico. Journal of Arid Environments 66(4): 673685.CrossRefGoogle Scholar
Shumilov, O.I., Kassatkina, E.A., Kirtsidefi, I.Y. & Kanat’ev, A.G. 2008. The use of juniper in dendrochronological analysis. Lesovedenie 1: 5259.Google Scholar
Silba, J. 1986. Encyclopaedia Coniferae. Phytologia Memoirs 8: 1217.Google Scholar
Stiff, M.L. 1951. A naturally occurring triploid juniper. Virginia Journal of Science 2: 317.Google Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Los Angeles, CA: University of California at Berkeley.Google Scholar
Terrab, A., Schonswetter, P., Talavera, S., Vela, E. & Stuessy, T.F. 2008. Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution 48: 94102.CrossRefGoogle Scholar
Terry, R.G. 2010. Re-evaluation of morphological and chloroplast DNA variation in Juniperus osteosperma Hook and Juniperus occidantalis Torr. Little (Cupressaceae) and their putative hybrids. Biochemical Systematics and Ecology 38: 349360.CrossRefGoogle Scholar
Tseplyaev, V.P. 1961. The Forests of the U.S.S.R. Moscow: LESA SSSR (in Russian).Google Scholar
Vidakovic, M. 1991. Conifers, Morphology and Variation. Zavod: Graficki Zavod Hrvatske.Google Scholar
Walter, H. 1973. Vegetation of the Earth. New York: Springer.Google Scholar
Wangda, P. & Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management 230(1–3): 136150.CrossRefGoogle Scholar
Wesche, K., Ronnenberg, K. & Hensen, I. 2005. Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. Journal of Arid Environments 63: 390405.CrossRefGoogle Scholar
Wils, T.H.G., Robertso, I., Eshetu, Z., Sass-Klassen, U.G.W. & Koprowski, M. 2009. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27: 4558.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9: 375382.Google Scholar
Yang, B., Qin, C., Huang, K., Fan, Z.-X. & Liu, J.-J. 2010. Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period AD 1450–2001 [Juniperus przewalskii]. Holocene 20: 12351245.CrossRefGoogle Scholar
Yang, B., Qin, C., Braeuning, A., Birchardt, I. & Liu, J.-J. 2011. Rainfall history of the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings [Juniperus przewalskii]. International Journal of Climatology 31: 11661176.CrossRefGoogle Scholar
Zanoni, T.A. 1978. Los Juniperus de Jalisco. Bol. Inform. Inst. Biol. Univ. Guadalajara Epoca IV 4: 1117.Google Scholar
Zanoni, T.A. 1982. Cupressus. Flora Veracruz 23: 27.Google Scholar
Zanoni, T.A., Rudolff, E. & Charzaro, B.M. 1981. The south-western USA and northern Mexico one-seeded junipers: their volatile oils and evolution. Biochemical Systematics and Ecology 9: 9396.Google Scholar
Zhao, L.-Q. & Yang, J. 2011. Characteristics of Juniperus rigida open forest in Junger Loess Hill-gully Region. Xibei Zhiwu Xuebao 31: 595601 (in Chinese).Google Scholar
Zhaoguang, C.A.I. (ed.). 1986. An Atlas of Rangeland and its Main Plant Resources on the Qinghai-Tibet Plateau. Qinghai: Agricultural Publishing House.Google Scholar

References

Adams, R.P., Nguyen, S., Hsieh, C.F. & Kaiyun, G. 2006. The leaf essential oils of the genus Calocedrus. Journal of Essential Oil Research 18(6): 654658.CrossRefGoogle Scholar
Afsharypuor, S. & Nayebzadeh, B. 2009. Essential oil constituents of young stem, leaf and fruit of Platycladus orientalis (L.) Franco grown in Isfahan (Iran). Journal of Essential Oil Research 21: 525528.CrossRefGoogle Scholar
Asili, J., Lambert, M., Ziegler, H.L., et al. 2004. Labdanes and isopimarenes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. Journal of Natural Products 67: 631637.CrossRefGoogle ScholarPubMed
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Chen, L., Ding, L., Yu, A., et al. 2007. Continuous determination of total flavenoids in Platycladus orientalis (L.) Franco by dynamic microwave-assisted extraction coupled with on-line derivatization and ultraviolet-visible detection. Analytica Chimica Acta 596: 164170.CrossRefGoogle Scholar
DeVillers, P., DeVillers-Terchuren, J. & Van Linden, C. 2001. Hyrcinian Thuja forests. Palaearctic Habitats. Black Sea Marine Habitat Classification. PHYSIS database. Royal Belgian Institute of Natural Science www.naturalsciences.bc/eb.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gao, P. & Wang, L. 1993. Study on the benefits of the water-reserving forest in the upper reaches of Miyum reservoir. Bulletin of Soil Water Conservation 13: 2429 (in Chinese).Google Scholar
Gao, P., Zhang, G.-P., Wu, Q., Lian, J.-Q. & Zhang, F. 2010. An analysis of inter-specific relationships among the dominant populations of Platycladus orientalis communities in Yanshan Nature Reserve in Shanxi. Bulletin of Botanical Research 30: 731736.Google Scholar
Han, L., Jiao, J., Jia, Y., et al. 2011. Seed removal on loess slopes in relation to runoff and sediment yield. Catena 85(1): 1221.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoffman, M.T. & Arnold, A.E. 2008. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycological Research 112(3): 331344.CrossRefGoogle ScholarPubMed
Jagel, A. & Stutzel, T. 2001. Zur Abgrenzung von Chamaecyparis Spach und Cupressus L. (Cupressaceae) und die systematische Stellung von Cupressus nootkatensis D.Don [= Chamaecyparis nootkatensis (D.Don) Spach]. Fedde’s Repertorium 112: 179229.CrossRefGoogle Scholar
Kuo, Y.H., Chen, W.C. & Lee, C.K. 2000. Four new terpenes of Platycladus orientalis. Chemical Pharmacological Bulletin 48: 766768.CrossRefGoogle ScholarPubMed
Lai, L.K., Naki, M., Yoshida, S.H., German, T.S. & Gershwin, M.E. 1994. Dietary Platycladus seed oil suppresses anti-erythrocyte autoantibodies and prolonged survival in NZB mice. Clinical Immunology and Immunopathology 71: 293302.CrossRefGoogle ScholarPubMed
Lei, H.P., Wang, Y.G., Liang, F.Y., et al. 2010. Composition and variability of essential oils of Platycladus orientalis growing in China. Biochemical Systematics and Ecology 38: 10001006.CrossRefGoogle Scholar
Lei, H.P., Liang, F.Y., Wang, Y.G., et al. 2011. Simultaneous determination of Thujopsene and Cedrol in cedarwood oils from Thuja sutchuenensis and Platycladus orientalis. Journal of Essential Oil Bearing Plants 14: 4856.Google Scholar
Li, L. & Hu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451 (in Chinese with English summary).Google Scholar
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
Li, S., Li, D., Qin, T. & Liu, Y. 2010. Dynamics of species composition and regeneration rules in the gaps of Pinus bungeana forest gaps in Huanglong mountain, Shaanxi Province. Journal of Wuhan Botanical Research 28(5): 583588.Google Scholar
Li, S.Q., Fang, Y.L. & Zhang, Z.N. 2007. Effects of volatiles of non-host plants and other chemicals on oviposition of Monochamus alternatus (Coleoptera: Cerambycidae). Journal of Pest Science 80: 119123.CrossRefGoogle Scholar
Li, T.C., Shao, M.A. & Jia, Y.H. 2016. Application of X‐ray tomography to quantify macropore characteristics of loess soil under two perennial plants. European Journal of Soil Science 67(3): 266275.CrossRefGoogle Scholar
Li, Z.X. & Powell, C.M. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237–27.CrossRefGoogle Scholar
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Liu, Y.J., Ding, H. & Zhu, Y.G. 2005. Metal bioaccumulation in plant leaves from an industrious area and the botanical garden in Beijing. Journal of Environmental Sciences 17(2): 294300.Google ScholarPubMed
Martin, P.C. 1950 A morphological comparison of Biota and Thuja. Proceedings of the Pennsylvania Academy of Science 24: 65112.Google Scholar
Messing, I., Chen, L. & Hessel, R. 2003. Soil conditions in a small catchment on the Loess Plateau in China. Catena 54(1–2): 4558.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Morgan, C.S. 1999. Platycladus orientalis: Cupressaceae. Curtis’s Botanical Magazine 16: 185192.CrossRefGoogle Scholar
Ren, X.-Y. & Ye, Y. 2006. Labdane diterpenes from the seeds of Platycladus orientalis. Journal of Asian Natural Products Research 8: 677682.CrossRefGoogle ScholarPubMed
Rushforth, K. 1987. Conifers. London: Christopher Helm Ltd.Google Scholar
Singh, H. & Oberoi, Y.P. 1962 A contribution to the life history of Biota orientalis Endl. Phytomorphology 12: 373393.Google Scholar
Vidaković, M. 1991 Conifers: Morphology and Variation. Zagreb: Grafićki zavod Hrvatske.Google Scholar
Wang, B., Yeun, L.H., Xue, J.-Y., et al. 2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonisation of land by plants. New Phytologist 186: 514525.CrossRefGoogle ScholarPubMed
Xing, S.P., Zhang, Q., Hu, X.Y., Chen, Z.K. & Lin, J.X. 1999. The mechanism of pollination in Platycladus orientalis and Thuja occidentalis (Cupressaceae). Acta Botanica Sinica 41: 130132.Google Scholar
Yang, H.O., Suh, D.Y. & Han, B.H. 1995. Isolation and characterisation of platelet-activating factor receptor binding antagonists from Biota orientalis. Planta Medici 61: 3740.CrossRefGoogle Scholar
Yao, J., Xue, J., Wu, Q., Wu, Y. & Rong, Y. 2010. Drought resistance of four species of tree saplings for afforestation in Karst Regions. Journal of Ecology and Rural Environment 26(4): 318322.Google Scholar
Zamjatnin, B. 1963. Observationes nonnullae de Microbiota decussata Kom. Notes Syst, Herb. Hort. Bot. Petrop. 22: 4350 (in Russian).Google Scholar
Zhang, J.T. & Chen, T. 2007. Effects of mixed Hippophae rhamnoides on community and soil in planted forests in the Eastern Loess Plateau, China. Ecological Engineering 31(2): 115121.CrossRefGoogle Scholar
Zhu, B., Li, Z., Li, P., Liu, G. & Xue, S. 2010. Soil erodibility, microbial biomass, and physical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research 25: 531541.CrossRefGoogle Scholar

References

Adams, R.P., Nguyen, S., Hsieh, C.F. & Kaiyun, G. 2006. The leaf essential oils of the genus Calocedrus. Journal of Essential Oil Research 18(6): 654658.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1992. Early stage of formation and dispersal of the temperate flora in the Boral Region. Botanical Review 58: 148.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Krause-Baranowska, M., Mardanowicz, M. & Wiwart, M. 2002. The chemical composition of Microbiota decussata. Z. Naturforsch. 57c: 9981003.CrossRefGoogle Scholar
Popova, S., Utescher, T., Grimyko, D.V., et al. 2013. Vegetation change in Siberia and northeast of Russia during the Cenozoic cooling: a study based on diversity of plant functional types. Palaios 28: 418432.CrossRefGoogle Scholar
Shilov, V.N. 1997 Comparison of Neogene–Quaternary volcanism in Sakhalin and in the East Sikhote-Alin. 2. Late Cenozoic Volcanism in East Sikhote-Alin. Journal of Volcanology and Seismology 18: 517528.Google Scholar
Tkachev, A.V., Sharikov, M.M. & Raldugin, V.A. 1991. Structure of microbiotol, a new sesquiterpene alcohol from needles of Microbiota decussata. Journal of Natural Products 54: 849853.CrossRefGoogle Scholar
Whitford-Stark, J.L. 1987. A survey of Cenozoic volcanism in central Asia. Geological Society of America Special Papers 213: 174.CrossRefGoogle Scholar

References

Achard, F., Eva, H.D., Stibig, H.J. et al. 2002. Determination of deforestation rates of the world’s humid tropical forests. Science 297: 9991002.CrossRefGoogle ScholarPubMed
Adams, E.M. & Morrison, M.L. 1993. Effects of forest stand structure and composition on red-breasted nuthatches and brown creepers. Journal of Wildlife Management 62: 616629.CrossRefGoogle Scholar
Alexander, E.B. 2009. Soil and vegetation difference from peridotite to serpentine. Northeastern Naturalist 16: 178192.CrossRefGoogle Scholar
Anstey, J.-A.S. & Battles, J.J. 1998. Forest composition, structure, and change in an old-growth mixed conifer forest in the northern Sierra Nevada. Journal of the Torrey Botanical Society 125: 297308.CrossRefGoogle Scholar
Arno, S.F. 1973. Discovering Sierra Trees. Yosemite Assn.Google Scholar
Averyanov, L.V., Nguyen, T.H., Phan, K.L. & Pham, V.T. 2008. The genus Calocedrus (Cupressaceae) in the flora of Vietnam. Taiwania 53: 1112.Google Scholar
Bawa, K.S. & Ashton, P.S. 1991. Conservation of rare trees in tropical rain forests: a genetic perspective. Pp 6271 in Falk, D.A. and Holsinger, K.E. (eds.), Genetics and Conservation of Rare Plants. Oxford: Oxford University Press.CrossRefGoogle Scholar
Beaty, R.M. & Taylor, A.H. 2001. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA. Journal of Biogeography 28: 955966.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Chang, H.-T., Cheng, Y.-H., Wu, C.-L., et al. 2008. Antifungal activity from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresource Technology 99: 62666270.CrossRefGoogle ScholarPubMed
Chen, C.-H., Huang, J.-P., Tsai, C.-C. & Chaw, S.-M. 2009. Phylogeny of Calocedrus (Cupressaceae), an Eastern Asian and Western North American disjunct gymnosperm genus, inferred from nuclear ribosomal nrITS sequences. Botanical Bulletin of Academica Sinica 50: 435440.Google Scholar
Cheng, S.-S., Wu, C.-L., Chang, H.-T., Kao, Y.-T. & Chang, S.-T. 2004. Antitermitic and anti-fungal activities of essential oil of Calocedrus formosana leaf and its composition. Journal of Chemical Ecology 30: 19571967.CrossRefGoogle Scholar
Cheng, S.-S., Chang, H.-T., Wu, C.-L. & Chang, S.-T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98: 456459.CrossRefGoogle ScholarPubMed
Chien, P.D., Zuidema, P.A. & Nghia, N.H. 2008. Conservation prospects for threatened Vietnamese tree species: results from a demographic study. Population Ecology 50: 227237.CrossRefGoogle Scholar
Chung, J.-D. & Ku, S.-R. 2005. Reproductive cycles of Calocedrus formosana. Taiwan Journal of Forest Science 20: 315329.Google Scholar
Cole, K.L. 1983. Late Pleistocene vegetation of Kings Canyon, California. Quaternary Research 19: 117129.CrossRefGoogle Scholar
Fang, J.-M., Hsu, K.-C. & Cheng, Y.-S. 1989. Terpenoids from leaves of Calocedrus formosana. Phytochemistry 28: 11731175.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Flenley, J.R. 1984. Late Quaternary changes of vegetation and climate in the Malesian mountains. Erdwissenschaftliche Forschung 18: 261267.Google Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Goforth, B.R. & Minich, R.A. 2008. Densification, stand-replacement wildfire, and extirpation of mixed conifer forest in Cuyamaca Ranchio State park, southern California. Forest Ecology and management 256: 3645.CrossRefGoogle Scholar
Griffin, J.R. & Critchfield, W.B. 1977. The distribution of forest trees of California. Research Paper PSW82. Pacific Southwest Forest & Range Experimental Station, USDA Forest Service.Google Scholar
Grimaldi, D. & Engel, M.S. 2005. Evolution of the Insects. Cambridge: Cambridge University Press.Google Scholar
Guarin, A. & Taylor, A.H. 2005. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. Forest Ecology and Management 218: 229244.CrossRefGoogle Scholar
Hably, L., Kvaček, Z. & Manchester, S.R. 2000. Shared taxa of land plants in the Oligocene of Europe and North America in context of Holarctic phytogeography. Acta Universitatis Carolinae, Geologica 44: 5974.Google Scholar
Hiep, N.T., Loc, P.K., Luu, N.D.T., et al. 2004. Vietnam Conifers Conservation Status Review. Hanoi: Labour and Society Publisher.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hung, T.V. 2004. Forestry research for the present time. Journal of Agriculture and Rural Development 12: 2629.Google Scholar
Johnston, D.S. & Gworek, J.R. 2006. Pallid bat (Antrozous pallidus) habitat use in a coniferous forest in northeastern California. Bat Research News 47: 114.Google Scholar
Kaufman, M.R., Binkley, D., Fule, P.Z., et al. 2007. Defining old growth for fire-adapted forests of the Western United States. Ecology and Society 12: 12.Google Scholar
Kobziar, L., Moghaddas, J. & Stephens, S.L. 2006. Tree mortality patterns following prescribed fires in a mixed conifer forest. Canadian Journal of Forest Research 36: 32223238.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kruckeberg, A.R. 1984. California serpentines: flora, vegetation, geology, and management problems. University of California Publications in Botany 78: 1180.Google Scholar
Kvaček, Z. 1999. An ancient Calocedrus (Cupressaceae) from the European Tertiary. Flora 194: 237248.CrossRefGoogle Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the tard clay formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kvaček, Z. & Walther, H. 2001. The Oligocene of central Europe and the development of forest vegetation in space and time on the basis of megafossils. Palaeontographica B, 259: 125148.CrossRefGoogle Scholar
Kvaček, Z. & Walther, H. 2003 Reconstruction of vegetation and landscape development during volcanic activity in the Ceske Stredohori Mountains. Geolines 15: 6064.Google Scholar
Li, H.-L. 1975. Coniferae. Pp 499544 in DeVol, C.E. (ed.), Flora of Taiwan. Vol 1. Pteridophyta and Gymnospermae. Taipei: Epoch Publishing Co.Google Scholar
Liu, J. 2000. The seed bank of the forest community at the pinnacles of Maolan Karst hilly area in Guizhou. Forest Research, Beijing 13(1): 4450.Google Scholar
Liu, Y.S., Mohr, B.A. & Basinger, J.F. 2009. Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeobiodiversity and Palaeoenvironments 89: 203209.CrossRefGoogle Scholar
Mathiasen, R.L. 2009. Comparative susceptibility of conifers to knobcone pine dwarf mistletoe. Western North American Naturalist 69(1): 4248.CrossRefGoogle Scholar
McEachern, B., Eagles-Smith, C., Efferson, C. & Van Vuren, D. 2006. Evidence for local specialization in a generalist mammalian herbivore, Neotoma fuscipes. Okios 113: 440448.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65(11): 23382351.CrossRefGoogle Scholar
Meyer, M.D., Keit, D.A. & North, M.P. 2005. Nest trees of northern flying squirrels in the Sierra Nevada. Journal of Mammalogy 86: 275280.CrossRefGoogle Scholar
Middlekauf, W.W. 1974. Larvae of wood-boring sawfly Syntexis libocedri Rohwer (Hymenoptera: Syntexidae). Pan-Pacific Entomologist 50: 288290.Google Scholar
Minnich, R.A., Barbour, M.G., Burk, J.H. & Fernau, R.F. 1995 Sixty years of change in California conifer forests of the San Bernardino Mountains. Conservation Biology 9: 902914.CrossRefGoogle Scholar
Nghia, N.H. 2000. Some Threatened Tree Species of Vietnam. Hanoi: Agriculture Publisher.Google Scholar
Nguyen, Duc To Luu & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Nguyen, T.H., Loc, P.K., Nguyen, D.T.L., et al. 2004. Vietnam Conifers Conservation Status Review 2004. Fauna & Flora International, Vietnam Programme. Hanoi: Labour and Society Publisher.Google Scholar
North, M., Hurteau, M., Fiegener, R. & Barbour, M. 2005. Influence of fire and El Nino on tree recruitment varies by species in Sierran mixed conifer forest. Forest Science 51: 187197.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R.T. & Rember, W.C. 2005. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry 36: 907922.CrossRefGoogle Scholar
Rambo, T.R. 2010. Habitat preferences of an arboreal forage lichen in a Sierra Nevada old-growth mixed-conifer forest. Canadian Journal of Forest Research 40: 10341041.CrossRefGoogle Scholar
Rizzo, D.M., Slaughter, G.W. & Parmeter, J.R. jr. 2000. Enlargement of canopy gaps associated with a fungal pathogen in Yosemite Valley, California. Canadian Journal of Forest Research 30: 15011510.CrossRefGoogle Scholar
Schulmeister, S. 2003a. Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters. Biological Journal of the Linnean Society 79: 209244.CrossRefGoogle Scholar
Schulmeister, S. 2003b. Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust choice sensitivity analysis. Biological Journal of the Linnean Society 79: 245275.CrossRefGoogle Scholar
Sodhi, N.S., Koh, L.P., Brook, B.W. & Ng, P.K.L. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution 19: 654660.CrossRefGoogle Scholar
Stephens, S.L. & Finney, M.A. 2002. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: effects of crown damage and forest floor combustion. Forest Ecology and Management 162: 261271.CrossRefGoogle Scholar
Su, Y.C., Ho, C.L., & Wang, E.I.C. 2006. Analysis of leaf essential oils from the indigenous conifers of Taiwan. Flavour and Fragrance 21: 447452.CrossRefGoogle Scholar
Thomas, P., Sengdala, K., Lamaxay, V. & Khou, E. 2007. New records of conifers in Cambodia and Laos. Edinburgh Journal of Botany 64: 3744.CrossRefGoogle Scholar
Tsai, C.-C., Chen, C.-J., Tseng, H.-W., et al. 2008. Cytomic screening of immuno-modulating activity compounds from Calocedrus formosana. Combinatorial Chemistry and High Throughput Screening 11: 834842.CrossRefGoogle ScholarPubMed
Vikulin, S.V., Zhilin, S.G. & Potapova, Y.Y. 1995. Leaf whorls of Cupressaceae from the Maastrichtian of central Kazakhstan. Paleontological Journal 29: 185193.Google Scholar
Wang, D.-L., Li, Z.-C., Hao, G. Chiang, T.-Y. & Ge, X.-J. 2004a. Genetic diversity of Calocedrus macrolepis in southwestern China. Biochemical Systematics and Ecology 32: 797807.CrossRefGoogle Scholar
Wang, S-Y., Wu, J.-H., Cheng, S.-S., et al. 2004b. Antioxidant activity of extracts from Calocedrus formosana leaf, bark, and heartwood. Journal of Wood Science 50: 422426.CrossRefGoogle Scholar
Wang, S.-Y., Wang, Y.-S., Tseng, Y.-H., Lin, C.-T. & Liu, C.-P. 2006. Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung 60: 528532.CrossRefGoogle Scholar
Whitmore, T.C. 1997. Tropical forest disturbance, disappearance, and species loss. Pp 312 in Laurance, E.R. & Bierregaard, R.O. (eds.), Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. Chicago, IL: University of Chicago Press.Google Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary floras. Pp 201233 in Graham, A. (ed.), Floristics and Paleofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Yen, T.-B., Chang, H.-T., Hsieh, C.-C. & Chang, S.-T. 2004. Antifungal properties of ethanol extract and its active compounds from Calocedrus macrolepis var formosana (Florin) heartwood. Bioresource Technology 99: 48714877.CrossRefGoogle Scholar
York, R.A., Heald, R.C., Battles, J.J. & York, J.D. 2004. Group selection management in conifer forests: relationships between opening size and tree growth. Canadian Journal of Forest Research 34: 630641.CrossRefGoogle Scholar
Zald, H.S.J., Gray, A.N., North, M. & Kern, R.A. 2008. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest. Forest Ecology and Management 256: 168179.CrossRefGoogle Scholar

References

Aitchison, J.C., Clarke, G.L., Meffre, S. & Cluzel, D. 1995. Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23: 161164.2.3.CO;2>CrossRefGoogle Scholar
Aubreville, A. 1964. Les reliques de la flore des conifers tropicaux en Australie et en Nouvelle-Caledonie. Adansonia Ser 2 4: 481492.Google Scholar
Baker, A.J.M. 2004. Research priorities for conservation of metallophyte biodiversity and its sustainable uses in ecological restoration and site. Restoration Ecology 12: 106124.Google Scholar
Baldwin, S.L., Rawling, T. & Fitzgerald, P.G. 2007. Thermochronology of the New Caledonian high-pressure terrane: implications for middle Tertiary plate boundary processes in the southwest Pacific. Geological Society of America Special Papers 419: 117134.Google Scholar
Bartish, I.V., Swenson, U., Munzinger, J. & Anderberg, A.A. 2005. Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeat dispersal. American Journal of Botany 92: 667673.CrossRefGoogle Scholar
Batianoff, G.N. & Singh, S. 2001. Central Queensland serpentine landforms, plant ecology and endemism. South African Journal of Science 97: 495499.Google Scholar
Batianoff, G.N., Specht, R.L. & Reeves, R.D. 1991. The serpentine flora of the humid tropics of eastern Australia. Proceedings of the Royal Society of Queensland 101: 137157.Google Scholar
Batianoff, G.N., Reeves, R.D. & Specht, R.L. 1997. The effects of serpentine on vegetation structure, species diversity and endemism in Central Queensland. Pp 147154 in Jaffré, T., Reeves, R.D. & Bacquer, T. (eds.), The Ecology of Ultramafic and Metalliferous Areas. Noumea: Centre ORSTOM.Google Scholar
Batianoff, G.N., Neldner, V.J. & Singh, S. 2000. Vascular plant census and floristic analysis of serpentine landscapes in Central Queensland. Proceedings of the Royal Society of Queensland 109: 130.Google Scholar
Birrel, K.S. & Wright, A.C. 1945. A serpentine soil in New Caledonia. New Zealand Journal of Science and Technology 27: 7276.Google Scholar
Brady, K.U., Kruckeberg, A.R., & Bradshaw, H.D. Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution and Systematics 36: 243266.CrossRefGoogle Scholar
Branco, S. & Ree, R.H. 2010. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5: 17.CrossRefGoogle Scholar
Brothers, R.N. & Blake, M.C. 1973. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia. Tectonophysics 17: 337358.CrossRefGoogle Scholar
Chardon, D. & Chevillotte, V. 2006. Morphotectonic evolution of the New Caledonia ridge (Pacific Southwest) from post-obduction tectonosedimentary record. Tectonophysics 420: 473491.CrossRefGoogle Scholar
Chevillotte, V., Cardon, D., Beauvaia, A., Maurizot, P. & Colin, F. 2006. Long-term tropical morphogenesis of New Caledonia (southwest Pacific): importance of positive epeirogeny and climate change. Geomorphology 81: 361375.CrossRefGoogle Scholar
Cluzel, D., Aitchison, J.C. & Picard, C. 2001. Tectonic accretion and underplating of mafic terranes in the late Eocene intraocean forearc of New Caledonia (southwest Pacific): geodynamic implications. Tectonophysics 340: 2359.CrossRefGoogle Scholar
Cluzel, D., Bosch, D., Paquette, J.-L., et al. 2005. Late Oligocene post-emplacement granitoids of New Caledonia: a case for reactivation of subduction and slab breakoff. The Island Arc 14: 254271.CrossRefGoogle Scholar
Cluzel, D., Meffre, S., Maurizot, P. & Crawford, A. 2006. Earliest Eocene (53 Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 18: 395402.CrossRefGoogle Scholar
Cluzel, D., Adams, C.J. & Meffre, S. 2010. Discovery of Early Cretaceous rocks in New Caledonia: new geochemical and U–Pb zircon age constraints on the transition from subduction to marginal break-up in the southwest Pacific. Journal of Geology 118: 381397.CrossRefGoogle Scholar
Collot, J., Geli, L., Lafoy, Y., et al. 2008. Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: relation to late Eocene obduction in New Caledonia southwest. Tectonics 27: TC6006.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Croizat, L. 1964. Panbiogeography: Space, Time and Form – The Biological Synthesis. Caracas: Self-published.Google Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Dubois, J., Launay, J. & Recy, J. 1974. Uplift movements in New Caledonia–Loyalty Islands area and their plate tectonics interpretation. Tectonophysics 24: 133150.CrossRefGoogle Scholar
Eissen, J.-P., Crawford, A.J., Cotton, J., et al. 1998. Geochemistry and tectonic significance of basalts in the Poya Terane, New Caledonia. Tectonophysics 284: 203219.CrossRefGoogle Scholar
Enright, N.J., Rigg, L. & Jaffré, T. 2001. Environmental controls on species composition along a (maquiis) shrubland to forest gradient in ultramafics at Mt Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Falcy, M.R. & Estades, C. 2007. Effectiveness of corridors relative to enlargement of habitat patches. Conservation Biology 21: 13411346.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz García, S. 2005. The early development of ovuliferous cones in Cupressaceae s.lat: a survey of the genera. Pp 2746 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Page, C.N. (eds.). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Farjon, A., Page, C.N. & Schellevis, N. 1993. A preliminary world list of threatened conifer taxa. Biodiversity and Conservation 2: 304326.Google Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Grandcolas, P., Murienne, J., Robillard, T., et al. 2008. New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society B 363: 33093317.CrossRefGoogle ScholarPubMed
Guillaumin, A. 1911. Catalogue des plantes phanerogames de la Nouvelle-Caledonia et Dependences. Annales du Muśee colonial de Marseille 19: 64.Google Scholar
Guillaumin, A. 1948. Flore de la Nouvelle-Caledonie. Paris.Google Scholar
Guillon, J.H. 1969. Donnees nouvelles sur la composition et la structure du grand massif peridotitique du Sud de la Nouvelle-Caledonia. Cahiers ORSTOM, series Geolologique 1: 725.Google Scholar
Heads, M. 2008. Panbiogeography of New Caledonia, southwest Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs, and old taxa endemic to young islands. Journal of Biogeography 35: 21532175.CrossRefGoogle Scholar
Heads, M. 2010. Biogeographical affinities of the New Caledonian biota: a puzzle with 24 pieces. Journal of Biogeography 37: 11791201.CrossRefGoogle Scholar
Honnay, O. & Jacquemyn, H. 2006. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conservation Biology 21: 823831.CrossRefGoogle Scholar
Hope, G.S. & Pask, J. 1998. Tropical vegetational change in the late Pleistocene of New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 142: 121.CrossRefGoogle Scholar
Jaffré, T. 1980. Etudes ecologique du peuplement vegetal des sols derives de roches ultrabasiques en Nouvelle-Caledonie. Trav. et Doc. ORSTOM, Paris no 124: 1274.Google Scholar
Jaffré, T. 1992. Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. Pp 101107 in Baker, A.J.M. (ed.), The Vegetation of Ultramafic (Serpentine) Soils. Andover: Intercept Publishing.Google Scholar
Jaffré, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Jaffré, T. & Latham, M. 1974. Contribution a l’etude des relations sol-vegetation sur massif de roches ultrabasiques de la Cote Ouest de la Nouvelle-Caledonie: Le Boulinda. Adansonia, ser. 2 14: 311336.CrossRefGoogle Scholar
Jaffré, T. & Veillon, J.-M. 1990. Etudes floristique et structurale de deux forets denses humides sur roches ultrabasiques en Nouvelle-Caledonie. Adansonia 3: 243272.Google Scholar
Jaffré, T., Latham, M. & Schmid, M. 1977. Aspect’s de l’influence de l’extraction du mineral de nickel sur la vegetation et les sols en Nouvelle-Caledonia. Cahiers ORSTOM Serie Biologique 12: 307321.Google Scholar
Jaffré, T., Morat, P.H., Veillon, J.-M. & Mackee, H.S. 1987a. Changements dans la vegetation de la Nouvelle Caledonia au cours du Tertaire: la vegetation et la flore des roches ultrabasiques. Adansonia 4: 365391.Google Scholar
Jaffré, T., Veillon, J.M. & Cherrier, J.F. 1987b. Sur la présence de deux Cupressaceae Neocallitropsis pancheri (Carr.) Laubenf. et Libocedrus austrocaledonica Brongn. et Gris dans le massif du Paéoua et localités nouvelles de Gymnospermes en Nouvelle-Calédonie. Adansonia 3: 273288.Google Scholar
Jaffré, T., Morat, P.H. & Veillon, J.-M. 1993. Etudes floristique et phytogeographique de la foret sclerophylle de Nouvelle-Caledonie. Adansonia 15: 107147.Google Scholar
Jaffré, T., Bouchet, P. & Veillon, J.M. 1998. Threatened plants of New Caledonia: is the system of protected areas adequate? Biological Conservation 7: 109135.Google Scholar
Jaffré, T., Dagostini, G. & Rigault, F. 2003. Identification, typologie et cartographie des groupments vegetaux de basse altitude du Grand Sus Caledonien et de le vallee de la Tontoua. Noumea: Rapport de convention IRD.Google Scholar
Jaffré, T., Munzinger, J. & Lowry, P.P. II. 2010. Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodiversity and Conservation 19: 14851502.CrossRefGoogle Scholar
Keppel, G., Buckley, Y.M. & Possingham, H.P. 2010. Drivers of lowland rainforest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98: 8795.CrossRefGoogle Scholar
Kettle, C.J., Hollingsworth, P.M., Jaffré, T., Moran, B., & Ennos, A. 2007. Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Molecular Ecology 16: 35813591.CrossRefGoogle Scholar
Koppers, A.A.P., Staudigel, H. & Duncan, R.A. 2003. High resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics and Geosystems 4: 8914.CrossRefGoogle Scholar
Ladiges, P.Y. 1998. Biogeography after Burbidge. Australian Systematic Botany 11: 231242.CrossRefGoogle Scholar
Ladiges, P.Y. & Cantrill, D. 2007. New Caledonia–Australia connections: biogeographic patterns and geology. Australian Systematic Botany 20: 383389.CrossRefGoogle Scholar
Lagabrielle, Y., Maurizot, P., Lafoy, Y., et al. 2005. Neogene–Quaternary extensional tectonics in southern New Caledonia (SW Pacific): insights from onshore fault analysis and offshore seismic data. Tectonophysics 403: 128.CrossRefGoogle Scholar
Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142: 911927.CrossRefGoogle Scholar
Lowry, P.P. II. 1998. Diversity, endemism and extinction in the flora of New Caledonia: a review. Pp 181206 in Peng, C.-I. & Lowry, P.P. II (eds.), Rare, Threatened and Endangered Floras of Asia and the Pacific. Taipei: Academica Sinica.Google Scholar
Lowry, P.P. II, Munzinger, J., Bouchet, P., et al. 2004. New Caledonia. Pp 193197 in Mittermeier, R.A. (ed.), Hotspots Revisited: Earth Biologically Richest and Most Threatened Terrestrial Ecosystems. Mexico City: CEMEX.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mittermeier, R.A., Werner, T.B. & Lees, A. 1996. New Caledonia, a conservation imperative for an ancient land. Oryx 30: 104112.CrossRefGoogle Scholar
Morat, Ph. 1993. Our knowledge of the flora of New Caledonia; endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1: 7281.CrossRefGoogle Scholar
Morat, Ph., Jaffré, T., Veillon, J.-M. & MacKee, H.S. 1981. Carte de la vegetation de la Nouvelle-Caledonia au 1/1.000.000. Les formations vegetales. Note explicative. Atlas de la Nouvelle-Caledonie. Paris: ORSTOM.Google Scholar
Morat, Ph., Jaffré, T., Veillon, J.-M. & MacKee, H.S. 1986. Affinites floristiques et considerations sur l’origine des maquis miniers de la Nouvelle-Caledonia. Bulletin du Museum Nationale Histoire Naturelle Paris 4B8: 133182.Google Scholar
Morat, Ph., Jaffré, T. & Veillon, J.-M. 1999. Menaces sur les taxons rares de la Nouvelle-Caledonie: Actes du Colloque sur les especes vegetaux manacees de France. Bulletin Societe Botanique du Sud-ost 19: 129144.Google Scholar
Moretti, I. & Turcotte, D.L. 1985. A model for erosion, sedimentation, and flexure with application to New Caledonia. Journal of Geodynamics 3: 155168.CrossRefGoogle Scholar
Mortimer, N., Herzer, R.H., Gans, P.B., et al. 2007. Oligocene–Miocene tectonic evolution of the South Jiji Basin and Northland Plateu, SW Pacific ocean: evidence from petrology and dating of dredged rocks. Marine Geology 237: 124.CrossRefGoogle Scholar
Moseley, M.F. 1943. Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109132.Google Scholar
Murienne, J., Grandcolas, M., Dolors Piulachs, M., et al. 2005. Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia ? Cladistics 21: 27.CrossRefGoogle ScholarPubMed
Myers, N. 1988. Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 3: 187208.CrossRefGoogle Scholar
Myers, N. 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10: 243256.CrossRefGoogle ScholarPubMed
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonesca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Nasi, R., Jaffré, T. & Sarrailh, J.M. 2002. Les forets de montagnes de la Nouvelle-Caledonia. Bois Forest Tropical 274: 517.Google Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands; a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle ScholarPubMed
Page, C.N. 1989. The role of Edinburgh Royal Botanic Garden in the international conservation of conifers. International Dendrology Society Yearbook 1989: 112115.Google Scholar
Page, C.N. 1990. Cupressaceae. Pp 302316 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants: I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1994. The ex-situ conservation of temperate rainforest conifer tree species: a British-based programme. Biodiversity and Conservation 3: 191199.CrossRefGoogle Scholar
Page, C.N. 1997. The ex-situ cultivation of conifers, its limitations and potential role. International Dendrology Society Bulletin 1997: 5153.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference. Conifers for the Future? Brugge: International Society for Horticultural Science.Google Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Paris, J.-P. 1981. Geologie de la Nouvelle Caledonia. Paris: Bureau de Recherches Geologiques et Mineres Memoire 31: 1274.Google Scholar
Pascal, M., Richer de Forges, G., Le Guyader, H. & Simberloff, D. 2008. Mining and other threats to New Caledonia biodiversity hotspot. Conservation Biology 22: 498499.CrossRefGoogle ScholarPubMed
Piggin, J. & Bruhl, J.J. 2010. Phylogeny reconstructions of Callitris Vent (Cupressaceae) and its allies leads to inclusion of Actinostrobos within Callitris. Australian Systematic Botany 23: 6993.CrossRefGoogle Scholar
Pillon, Y., Munzinger, J., Amir, H. & Lebrun, M. 2010. Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology 98: 11081116.CrossRefGoogle Scholar
Proctor, J. 1999. Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology and Evolution 14: 334335.CrossRefGoogle Scholar
Pye, M.G., Gadek, P.A. & Edwards, K.J. 2003. Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data. Australian Systematic Botany 16: 505514.CrossRefGoogle Scholar
Raharvelomanana, P., Bianchini, J.-P., Faure, R., Cambon, A. & Azzaro, M. 1996. Two guiane and eudesmane-type sesquiterpenoids from Neocallitropsis pancheri. Phytochemistry 41: 243246.CrossRefGoogle Scholar
Rawling, T.J. & Lister, G.S. 1999. Oscillating modes of orogeny in the Southwest Pacific and the tectonic evolution of New Caledonia. Geological Society of London Special Publications 154: 109127.CrossRefGoogle Scholar
Sarlin, P. 1954. Bois et forets de la Nouvelle-Caledonie. Paris: Virot.Google Scholar
Sarlin, P. 1956. La vegetation canaque. Memoirs du Museum national d’Histoire Naturelle, B7.Google Scholar
Saunders, D.A., Hobs, R.J. & Margules, C.R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 1832.CrossRefGoogle Scholar
Saxton, W.T. 1913. Contributions to the life-history of Tetraclinis articulata Masters with some notes on the phylogeny of the Cupressoideae and Callitroideae. Annals of Botany 27: 577-605.CrossRefGoogle Scholar
Schellart, W.P., Lister, G.S. & Toy, V.G. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Science Reviews 76: 191233.CrossRefGoogle Scholar
Soltis, P. & Gitzendamner, M.A. 1999. Molecular systematics and the conservation of rare species. Conservation Biology 13: 471483.CrossRefGoogle Scholar
Tanner, E.J.V. & Bellingham, P.J. 2006. Less diverse forest is more resistant to hurricane disturbance: evidence from Montane rainforest in Jamaica. Journal of Ecology 94: 10031010.CrossRefGoogle Scholar
Thomas, P. (with contributions from Munzinger, J., Lowry, P.P. II., Jaffré, T.) 2009. Neocallitropsis pancheri . In IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. www.iucnredlist.org.Google Scholar
Trescases, J.-J. 1973. Weathering and geochemical behaviour of the elements of ultramafic rocks in New Caledonia. Bureau of Mineral Research, Geology and Geophysics, Canberra 141: 149161.Google Scholar
Trescases, J.-J. 1975. L’evolution geochimique supergene des roches ultrabasiques en zone tropicale. Formation des gisements nickeliferes de Nouvelle-Caledonie. Memoires ORSTOM 78: 1259.Google Scholar
Vandermeer, J., de la Cerda, I.G., Boucher, D., Perfecto, I. & Ruiz, J. 2000. Hurricane disturbance and tropical tree species diversity. Science 290: 788791.CrossRefGoogle Scholar
Veillon, J.-M. 1993. Protection of floristic diversity in New Caledonia. Biodiversity Letters 1: 8891.CrossRefGoogle Scholar
Virot, R. 1956. La vegetation Canaque. Mémoires du Museum national d’histoire naturelle Paris B 7: 1400.Google Scholar
Watt, A. 1999. Conifers of New Caledonia. Pp 4149 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Webb, L.J. 1958. Cyclones as an ecological factor in tropical lowland rainforest, North Queensland. Australian Journal of Botany 6: 220230.CrossRefGoogle Scholar
Whiting, S.N., Reeves, R.D., Richards, D., et al. 2004. Research priorities for conservation of metallophyte diversity and their potential for restoration and site remediation. Restoration Ecology 12: 106116.CrossRefGoogle Scholar
Wilson, E.O. 1992. The Diversity of Life. Cambridge, MA: Harvard University Press.Google Scholar
Young, A. & Boyle, T. 2000. Forest fragmentation. Pp 123124 in Young, A. (ed.), Forest Conservation: Genetics. Collingwood: CSIRO Publishing.CrossRefGoogle Scholar
Young, A., Boyle, T. & Brown, T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413418.CrossRefGoogle ScholarPubMed

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Adams, R. 1999. Germination of Callitris seeds in relation to temperature, water stress, priming, and hydration–dehydration cycles. Journal of Arid Environments 43: 437448.CrossRefGoogle Scholar
Archer, M. 1981. A review of the origins and radiations of Australian mammals. Pp 14351488 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Ash, J. 1983. Tree rings in tropical Callitris macleyana F.Muell. Australian Journal of Botany 31: 277281.CrossRefGoogle Scholar
Atwill, P.M. & Clayton-Greene, K.A. 1984. Studies of gas exchange and development in a sub-humid woodland. Journal of Ecology 72: 285294.CrossRefGoogle Scholar
Baird, A.M. 1953. The life-history of Callitris. Phytomorphology 3: 258284.Google Scholar
Baker, P.J., Palmer, J.G., & D’Arrigo, R. 2008. The dendrochronology of Callitris intratropica in northern Australia: annual ring structure, chronology development and climate correlations. Australian Journal of Botany 56: 311320.CrossRefGoogle Scholar
Beadle, N.C.W. 1954. Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35(3): 370375.CrossRefGoogle Scholar
Beadle, N.C.W. 1962. Soil phosphate and the delimitation of plant communities in eastern Australia. II. Ecology 43: 281288.CrossRefGoogle Scholar
Beadle, N.C.W. 1966. Soil phosphate and its role in moulding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47: 9921007.CrossRefGoogle Scholar
Beadle, N.C.W. 1968. Some aspects of ecology and physiology of Australian xeromorphic plants. Australian Journal of Science 30: 348355.Google Scholar
Beadle, N.C.W. 1981a. The Vegetation of Australia. Stuttgart: Gustav Fischer Verlag.Google Scholar
Beadle, N.C.W. 1981b. The vegetation of the arid zone. Pp 695716 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Beadle, N.C.W & Burgess, A. 1949. Working capital in a plant community. Australian Journal of Science 11: 207208.Google Scholar
Beard, J.S. 1967. Some vegetation types of tropical Australia in relation to those of Africa and America. Journal of Ecology 55: 271280.CrossRefGoogle Scholar
Beard, J.S. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. Journal of Biogeography 4: 111118.CrossRefGoogle Scholar
Bentham, G. & Hooker, J.D. 1880. Coniferae (Ordo CLXV). Genera Plantarum 3(1): 420442.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.) Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Bootle, K.R. 1985. Wood in Australia: Types, Properties and Uses. Sydney: McGraw-Hill.Google Scholar
Bowler, J.M. 1976. Aridity in Australia: age, origins and expressions in Aeolian land forms and sediments. Earth Science Reviews 12: 297310.CrossRefGoogle Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Bowman, D.M.J.S. & Latz, P.K. 1993. Ecology of Callitris glaucophylla (Cupressaceae) on the MacDonnell Ranges, central Australia. Australian Journal of Botany 41: 217225.CrossRefGoogle Scholar
Bowman, D.M.J.S. & Panton, W.J. 1993. Decline of Callitris intratropica in the Northern Territory: implications for pre- and post-European colonisation fire regimes. Journal of Biogeography 20: 373381.CrossRefGoogle Scholar
Bowman, D.M.J.S., Price, O., Whitehead, P.J. & Walsh, A. 2001. The ‘wilderness effect’ and decline of Callitris intratropica on the Arnhem Land Plateau, northern Australia. Australian Journal of Botany 49: 665672.CrossRefGoogle Scholar
Bowman, D.M.J.S., Wilson, B.A. & Davis, G.W. 2006. Response of Callitris intratropica R.T.Baker & H.G.Smith to fire protection, Murgenella, Northern Australia. Austral Ecology 13: 147159.CrossRefGoogle Scholar
Bradstock, R.A. 2008. Effects of large fires on biodiversity in south-eastern Australia: disaster or template for diversity? International Journal of Wildland Fire 17(6): 809822.CrossRefGoogle Scholar
Bradstock, R.A. & Cohn, J.S. 2002. Demographic characteristics of mallee pine (Callitris verrucosa) in fire-prone mallee communities of central New South Wales. Australian Journal of Botany 50: 653665.CrossRefGoogle Scholar
Bradstock, R.A., Bedward, M. & Cohn, J.S. 2006. The modelled effect of differing fire management strategies on the conifer Callitris verrucosa within semi-arid mallee vegetation in Australia. Journal of Applied Ecology 43: 281292.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brophy, J.J., Goldsack, R.J., Forster, P.I., et al. 2007. Chemistry of the Australian gymnosperms. Part IX. The leaf oils of the Australian members of the genus Callitris (Cupressaceae). Journal of Essential Oil Research 19: 5771.CrossRefGoogle Scholar
Charley, J.L. & Cowling, S.W. 1968. Changes in soil nutrient status resulting from overgrazing in plant communities in semi-arid areas. Proceedings of the Ecological Society of Australia 3: 2838.Google Scholar
Christophel, D.C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and the palaeoclimate. Pp 379390 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Christophel, D.C., Scriven, L.J. & Greenwood, D.R. 1992. An Eocene megafossil flora from Nelly Creek, South Australia. Transactions of the Royal Society of South Australia 116: 6576.Google Scholar
Cochrane, G.R. 1966. Fire ecology in south eastern Australian sclerophyll forests. Proceedings of the Tall Timbers Fire Ecology Conference 8: 1540.Google Scholar
Cookson, I.C. 1954. The Cainozoic occurrence of Acacia in Australia. Australian Journal of Botany 2: 5259.CrossRefGoogle Scholar
Cookson, I.C. & Duigan, S.L. 1950. Fossil Banksiae from Yallourn, Victoria, with some notes on the morphology and anatomy of living species. Australian Journal of Scientific Research, Ser. B. 4: 415449.Google Scholar
Crisp, M., Cook, L. & Steane, D. 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society London B 359: 15511571.CrossRefGoogle ScholarPubMed
Cullen, L.E. & Grierson, P.F. 2007. A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Climatic Change 85: 213219.CrossRefGoogle Scholar
Cullen, L.E. & Grierson, P.F. 2009. Multi-decadal scale variability in autumn–winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris. Climate Dynamics 33: 433444.CrossRefGoogle Scholar
Dargavel, J., Hart, D. & Libbis, B. 2001. Perfumed Pineries: Environmental History of Australia’s Callitris Forests. Canberra: Australian National University Centre for Resource and Environmental Studies.Google Scholar
De Conto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421: 245249.CrossRefGoogle ScholarPubMed
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Playford, G. 1969. Palynology of the Australian Cretaceous: a review. Pp 174210 in Campbell, K.S.W. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Canberra: Australian National University Press.Google Scholar
Disney, H.J. de S. 1968. Bushfires and their effect on fauna and flora. Australian Natural History 11: 8789.Google Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria. Parts 1 & 2. Memoirs of the Geological Survey of Victoria 28: 1310.Google Scholar
Eldridge, D.J. 1999. Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris galucophylla woodland in eastern Australia. Acta Oecologica 20: 159170.CrossRefGoogle Scholar
Eldridge, D.J. & Freudenberger, D. 2005. Ecosystem wicks: woodland trees enhance water infiltration in a fragmented agricultural landscape in eastern Australia. Austral Ecology 30: 336347.CrossRefGoogle Scholar
Ettingshausen, C. von 1888. Contributions to the tertiary flora of Australia. Palaeontology 2: 1189.Google Scholar
Exon, N.F., Langford-Smith, T. & McDougall, I. 1970. The age and geomorphic correlations of deep-weathering profiles, silcrete, and basalt in the Roma-Ambly Region, Queensland. Journal of the Geological Society of Australia 17: 2130.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Ortiz García, S. 2005. The early development of ovuliferous cones in Cupressaceae s.lat: a survey of the genera. Pp 2746 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Fensham, R.J. 2008. Leichhardt’s maps: 100 years of change in vegetation structure in inland Queensland. Journal of Biogeography 35: 141156.CrossRefGoogle Scholar
Field, T.S. & Brodribb, T. 2001. Stem water transport and freeze–thaw cycle embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127: 314320.CrossRefGoogle Scholar
Floyd, A.G. 1976. Effect of burning on regeneration from seeds in wet sclerophyll forest. Australian Forester 39: 210220.CrossRefGoogle Scholar
Frakes, L.A. 1999. Evolution of Australian environments. Pp 163203 in Flora of Australia, 2nd edn. Melbourne: Australian Biological Resources Study/CSIRO Publishing.Google Scholar
Francis, J.E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic interpretations. Palaeontology 29: 665684.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gill, A.M. 1975. Fire and the Australian flora: a review. Australian Forester 38: 425.CrossRefGoogle Scholar
Gould, R.E. 1975. The succession of Australian pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Greenwood, D.R. 1994. Palaeobotanical evidence for Tertiary climates. Pp 4459 in Hill, R.S. (ed.),History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Greenwood, D.R. 1996. Eocene monsoon forests in central Australia? Australian Systematic Botany 9: 95112.CrossRefGoogle Scholar
Hahs, A., Enright, N.J. & Thomas, I. 1999. Plant communities, species richness and their environmental correlates in the sandy heath of Little Desert National Park, Victoria. Australian Journal of Ecology 24: 249257.CrossRefGoogle Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
Harris, S. & Kirkpatrick, J.B. 1991. The distributions, dynamic and ecological differentiation of Callitris species in Tasmania. Australian Journal of Botany 39: 187202.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hill, K.D. 1998. Pinophyta. Pp 545596 in Flora of Australia, vol 48. Melbourne: CSIRO.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9(6): 867875.CrossRefGoogle Scholar
Hill, R.S., Truswell, E.M., McLoughlin, S. & Dettmann, M.E. 1999. Evolution of the Australian flora: fossil evidence. Pp 251320 in Orchard, A.E. and Thompson, H.S. (eds.), Flora of Australia, 2nd ed. Melbourne: ABRS/CSIRO.Google Scholar
Hnawia, E., Menut, C., Agrebi, A. & Cabalion, R. 2008. Wood essential oils of two endemic trees from new Caledonia: Callitris sulcata (Parl.) Schltr. and Callitris neocaledonica Dummer. Biochemical Systematic and Ecology 36: 859866.CrossRefGoogle Scholar
Hopper, S.D. & Maslin, B.R. 1978. Phytogeography of Acacia in Western Australia. Australian Journal of Botany 26: 6378.CrossRefGoogle Scholar
Jackson, W.D. 1999. Palaeohistory of vegetation change in the last 2 million years. Pp 6488 in Reid, J.B., Hill, R.S., Brown, M.J. & Hovenden, M.J. (eds.), Vegetation of Tasmania. Hobart: Australian Biological Resources Study.Google Scholar
Johnson, L.A.S. & Briggs, B.G. 1981. Three old southern families – Myrtaceae, Proteaceae and Restionaceae. Pp 427469 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Jordan, G.J. 1995. Extinct conifers and conifer diversity in the early Pleistocene of western Tasmania. Review of Palaeobotany & Palynology 84: 375387.CrossRefGoogle Scholar
Kemp, E.M. 1978. Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeos 24: 169208.CrossRefGoogle Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Kershaw, A.P., D’Costa, D.M., Tibby, J., Wagstaff, B.E. & Heijnis, H. 2004. The last million years around Lake Keilambete, western Victoria. Proceedings of the Royal Society of Victoria 116: 93104.Google Scholar
Knight, A.J.P., Beale, P.E. & Dalton, G.S. 1998. Direct seeding of native trees and shrubs in low rainfall areas and on non-wetting sands in South Australia. Agroforestry Systems 39: 225239.CrossRefGoogle Scholar
Kolesik, P. 2001. Gall midges (Diptera: Cecidomyiidae) of Australian cypress-pines, Callitris spp. (Cupressaceae), with descriptions of three new genera and three new species. Australian Journal of Entomology 39: 244255.CrossRefGoogle Scholar
Kroenke, L. 1996. Plate tectonic development of the western and southwestern Pacific: Mesozoic to the present. Pp 1934 in Keast, A. & Miller, S.E. (eds.), The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam: SPB Academic Publishing.Google Scholar
Lange, R.T. 1980 Evidence for lid-cells and host-specific microfungi in the search for Tertiary Eucalyptus. Reviews in Palaeobotany and Palynology 29: 2933.CrossRefGoogle Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lebouvier, N., Menut, C., Hnawia, E., et al. 2010. Chemical investigations of essential oils from endemic Cupressaceae trees from New Caledonia. Natural Product Communications 5: 949956.CrossRefGoogle ScholarPubMed
Li, L.-C., Cong, B., Liu, G., Liu, Y-Q., & Weng, R.-F. 1994. Karyotype analysis of 3 species of Callitris (Cupressaceae) in Australia and its phylogenetic significance. Acta Botanica Yunnanica 16: 349353.Google Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Science Reviews 53: 237277.CrossRefGoogle Scholar
Lucas, R., Bunting, P., Paterson, M. & Chisholm, L. 2008. Classification of Australian forest communities using aerial photograph, CASI and HyMap data. Remote Sensing of Environment 112: 20882103.CrossRefGoogle Scholar
Luly, J.G. 2001. On the equivocal fate of Late Pleistocene Callitris Vent. (Cupressaceae) woodlands in arid South Australia. Quaternary International 83: 155168.CrossRefGoogle Scholar
Mabbutt, J.A. 1965. The weathered land surface in Central Australia. Zeitshrift fur Geomorphologie 9: 82113.Google Scholar
Mackenzie, B.D. & Keith, D.A. 2009. Adaptive management in practice: conservation of a threatened plant population. Ecological Management & Restoration 10: S129S135.CrossRefGoogle Scholar
Macphail, M.K., Jordan, G.J. & Hill, R.S. 1993. Key periods in the evolution of the flora and vegetation in western Tasmania. I: The early middle Pleistocene. Australian Journal of Botany 41: 673707.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F., Truswell, E.M. & Sluiter, I.R.K. 1994. Pp 189261 in Hill, R.S. (ed.). History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Main, A.R. & Bakker, H.R. 1981. Adaptation of macropod marsupials to aridity. Pp 14891519 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Major, R.E., Christie, F.J., Gowing, G., Cassis, G. & Reid, C.A.M. 2003. The effect of habitat configuration on arboreal insects in fragmented woodlands of south-eastern Australia. Biological Conservation 113: 3548.CrossRefGoogle Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
McHenry, M.T., Wilson, B.R., Lemon, J.M., Donnelly, D.E & Growns, I.G. 2006. Soil and vegetation response to thinning White Cypress Pine (Callitris glaucophylla) on the North Western Slopes of New South Wales, Australia. Plant and Soil 285: 245255.CrossRefGoogle Scholar
Moseley, M.F. 1943. Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109132.Google Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands: a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle Scholar
O’Donnell, A.J., Cullen, L.E., McCaw, W.L., Boer, M.M. & Grierson, P.F. 2010. Dendrological potential of Callitris preissii for dating historical fires in semi-arid shrublands of southern Western Australia. Dendrochronologia 28: 3748.CrossRefGoogle Scholar
Ogden, J. 1981. Dendrochronological studies and the determination of tree ages in the Australian tropics. Journal of Biogeography 8: 405420.CrossRefGoogle Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Ogunwande, I.A., Olawore, N.O., Kasali, A.A. & Konig, W.A. 2009. Chemical composition of the leaf volatile oils of Callitris intratropica R.T.Baker & H.G.Smith from Nigeria. Flavour and Fragrance Journal 18: 387389.CrossRefGoogle Scholar
Page, C.N. 1979. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1980. Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics and Evolution 135: 7179.CrossRefGoogle Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Parker, D., Lunt, D. & Adams, R. 2000. Identification of Cypress-pines (Callitris species) at Terrick Terrick National Park, Victoria. Victorian Naturalist 117: 9395.Google Scholar
Paull, R. & Hill, R.S. 2010. Early Oligocene Callitris and Fitzroya (Cupressaceae) from Tasmania. American Journal of Botany 97: 809820.CrossRefGoogle ScholarPubMed
Piggin, J. & Bruhl, J.J. 2010. Phylogeny reconstructions of Callitris Vent (Cupressaceae) and its allies leads to inclusion of Actinostrobos within Callitris. Australian Systematic Botany 23: 6993.CrossRefGoogle Scholar
Prior, L.D., Bowman, D.M.J.S. & Brook, B.W. 2007. Growth and survival of two north Australian relictual tree species, Allosyncarpiaa ternate (Myrtaceae) and Callitris intratropica (Cupressaceae). Ecological Research 22: 228236.CrossRefGoogle Scholar
Prior, L.D., Lee, Z., Brock, C., Williamson, G.J. & Bowman, D.M.J.S. 2010. What limits the distribution and abundance of the native conifer Callitris glaucophylla (Cupressaceae) in the West MacDonnell Ranges, central Australia? Australian Journal of Botany 58: 554564.CrossRefGoogle Scholar
Purdie, R.W. & Slatyer, R.O. 1976. Vegetation succession after fires in sclerophyll woodland communities in south-eastern Australia. Australian Journal of Ecology 1: 7579.CrossRefGoogle Scholar
Pye, M.G., Gadek, P.A. & Edwards, K.J. 2003. Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data. Australian Systematic Botany 16: 505514.CrossRefGoogle Scholar
Quilty, P.G. 1994, The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye. Acta Horticulturae.Google Scholar
Recher, H.F. & Christensen, P.E. 1981. Fire and the evolution of the Australian biota. Pp 135162 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Ross, K.A., Bedward, M., Ellis, M.V., et al. 2008. Modelling the dynamics of white cypress pine Callitris glaucophylla woodlands in inland south-eastern Australia. Ecological Modelling 211: 1124.CrossRefGoogle Scholar
Russell-Smith, J. 2006. Recruitment dynamics of the long-lived obligate seeders Callitris intratropica (Cupressaceae) and Petraeomyrtus punicea (Myrtaceae). Australian Journal of Botany 54: 479485.CrossRefGoogle Scholar
Saxton, W.T. 1913. Contributions to the life-history of Tetraclinis articulata Masters with some notes on the phylogeny of the Cupressoideae and Callitroideae. Annals of Botany 27: 577-605.CrossRefGoogle Scholar
Sharp, B.R. & Bowman, D.M.J.S. 2004. Patterns of long-term vegetation change in a sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of Tropical Ecology 20: 259270.CrossRefGoogle Scholar
Specht, R.L. 1969. A comparison of the sclerophyllous vegetation characteristic of Mediterranean-type climates in France, California and southern Australia. I. Structure, morphology and succession. Australian Journal of Botany 17: 277292.CrossRefGoogle Scholar
Specht, R.L. 1979a. Heathlands and related shrublands of the world. Pp 118 in Specht, R.L. (ed.), Ecosystems of the World. Vol. 9. Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Specht, R.L. 1979b. The sclerophyllous (heath) vegetation of Australia: the eastern and central States. Pp 125210 in Specht, R.L. (ed.) Ecosystems of the World. Vol. 9. Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Specht, R.L. 1981a. Major vegetation formations in Australia. Pp 163297 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Specht, R.L. 1981b. Ecophysiological principles determining the biogeography of major vegetation formations in Australia. Pp 299333 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Specht, R.L. 1981c. Evolution of the Australian flora: some generalizations. Pp 783805 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Specht, R.L., Rayson, P. & Jackman, M. 1958. Dark Island Heath (Ninety-Mile Plain, South Australia). VI. Pyric succession: changes in composition, coverage, dryweight and mineral status. Australian Journal of Botany 6: 5988.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae – Callitroideae). Botanical Gazette 150: 378390.CrossRefGoogle Scholar
Thompson, W.A. & Eldridge, D.J. 2005a. Plant cover and composition in relation to density of Callitris glaucophylla (white cypress pine) along a rainfall gradient in eastern Australia. Australian Journal of Botany 53: 545554.CrossRefGoogle Scholar
Thompson, W.A. & Eldridge, D.J. 2005b. White cypress pine (Callitris glaucophylla): a review of its roles in landscape and ecological processes in eastern Australia. Australian Journal of Botany 53: 555570.CrossRefGoogle Scholar
Thompson, W.A., Eldridge, D.J. & Bonser, S.P. 2006. Structure of biological soil crust communities in Callitris glaucophylla woodlands on New South Wales, Australia. Journal of Vegetation Science 17: 271280.CrossRefGoogle Scholar
Venning, J. 1979. Character variation in Australian species of Callitris Vent. (Cupressaceae). PhD dissertation, University of Adelaide.Google Scholar
Whipp, R.K., Lunt, I.D., Deane, A. & Spooner, P.G. 2009. Historical forest survey data from EucalyptusCallitris forests: a valuable resource for long-term vegetation studies. Australian Journal of Botany 57: 541555.CrossRefGoogle Scholar
Wild, A. 1958. The phosphate content of Australian soils. Australian Journal of Agricultural Research 9: 193204.CrossRefGoogle Scholar
Yibarbuk, D., Whitehead, P.J., Russel-Smith, J., et al. 2002. Fire ecology and aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. Journal of Biogeography 28: 325343.CrossRefGoogle Scholar

References

Beard, J.S. 1969. Endemism in the western Australian flora at species level. Journal of the Royal Society of Western Australia 52: 1820.Google Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1999. The importance of xylem constraints in the distribution of conifer species. New Phytologist 143: 365372.CrossRefGoogle Scholar
Burbidge, N.T. 1960. The phytogeography of the Australian region. Australian Journal of Botany 8: 57212.CrossRefGoogle Scholar
Churchill, D.M. 1973. The ecological significance of tropical mangroves in the Early Tertiary flora of southern Australia. Special Publications of the Geological Society of Australia 4: 7986.Google Scholar
Crisp, M., Cook, L. & Steane, D. 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society London B 359: 15511571.CrossRefGoogle ScholarPubMed
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz García, S. 2005. The early development of ovuliferous cones in Cupressaceae s.lat: a survey of the genera. Pp 2746 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Field, T.S. & Brodribb, T. 2001. Stem water transport and freeze–thaw cycle embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127: 314320.CrossRefGoogle Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Frakes, L.A. 1999. Evolution of Australian environments. Pp 163203 in Flora of Australia, 2nd edn. Melbourne: Australian Biological Resources Study/CSIRO Publishing.Google Scholar
Gardner, C.A. 1944. The vegetation of Western Australia with particular reference to the climate and soils. Journal of the Royal Society of Western Australia 28: 1187.Google Scholar
George, A.S., Hopkins, A.J.M. & Marchant, N.G. 1979. The heathlands of Western Australia. Pp 211230 in Specht, R.L. (ed.), Ecosystems of the World. Vol. 9. Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hill, R.S. 1998. Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Australian Systematic Botany 11: 391400.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Merrifield, H.E. 1993. An Early Tertiary macroflora from West Dale, southwestern Australia. Alcheringa 17: 285326.CrossRefGoogle Scholar
Hill, R.S., & Whang, S.S. 1996 . A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9: 867875.CrossRefGoogle Scholar
Hopper, S.D. & Gioa, P. 2004. The southwest Australian floristic region: evolution and conservation of a global hotspot of biodiversity. Annual Review of Ecology and Systematics 35: 623650.CrossRefGoogle Scholar
Marchant, N.G. 1973. Species diversity in the south-western flora. Journal of the Royal Society of Western Australia 56: 2330.Google Scholar
Moseley, M.F. 1943 Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109132.Google Scholar
Mulcahy, M.J. 1973 Landforms and soils of south western Australia. Journal of the Royal Society of Western Australia 56: 1622.Google Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Piggin, J. & Bruhl, J.J. 2010. Phylogeny reconstructions of Callitris Vent (Cupressaceae) and its allies leads to inclusion of Actinostrobus within Callitris. Australian Systematic Botany 23: 6993.CrossRefGoogle Scholar
Pye, M.G., Gadek, P.A. & Edwards, K.J. 2003. Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data. Australian Systematic Botany 16: 505514.CrossRefGoogle Scholar
Saxton, W.T. 1913. Contributions to the life-history of Tetraclinis articulata Masters with some notes on the phylogeny of the Cupressoideae and Callitroideae. Annals of Botany 27: 577-605.CrossRefGoogle Scholar
Specht, R.L. 1979. Heathlands and related shrublands of the world. Pp 118 in Specht, R.L. (ed.), Ecosystems of the World. Vol. 9. Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Van den Driessche, R., Connor, D.J. & Tunstall, B.R. 1971. Photosynthetic response of brigalow to irradiance, temperature and water potential. Photosynthetica 5: 210217.Google Scholar

References

Bond, W.J. & Breytenbach, G.J. 1985. Ants, rodents and seed predation in Proteaceae. South African Journal of Zoology 20: 150154.CrossRefGoogle Scholar
Brown, P.J., Manders, P.T. & Bands, D.P. 1991. Prescribed burning as a conservation management practice: a case history from the Cederberg Mountains, Cape Province, South Africa. Biological Conservation 56: 133150.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Chapman, J.D. 1961. Some notes of the taxonomy, distribution, ecology and economic importance of Widdringtonia, with particular reference to W. whytei. Kirkia 1: 138154.Google Scholar
Chapman, J.D. 1992. Notes on Mulanje Cedar Malawi’s national tree. Commonwealth Forestry Review (United Kingdom) 73: 272273.Google Scholar
Chapola, B.B.J. 1990. Wood properties of wide and narrow crowned variants of Widdringtonia nodiflora Powrie (Mulanje Cedar) growing at Zomba Mountain, Malawi. South African Forestry Journal 154: 4750.CrossRefGoogle Scholar
Erdtman, H. & Norin, T. 1966. Chemistry of the Cupressales. Fortschritte der Chemie Organischer Naturstoffe 24: 206287.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz García, S. 2005. The early development of ovuliferous cones in Cupressaceae s.lat: a survey of the genera. Pp 2746 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
February, E.C. & Stock, W.D. 1999. Declining trend in the 13C/12C ratio of atmospheric carbon dioxide from tree rings of South African Widdringtonia cedarbergensis. Quaternary Research 52: 229236.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1993. An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Annals of the Missouri Botanic Garden 80: 581586.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1874. Nachträge zur Miocene Flora Grönlands. Flora Fossilis Arctica. Band III: Heft 2 & 3. Kgl. Svenska Vetenskapsakad. Handlingar 12: 111.Google Scholar
Higgins, K.B., Manders, P.T. & Lamb, A.B. 1989. The efficacy of microclimate shelters in improving seedling survival in re-establishment of the Clanwilliam cedar. South African Forestry Journal 151: 15.CrossRefGoogle Scholar
Hubbard, C.S. 1937. Observations on the distribution and rate of growth of Clanwilliam cedar Widdringtonia juniperoides Endl. (now cedarbergensis). South African Journal of Science 33: 572586.Google Scholar
Krasser, F. 1896. Beitrage zur Kenntniss der fossilen Kreideflora von Kunstadt in Mahren. Beitrage Palaeontol. Oesterr Ungarns 10: 113152.Google Scholar
Linder, H.P. 2003. Evolution of diversity: the Cape Flora. Trends in Plant Science 10: 536541.CrossRefGoogle Scholar
Manders, P.T. 1986a. The effect of shading on nursery-grown seedlings of the Clanwilliam cedar. South African Forestry Journal 138: 1522.CrossRefGoogle Scholar
Manders, P.T. 1986b. An assessment of the current status of the Clanwilliam cedar Widdringtonia cedarbergensis and the reasons for its decline. South African Forestry Journal 139: 4853.CrossRefGoogle Scholar
Manders, P.T. & Botha, S.A. 1987. Experimental re-establishment of the Clanwilliam cedar (Widdringtonia cedarbergensis): a preliminary study. South African Journal of Wildlife Research 17: 8690.Google Scholar
Manders, P.T. & Botha, S.A. 1989. A note on establishment of Widdringtonia cedarbergensis (Clanwilliam cedar). Journal of Applied Ecology 26: 571574.CrossRefGoogle Scholar
Manders, P.T., Botha, S.A., Bond, W.J. & Meadows, M.E. 1990. The enigmatic Clanwilliam cedar. Veld and Flora 76: 811.Google Scholar
Marsh, J.A. 1966. Cupressaceae. Pp 4348 in Codd, L.E., de Winter, B. & Rycroft, H.B. (eds.), Flora of Southern Africa: I. Pretoria: Government Printer.Google Scholar
McIver, E.E. 2001. Cretaceous Widdringtonia Endl. (Cupressaceae) from North America. International Journal of Plant Sciences 162: 937961.CrossRefGoogle Scholar
Meadows, M.E. & Sugden, J.M. 1990. Late Quaternary vegetation of the Cederberg, south-west Cape. Palaeoecology of Africa 21: 269281.Google Scholar
Meadows, M.E. & Sugden, J.M. 1991. A vegetation history of the last 14,000 years in the Cederberg, south-western Cape Province. South African Journal of Science 87: 3443.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Moseley, M.F. 1943. Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109132.Google Scholar
Mustart, P., Juritz, J. Makua, C., Van der Merwe, S.W. & Wessels, N. 1995. Restoration of the Clanwilliam cedar Widdringtonia cedarbergensis: the importance of monitoring seedlings planted in the Cederberg, South Africa. Biological Conservation 72: 7376.CrossRefGoogle Scholar
Pauw, C.A. & Linder, H.P. 1997. Tropical African cedars (Widdringtonia, Cupressaceae): systematics, ecology and conservation status. Botanical Journal of the Linnean Society 123: 297319.CrossRefGoogle Scholar
Saki, I. 1989. A report on the Mulanje cedar resources and the present crisis. Forestry Research Institute of Malawi Record 65: 110.Google Scholar
Saporta, G. 1863. Etudes sur la vegetation du sud-est de la France a l’epoque Tertaire. Annales des Sciences Naturelles, Botanique, pt 1 ser 4, 19: 5124.Google Scholar
Saxton, W.T. 1913. Contributions to the life-history of Tetraclinis articulata Masters with some notes on the phylogeny of the Cupressoideae and Callitroideae. Annals of Botany 27: 577-605.CrossRefGoogle Scholar
Taylor, H.C. 1976. Notes of the vegetation and flora of the Cederberg. Veld and Flora 62: 2830.Google Scholar
Tiffney, B.H. 1985. The Eocene North Atlantic land bridge: its importance in the Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum 66: 243273.CrossRefGoogle Scholar
Thomas, J.C. & Bond, W.J. 1997. Genetic variation in an endangered cedar (Widdringtonia cedarbergensis) versus two congeneric species. South African Journal of Botany 63: 133140.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Velenovsky, J. 1885. Die Gymnospermen der bohmischen Kreide-formation. Prague: Ed. Greger.CrossRefGoogle Scholar
Venkatesh, C.S. 1987. Narrow-crowned variants of the Mulanje Cedar (Widdringtonia nodiflora Powrie) in Malawi. Silvae Genetica 36: 238240.Google Scholar
Walther, H. 1995. Invasion of Arcto-Tertiary elements in the Palaeogene of central Europe. Pp 239250 in Boulter, M.C. & Fisher, H.C. (eds.), Cenozoic Plants and Climates of the Arctic. Berlin: Springer.Google Scholar
White, F. 1983. The Vegetation of Africa, a Descriptive Memoir to accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa. Gland: UNESCO.Google Scholar

References

Alloza, J.A. & Vallejo, R. 1999. Relacion entre les caracteristicas meteorologicas del ano de plantacion y los resultados de las repoblaciones. Ecologia 13: 173187.Google Scholar
Barrero, A.F., Herrador, M.M., Arteaga, R., et al. 2005a. Chemical composition of the essential oils of leaves and wood of Tetraclinis articualta (Vahl) Masters. Journal of Essential Oil Research 17: 166168.CrossRefGoogle Scholar
Barrero, A.F., Quilez del Moreau, J.F., Lucas, R., et al. 2005b. Diterpenoids from Tetraclinis articulata that inhibit various known leucocyte functions. Journal of Natural Products 66: 844850.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buhagiar, J.A., Podesta, M.T.C., Wilson, A.P., Micallef, M.J. & Ali, S. 1999. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extracted from the conifer Tetraclinis articulata. Anticancer Research 19: 54355443.Google ScholarPubMed
Buhagiar, J.A., Podesta, M.T.C., Cioni, P.L., Flamini, G. & Morelli, I. 2000. Essential oil composition of different parts of Tetraclinis articualta. Journal of Essential Oil Research 12: 2932.CrossRefGoogle Scholar
Chow, Y.L. & Erdtman, H. 1960. Totarolone, a new diterpene ketophenol from Tetraclinis articulata. Acta Chimica Scandinavica 14: 18521853.CrossRefGoogle Scholar
Columbini, M.P., Modugno, F., Silvano, F. & Onor, M. 2000. Characterization of the balm of an Egyptian mummy from the 7th century B.C. Studies in Conservation 45: 1929.CrossRefGoogle Scholar
Díaz, G. & Honrubia, M. 1993. Arbuscular mycorrhizae on Tetraclinis articulata (Cupressaceae): development of mycorrhizal colonisation and effect of fertilization and inoculation. Agronomie 13: 267274.CrossRefGoogle Scholar
Distante, K.B., Fuentes, D. & Cortina, J. 2010. Sensitivity to zinc of Mediterranean woody species important for restoration. Science of the Total Environment 408: 22162225.CrossRefGoogle Scholar
Esteve-Selma, M.A., Martínez-Fernández, J., Hernandez, I., et al. 2010. Effects of climate change on the distribution and conservation of Mediterranean forests: the case of Tetraclinis articulata in the Iberian Peninsula. Biodiversity and Conservation 19: 38093825.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Friis, E.M. 1977. Leaf whorls of Cupressaceae from the Miocene Fasterholt Flora, Denmark. Bulletin of the Geological Society of Denmark 26: 103114.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1993. An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Annals of the Missouri Botanic Garden 80: 581586.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gómez-Aparicio, L., Gómez, J.M., Zamora, R. & Boettinger, J.L. 2005. Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science 16: 191198.CrossRefGoogle Scholar
Haddouche, I., Benhanifia, K. & Gacemi, M. 2011. Spatial analysis of forest regeneration after fire in the forest of Fergoug in Mascara, Algeria. Bois et Forets des Tropiques 307: 2331.CrossRefGoogle Scholar
Hadjad, J. S. 1991. Tetraclinis articulata populations on the Oran coastline, Algeria. Ecologia Mediterranea 17: 6378.Google Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae 1: Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
HCEFLCD 2015. Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification. www.eauxetforets.gov.ma.Google Scholar
Howes, F.N. 1949. Vegetable Gums and Resins. Waltham, MA: Chronica Botanica.Google Scholar
Jagel, A. & Stutzel, T. 2003. On occurrence of non-axillary ovules in Tetraclinis articulata (Vahl.) Mast. (Cupressaceae s. str.). Feddes Repertorium 114: 497507.CrossRefGoogle Scholar
Kovar-Eder, J. & Kvaček, Z. 1995. The record of a fertile twig of Tetraclinis brachyodon (Brongniart) Mai et Walther from Radoboj, Croatia (Middle Miocene). Flora 190: 261264.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roriron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Paleoclimatology, Palaeoecology 238: 321339.CrossRefGoogle Scholar
Kvaček, Z. 1986. The fossil Tetraclinis Mast., Cupressaceae. Casopsis Narodniho Muzea v Praze Rada Prirodovedna 155: 4553.Google Scholar
Kvaček, Z. 2000. Cones, seeds and foliage of Tetraclinis salicornioides (Cupressaceae) from the Oligocene and Miocene of western North America: a geographic extension of the European Tertiary species. International Journal of Plant Science 161: 331344.CrossRefGoogle Scholar
Kvaček, Z. 2004. Revisions to Early Oligocene flora of Florsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Kvaček, Z. & Bubik, M. 1990. Oligocene flora of the Sitborice member and geology at Bystrie and Olsi, northeast Moravia, Czechoslovakia. Vestnik Ustredniho Ustavu Geologickeho 65: 8194.Google Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the Tard Clay Formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. & Walther, H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig) DDR. – Abh. Staatl. Mus. Min. Geol. Dresden 28: 1200.Google Scholar
Mai, D.H. & Walther, H. 1985. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. – Abh. Staatl. Mus. Min. Geol. Dresden 33: 1260Google Scholar
Máñez, M., Cobo, D. & Jiménez, J. 1997. Tetraclinis articulata (Vahl) Masters, en la Provincia de Huelva. Annales del Jardin Botanica de Madrid 55: 462.Google Scholar
Martinetto, E. 2001. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41: 299319.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Paleoclimatology, Palaeoecology 253: 4155.CrossRefGoogle Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in the Geological Sciences 141: 195.Google Scholar
Moles, A.T. & Westoby, M. 2004. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106: 193199.CrossRefGoogle Scholar
Morte, M.A., Díaz, G. & Honrubia, M. 1996. Effect of arbuscular mycorrhizal inoculation on micropropagated Tetraclinis articulata growth and survival. Agronomie 16: 633637.CrossRefGoogle Scholar
Oliveras, I., Martínez-Vilalta, J., Jimenez-Ortiz, T., et al. 2003. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology 169: 131141.CrossRefGoogle Scholar
Otto, A. & Wilde, V. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers: a review. The Botanical Review 67: 141238.CrossRefGoogle Scholar
Peltier, J.P. 1984. The vegetation climax in the Ouedsous Basin, Morocco. Feddes Repertorium 25: 8996.CrossRefGoogle Scholar
Quezel, P., Barbero, M., Benabid, A., Loisel, R. & Rivas-Martínez, S. 1992. Contribution to the knowledge of the mattorals of eastern Morocco. Phytocoenologia 21: 117174.Google Scholar
Stroebitzer, M. 1999. The Lintsching fossil leaf assemblage (Tamsweg Basin, Salzburg; Miocene). Beitrage zur Palaeontologie 10: 91153.Google Scholar
Taleb, M.S. & Fennane, M. 2008. Diversite floristique de Parc National du Haut Atlas Oriental et des Massifs Ayachi et Maasker (Maroc). Acta Botanica malacitana 33: 125145.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Trubat, R., Cortina, J. & Vilagrosa, A. 2008. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments 72: 897–890.CrossRefGoogle Scholar
Trubat, R., Cortina, J. & Vilagrosa, A. 2011. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecological Engineering 37: 11641173.CrossRefGoogle Scholar
Vilagrossa, A., Cortina, J., Gil-Pelegrin, E., & Bellot, J. 2003. Sustainability of drought-preconditioning techniques in Mediterranean climate. Restoration Ecology 11: 208216.CrossRefGoogle Scholar
Villar-Salvador, P., Ocana, L., Penuelas, J.L. & Carasso, I. 1999. Effects of water stress conditioning on the water relations. Root growth capacity, and the nitrogen and non-structural carbohydrate concentration in Pinus halepensis Mill. (Aleppo pine) seedlings. Annals of Forest Science 56: 459465.CrossRefGoogle Scholar
Yakhlef, S.E.B., Abbas, Y., Prin, Y., et al. 2011. Effective arbuscular mycorrhizal fungi and the roots of Tetraclinis articulata and Lavandula multifida in Moroccan Tetraclinis woodlands. Mycology 2: 7986.CrossRefGoogle Scholar
Zidianakis, G., Mohr, B.A.R. & Fassoulas, C. 2007. A Late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiveritas 29: 351377.Google Scholar

References

Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clayton-Greene, K.A. 1977. Structure and origin of Libocedrus bidwillii stands in the Waikato District, New Zealand. New Zealand Journal of Botany 15: 1928.CrossRefGoogle Scholar
Cullen, L.E., Duncan, R.P., Wells, A. & Stewart, G.H. 2003. Floodplain and regional scale variation in earthquake effects of forests, Westland, New Zealand. Journal of the Royal Society of New Zealand 33: 693701.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 196–185.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Doweld, A. 2001. De genre Libocedrus Endl. (Cupressaceae). Novosti Sistematiki Vysshikh Rastenii 33: 4144 (in Russian with Latin diagnosis).Google Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madroño 23: 237256.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Florin, R. 1930. Die Koniferengattung Libocedrus Endl. in Ostaisien. Svensk Botanisk Tidskrift 24: 117131.Google Scholar
Fowler, A.M., Palmer, J. & Fenwick, P. 2008. An assessment of the potential for centennial-scale reconstruction of atmospheric circulation from selected New Zealand tree-ring chronologies. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 238254.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Haase, P. 1986. A study of a Libocedrus bidwillii population at Pegleg Flat, Arthur’s Pass, New Zealand. New Zealand Journal of Ecology 9: 153156.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Holloway, I.T. 1954. Forests and climates in the South Island of New Zealand. Transactions of the Royal Society of New Zealand 82: 329410.Google Scholar
Horrocks, M. & Ogden, J. 1998a. Fine resolution palynology of Gibson’s Swamp, central North Island, New Zealand, since c.1300 B.P. New Zealand Journal of Botany 36: 273283.CrossRefGoogle Scholar
Horrocks, M. & Ogden, J. 1998b. The effects of the Taupo tephra eruption of c. 1718 B.P. on the vegetation of Mt Hauhungatahi, central North Island, New Zealand. Journal of Biogeography 25: 649660.CrossRefGoogle Scholar
Horrocks, M. & Ogden, J. 2000. Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the subalpine zone on Mt. Tongariro National Park, New Zealand. Holocene 10: 6173.CrossRefGoogle Scholar
Horrocks, M., Ogden, J., Nichol, S.L., Alloway, B.V. & Sutton, D.G. 1999. The palynology and sedimentology of a coastal swamp at Awana, Great Barrier Island, New Zealand, from 7000 yr B.P. to present. Journal of the Royal Society of New Zealand 29: 213233.CrossRefGoogle Scholar
Horrocks, M., Nichol, S.L., Gregory, M.R., Creese, R. & Augustinus, P.C. 2001. A Holocene pollen and sediment record of Whangape harbour, far northern New Zealand. Journal of the Royal Society of New Zealand 31: 411424.CrossRefGoogle Scholar
Jaffré, T. 1980. Etudes ecologique du peuplement vegetal des sols derives de roches ultrabasiques en Nouvelle-Caledonie. Trav. et Doc. ORSTOM, Paris 124: 273.Google Scholar
Jaffré, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Jaffré, T., Morat, P.H., Veillon, J.-M. & Mackee, H.S. 1987. Changements dans la vegetation de la Nouvelle Caledonia au cours du Tertaire: la vegetation et la flore des roches ultrabasiques. Adansonia 4: 365391.Google Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp-broadleaf forest in Tongariro National Park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Markham, K.R., Franke, A., Molloy, B.P.J. & Webby, R.F. 1990. Flavenoid profiles of New Zealand Libocedrus and related genera. Phytochemistry 29: 501507.CrossRefGoogle Scholar
McIver, E.E. and Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65(11):23382351.CrossRefGoogle Scholar
Norton, D.A. 1983. Population dynamics of subalpine Libocedrus bidwillii forests in the Crop River Valley, Westland, New Zealand. New Zealand Journal of Botany 21: 127134.CrossRefGoogle Scholar
Norton, D.A., Palmer, J.G. & Ogden, J. 1987. Dendrochronological studies in New Zealand 1: an evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany 25: 373384.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Fordham, R.A., Pilkington, S. & Serra, R.G. 1991. Forest gap formation and closure along an altitudinal gradient in Tongariro National Park, New Zealand. Journal of Vegetation Science 2: 165172.CrossRefGoogle Scholar
Ogden, J., Fordham, R.A., Horrocks, M., Pilkington, S. & Serra, R.G. 2005. Long term dynamics of the long-lived conifer Libocedrus bidwillii after a volcanic eruption 2000 years ago. Journal of Vegetation Science 16: 321330.Google Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Palmer, J.G. & Xiong, L. 2004. New Zealand climate over the last 500 years reconstructed from Libocedrus bidwillii Hook. f. tree-ring chronologies. Holocene 14: 282289.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2009. Libocedrus macrofossils from Tasmania (Australia). International Journal of Plant Sciences 170: 381399.CrossRefGoogle Scholar
Peltzer, D.A., Allen, R.B. & Rogers, G.M. 2005. Dieback and recruitment of the forest dominants Nothofagus fusca and Libocedrus bidwillii, central North Island, New Zealand. Science for Conservation 255: 533.Google Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Pole, M. 2007a. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Pole, M. 2007b. Plant-macrofossil assemblages during Pliocene uplift, South Island, New Zealand. Australian Journal of Botany 55: 118142.CrossRefGoogle Scholar
Pole, M. 2007c. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3): 10.3.16A.Google Scholar
Rogers, G. 1989. Beech and conifer community interactions in the Maowhango Ecological Region, North Island, New Zealand. New Zealand Journal of Ecology 12: 4761.Google Scholar
Shaw, W.B. 1983. Tropical cyclones: determinants of pattern and structure in New Zealand’s indigenous forests. Pacific Science 35: 405414.Google Scholar
Soons, J.M., Moar, N.T., Shulmeister, J., Wilson, H.D. & Carter, J.A. 2002. Quaternary vegetation and climate changes on Banks Peninsula, South Island, New Zealand. Global and Planetary Change 33: 301314.CrossRefGoogle Scholar
Sparks, R.J., Melhuish, W.H., McKee, J.W.A., et al. 1995. 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: evidence from tree-ring sequences. Radiocarbon 37: 155163.CrossRefGoogle Scholar
Stewart, G.H. & Rose, A.B. 1989. Conifer regeneration failure in New Zealand: dynamics of montane Libocedrus bidwillii stands. Vegetatio 79: 4149.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae-Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Thorn, V.C. 2001. Oligocene and Early Miocene phytoliths from CRP-2/2A and CRP-3, Victoria Land basin, Antarctica. Terra Antarctica 8: 407422.Google Scholar
Tomlinson, P.B., Takaso, T. & Cameron, E.K. 1993. Cone development in Libocedrus (Cupressaceae): phenological and morphological aspects. American Journal of Botany 80: 649659.Google Scholar
Veblen, T.T. & Stewart, G.H. 1982. On the conifer regeneration gap in New Zealand: the dynamics of Libocedrus bidwillii on South Island. Journal of Ecology 70: 413434.CrossRefGoogle Scholar
Wardle, P. 1963. The regeneration gap of New Zealand gymnosperms. New Zealand Journal of Botany 1: 301315.CrossRefGoogle Scholar
Wardle, P. 1978. Regeneration status of some New Zealand conifers, with particular reference to Libocedrus bidwillii in Westland National Park. New Zealand Journal of Botany 16: 471477.CrossRefGoogle Scholar
Wells, A., Duncan, R.P. & Stewart, G.H. 2001. Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance. Journal of Ecology 89: 10061018.CrossRefGoogle Scholar
Whang, S.S. & Hill, R.S. 1999. Late Palaeocene Cupressaceae macrofossils at Lake Bungarby, New South Wales. Australian Systematic Botany 12: 241254.CrossRefGoogle Scholar
Wilmshurst, J.M. & McGlone, M.S. 1996. Forest disturbance in the central North Island, New Zealand, following the 1850 BP Taupo eruption. Holocene 6: 399411.CrossRefGoogle Scholar
Xiong, L. & Palmer, J.G. 2000. Reconstruction of New Zealand temperatures back to AD 1720 using Libocedrus bidwillii tree-rings. Climatic Change 45: 339359.CrossRefGoogle Scholar

References

Baker, H.G. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9: 347348.Google Scholar
Baldwin, S.L., Monteleone, B.D., Webb, L.E., et al. 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431: 263267.CrossRefGoogle ScholarPubMed
Benes, V., Scott, S.D. & Binns, R.A. 1994. Tectonics of rift propagation into a continental margin: Western Woodlark Basin, Papua New Guinea. Journal of Geophysical Research 99: 44394455.CrossRefGoogle Scholar
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Paper 12: 1149.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Bruijnzeel, L.A., Waterloo, M.J., Proctor, J., Kuiters, A.T. & Kotterink, B. 1993. Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145167.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad-leaved coniferous foliage from the Lower Cretaceous Otway Group, southeastern Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Enright, N.J. 1995. Conifers of tropical Australasia. Pp 197222 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gibbs, L.S. 1917. Dutch N.W. New Guinea: A Contribution to the Phytogeography and Flora of the Arfak Mountains. London: Taylor & Francis.CrossRefGoogle Scholar
Gillison, A.N. 1970. Structure and floristics of a montane grassland/forest transition, Donna Peaks region, Papua. Blumea 18: 7186.Google Scholar
Grubb, P.J. 1971. Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature 229: 4445.CrossRefGoogle ScholarPubMed
Grubb, P.J. & Stevens, P.F. 1976. The Forests of the Fatima Basin and Mt Kerigomna and a Review of Montane and Subalpine Forests Elsewhere in Papua New Guinea. Canberra: Australian National University, Dept. Biogeography and Geomorphology.Google Scholar
Havel, J.J. 1975. Forest Botany. Port Moresby: PNG Department of Forests.Google Scholar
Heads, M. 2001. Birds of paradise, biogeography and ecology in New Guinea: a review. Journal of Biogeography 28: 893925.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hoogland, R.D. 1958. The alpine flora of Mt. Wilhelm. Blumea 4(suppl.): 220238.Google Scholar
Hope, G. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 385398.CrossRefGoogle Scholar
Hope, G.S. 1976. The vegetational history of Mt. Wilhelm, Papua New Guinea. Journal of Ecology 64: 627663.CrossRefGoogle Scholar
Hope, G.S. 1986. Development of present day biotic distributions in the New Guinea mountains. Pp 129145 in Barlow, B. (ed.), Flora and Fauna of Alpine Australasia. Melbourne: CSIRO.CrossRefGoogle Scholar
Johns, R.J. 1995. Papuacedrus papuana var papuana. Cupressaceae. Curtis’s Botanical Magazine 12: 6672.CrossRefGoogle Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Mathew, B. 1995. Editorial: Flora Malesiana. Curtis’s Botanical Magazine 12: 51.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History. Dordrecht: Kluwer.CrossRefGoogle Scholar
Paijmans, K. & Loffler, E. 1972. High altitude forests and grasslands of Mt. Albert Edward, New Guinea. Journal of Tropical Geography 34: 5864.Google Scholar
Pigram, C.J. & Davies, H.L. 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10: 193211.Google Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Polhemus, D.A. & Polhemus, J.T. 1998. Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta). Pp 327340 in Hall, R. & Holloway, J.D. (eds.), Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys.Google Scholar
Proctor, J., Lee, Y.F., Langley, A.M., Mynro, W.R.C. & Nelson, T. 1988. Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I: Environment, forest structure and floristics. Journal of Ecology 76: 320340.CrossRefGoogle Scholar
Richards, P.W. 1996. The Tropical Rainforest, an Ecological Study. Cambridge: Cambridge University Press.Google Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Smith, J.M.B. 1975. Mountain grasslands of New Guinea. Journal of Biogeography 2: 2744.CrossRefGoogle Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea n.s. 21: 451469.Google Scholar
Van Royen, P. 1979. The Alpine Flora of New Guinea, vol. 12. Amsterdam: J. Cramer.Google Scholar
Van Steenis, C.G.G.J. 1961. An attempt towards an explanation of the effect of mountain mass elevation. Proceedings of the Royal Academy of Science of the Netherlands 64: 435442.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University Department of Biogeography and Geomorphology.Google Scholar
Whitmore, T.C. 1984. Tropical Rain Forests of the Far East. Oxford: Oxford University Press.Google Scholar
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle Scholar

References

Arana, M.V., Gallo, L.A., Vendramin, G.G., et al. 2010. High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian cypress Austrocedrus chilensis. Molecular Phylogenetics and Evolution 54: 941949.CrossRefGoogle Scholar
Arroyo, M.T.K., Lohengrin, C., Marticorena, C. & Guiterrez, J. 1995. Convergence in the Mediterranean floras in central Chile and California: insights from comparative biogeography. Ecological Studies 108: 4388.CrossRefGoogle Scholar
Brion, C., Grigera, D. & Rossoi, P. 1993. The reproduction of Austrocedrus chilensis (D.Don) Florin & Boutelje. Comptes Rendus Academie de Sciences Paris, Sciences de la Vie 316: 721724.Google Scholar
Dodd, R.S. & Rafii, Z.A. 1995. Ecogeographic variation in seed fatty acids of Austrocedrus chilensis. Biochemical Systematics and Ecology 23: 825833.CrossRefGoogle Scholar
Dodd, R.S., Rafii, Z.A. & Power, A.B. 1998. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytologist 138: 699708.CrossRefGoogle Scholar
Donoso, C. 1982. Resena ecologica de los bosques mediterraneos de Chile. Bosque 4: 117146.CrossRefGoogle Scholar
Donoso, C.R. 1993. Bosques Templados de Chile y Argentina: Variacion, Estructura y Dinamica. Santiago del Chile: Editorial Universitaria.Google Scholar
Gobbi, M. & Schlichter, T. 1998. Survival of Austrocedrus chilensis seedlings in relation to microsite conditions and forest thinning. Forest Ecology and Management 111: 137146.CrossRefGoogle Scholar
Gregory-Wodzicki, K.M. 2000. Uplift history of the Central and Northern Andes: a review. Bulletin of the Geological Society of America 112: 10911105.2.0.CO;2>CrossRefGoogle Scholar
Gyenge, J.E., Fernández, M.E., Dalla Saida, G. & Schlichter, T. 2005. Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D.Don) Pic.Ser. et Bizzarri: implications on its drought resistance capacity. Annals of Forest Science 62: 297302.CrossRefGoogle Scholar
Heusser, C.J. 1987. Fire history of Fuego-Patagonia. Quaternary of South America and Antarctic Peninsula 5: 93109.Google Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hunziker, J.H. 1961. Estudios cromosomicos en Cupressus y Libocedrus (Cupressaceae). Revta Invest. Agric. Buenos Aires 15: 169185.Google Scholar
Kitzberger, T. & Veblen, T.T. 1997. Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia. Ecoscience 4: 508520.CrossRefGoogle Scholar
Kitzberger, T. & Veblen, T.T. 1999. Fire-induced changes in northern Patagonian landscapes. Landscape Ecology 14: 115.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F, Forsyth, S.M. & Wells, P.M. 1991. A late Oligocene–early Miocene cool climate flora in Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F, Truswell, E.M. & Sluiter, I.R.K. 1994. Early tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Markgraf, V., Romero, E. & Villagran, C. 1996. History and paleoecology of South American Nothofagus forests. Pp 354386 in Veblen, T.T., Hill, R.S. & Read, J. (eds.), The Ecology and Biogeography of Nothofagus Forests. New Haven, CT: Yale University Press.Google Scholar
McBride, J.R. 1983. Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bulletin 43: 5167.Google Scholar
Overpeck, J.T., Rind, D. & Goldberg, R. 1990. Climate-induced changes in forest disturbance and vegetation. Nature 343: 5153.CrossRefGoogle Scholar
Pastorino, M.J. & Gallo, L.A. 2002. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean–Patagonian forest. Journal of Biogeography 29: 11671178.CrossRefGoogle Scholar
Pastorino, M.J., Gallo, L.A. & Hattemer, H.H. 2004. Genetic variation in natural populations of Austrocedrus chilensis, a cypress pine of the Andean–Patagonian Forest. Biochemical Systematics and Ecology 32: 9931008.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2008. Oligocene Austrocedrus from Tasmania (Australia): comparisons with Austrocedrus chilensis. International Journal of Plant Sciences 169: 315330.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2009. Libocedrus macrofossils from Tasmania (Australia). International Journal of Plant Sciences 170: 381399.CrossRefGoogle Scholar
Relva, M.A. & Veblen, T.T. 1998. Impacts of introduced large herbivores on Austrocedrus chilensis forests in northern Patagonia, Argentina. Forest Ecology and Management 108: 2740.CrossRefGoogle Scholar
Rovere, A.E., Aizen, M.A. & Kitzberger, T. 2003. Growth and climatic response of male and female tree of Austrocedrus chilensis, a dioecious conifer from the temperate forests of southern South America. Ecoscience 10: 195203.CrossRefGoogle Scholar
Urretavizcaya, M.F & Defosse, G.E. 2004. Soil seed bank of Austrocedrus chilensis (D.Don) Pic.Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina. Forest Ecology and Management 187: 361372.CrossRefGoogle Scholar
Veblen, T.T. & Lorenz, D.C. 1987. Post-fire stand development of AustrocedrusNothofagus forests in northern Patagonia. Plant Ecology 71: 113126.CrossRefGoogle Scholar
Veblen, T.T. & Lorenz, D.C. 1988. Recent vegetation changes along the forest/steppe ecotone of northern Patagonia. Annals of the Association of American Geographers 78: 93111.CrossRefGoogle Scholar
Veblen, T.T., Kitzberger, T. & Antonio, L. 1992. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian scrubland. Journal of Vegetation Science 3: 507520.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberger, T., Lara, A. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Veblen, T.T., Kitzberger, T., Villalba, R. & Donnegan, J. 1999. Fire history in northern Patagonia: the role of humans and climate variation. Ecological Monographs 69: 4767.CrossRefGoogle Scholar
Wells, P.K. & Hill, R.S. 1989. Fossil imbricate-leaved Podocarpaceae from tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Whitlock, C., Bianchi, M.M., Bartelein, P.J., et al. 2006. Postglacial vegetation, climate, and fire history along the east side of the Andes (lat. 41–42.5°S), Argentina. Quaternary Research 66: 187201.CrossRefGoogle Scholar
Wilf, P., Cuneo, N.R., Johnson, K.R., et al. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122125.CrossRefGoogle ScholarPubMed

References

Bannister, J.R., Quesne, C.E. le & Lara, A. 2008. Estructura y dinámica de bosques de Pilgerodendron uviferum afectados por incendies en la Cordillera de la Costa de la Isla Grands de Chiloé. Bosque 29: 3343.CrossRefGoogle Scholar
Bannister, J.R., Donoso, P.J. & Bahus, J. 2012. Persistence of the slow-growing conifer Pilgerodendron uviferum in old-growth and fire-disturbed southern bog forests. Ecosystems 15: 11581172.CrossRefGoogle Scholar
Bannister, J.R., Coopman, R.E., Donoso, P.J. & Bahus, J. 2013. The importance of microtopography and nurse canopy for successful restoration planting of the slow-growing conifer Pilgerodendron uviferum. Forests 4: 85103.CrossRefGoogle Scholar
Barnes, D.K., Hodgson, D.A., Convey, P., Allen, C.S. & Clarke, A. 2006. Incursion and excursion of Antarctic biota: past, present and future. Global Ecology and Biogeography 15(2): 121142.CrossRefGoogle Scholar
Battles, J.J., Armesto, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloe Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Bergström, S.M., Saltzman, M.M. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine 143(5): 657678.CrossRefGoogle Scholar
Brodribb, T.J. & Hill, R.S. 1997. The light response characteristics of morphologically diverse group of Southern Hemisphere conifers. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Clement-Westerhof, J.A. 1988. Morphology and phylogeny of Paleozoic conifers. Pp 298337 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y. & Lawver, L.A. 1995. Southernmost South America–Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research – Solid Earth 100: 82578266.CrossRefGoogle Scholar
Detmann, M.E. 1989. Antarctica: Cretaceous cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of Antarctic Biota. London: Geological Society.Google Scholar
Donoso, C.R. 1993. Bosques Templados de Chile y Argentina: Variacion, Estructura y Dinamica. Santiago del Chile: Editorial Universitaria, Santiago.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Francis, J.E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic interpretations. Palaeontology 29: 665684.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Grosfeld, J. & Barthelemy, D. 2001. Dioecy in Fitzroya cupressoides (Molina) I.M.Johnst. and Pilgerodendron uviferum (D.Don) Florin (Cupressaceae). Comptes Rendus de l’Academie des Sciences, ser III 324: 245250.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Holz, A. & Veblen, T.T. 2009. Pilgerodendron uviferum: the southernmost tree-ring fire recorder species. Ecoscience 16(3): 322329.CrossRefGoogle Scholar
Innes, J.L. 1992. Structure of evergreen temperate rain forest on the Taitao Peninsula, southern Chile. Journal of Biogeography 19: 555562.CrossRefGoogle Scholar
Konar, R.M. 1962. Investigations on the development of the male cones in Fitzroya cupressoides (Mol.) Johnst. and Pilgerodendron uviferum (Dom.) Flor. Phytomorphology 12: 191195.Google Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Premoli, A.C., Souto, C.P., Allnutt, T.R. & Newton, A.C. 2001. Effects of population disjunction on isozyme variation in the widespread Pilgerodendron uviferum. Heredity 87: 337343.CrossRefGoogle ScholarPubMed
Pugh, P.J. & Convey, P. 2008. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography 35(12): 21762186.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Robert, C. & Kennett, J.P. 1994. Antarctic subtropical humid episode at the Paleocene–Eocene boundary: clay-mineral evidence. Geology 22: 211214.2.3.CO;2>CrossRefGoogle Scholar
Roig, F.A. 1991. Dendrocchronologia y dendroclimatologia del bosques de Pilgerodendron uviferum en su area norte de dispersion. Boletin de la Sociedad Argentina de Botanica 27: 217234.Google Scholar
Szeicz, J.M. 1997. Growth trends and climatic sensitivity of trees in the Northern Patagonian rainforest of Chile. Canadian Journal of Forest Research 27: 10031014.CrossRefGoogle Scholar
Szeicz, J.M., Haberle, S.G. & Bennett, K.D. 2003. Dynamics of North Patagonian rainforests from fine-resolution pollen, charcoal and tree-ring analysis, Chonos Archipelago, Southern Chile. Austral Ecology 28: 413422.CrossRefGoogle Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Villagran, C., Leon, A. & Roig, F.A. 2004. Paleodistribution of the alerce and cypress of the Guaiecas during the interstadial stages of the Llanquihue Glaciation, Llanquihue and Chiloe Provinces, Los Lagos region, Chile. Revista Geological de Chile 31: 133151.Google Scholar
Villalba, R. & Veblen, T.T. 1998. Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79: 26242640.CrossRefGoogle Scholar
Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A. & Austin, J.A. 2010. Geophysical evidence of multiple glacier advances in Lago Fagano (54 degrees S), southernmost Patagonia. Quaternary Science Reviews 29: 11881200.CrossRefGoogle Scholar
Zarin, D.J., Johnson, A.H. & Thomas, S.M. 1998. Soil organic carbon and nutrient status in old-growth montane coniferous watersheds, Isla Chiloe, Chile. Plant and Soil 201: 251258.CrossRefGoogle Scholar

References

Barrows, T.T., Juggins, S., De Deckker, P., Thiede, J. & Martínez, J.L. 2000. Sea-surface temperatures of the southwest Pacific ocean during the Last Glacial Maximum. Palaeoceanography 15: 95109.CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K. & Cresswell, R.G. 2001. Late Pleistocene glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research 55: 179189.CrossRefGoogle Scholar
Barrows, T.T., Stone, J.O., Fifield, L.K. & Cresswell, R.G. 2002. The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews 21: 159173.CrossRefGoogle Scholar
Bowler, J.M. 1976. Aridity in Australia: age, origins and expressions in Aeolian land forms and sediments. Earth Science Reviews 12: 297310.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Colhoun, E.A. 1980. Glacial diversion of drainage: an example from the Cradle Mountain National Park, Northern Tasmania. Australian Geographer 14: 365367.CrossRefGoogle Scholar
Colhoun, E.A. 1985. Glaciations of the West Coast Range, Tasmania. Quaternary Research 24: 3959.CrossRefGoogle Scholar
Colhoun, E.A. 1992 Late Glacial and Holocene vegetation history at Poets Hill Lake, western Tasmania. Australian Geographer 23: 1123.CrossRefGoogle Scholar
Colhoun, E.A. & Fitzsimmons, S.J. 1990. Late Cainozoic glaciation in western Tasmania. Quaternary Science Reviews 9: 199216.CrossRefGoogle Scholar
Colhoun, E.A., Hannan, D. & Kiernan, K. 1996. Late Wisconsin glaciation of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 130: 3345.CrossRefGoogle Scholar
Costin, A.B. 1981. Vegetation of high mountains in Australia. Pp 717731 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Cullen, P.J. 1987. Regeneration patterns in populations of Athrotaxis selaginoides D. Don. from Tasmania. Journal of Biogeography 14: 3951.CrossRefGoogle Scholar
De Laubenfels, D.J. 1965. The relationships of Fitzroya cupressoides (Molina) Johnston and Diselma archeri J.D.Hooker based on morphological considerations. Phytomorphology 15: 414419.Google Scholar
Derbyshire, E. 1963. Glaciation of the Lake St Clair district, west-central Tasmania. Australian Geographer 9: 97110.CrossRefGoogle Scholar
Derbyshire, E. 1972. Pleistocene glaciation of Tasmania: a review and speculation. Australian Geographical Studies 10: 7994.CrossRefGoogle Scholar
Derbyshire, E., Banks, M.R., Davies, J.L. & Jennings, J.L. 1965. Glacial map of Tasmania. Royal Society of Tasmania Special Publications 2: 111.Google Scholar
Doyle, J. 1934. The columella in the cone of Diselma. Annals of Botany 48: 307308.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressaceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1993. An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Annals of the Missouri Botanical Garden 80: 581586.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Gibson, N. & Kirkpatrick, J.B. 1985. Vegetation and flora associated with localised snow accumulation at Mt. Field West, Tasmania. Australian Journal of Ecology 10: 9199.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heusser, C.J. 1974. Vegetation and climate of the southern Chilean Lake District during and since the last interglaciation. Quaternary Research 4(3): 290315.CrossRefGoogle Scholar
Hill, R.S. 1987. Tertiary Isoetes from Tasmania. Alcheringa 12: 157162.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society of London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Gibson, N. 1986. Macrofossil evidence for the evolution of the alpine and sub-alpine vegetation of Tasmania. Pp 205217 in Barlow, B.A. (ed.), Flora and Fauna of Alpine Australasia: Ages and Origins. Melbourne: CSIRO.CrossRefGoogle Scholar
Hopf, F.V.L., Colhoun, E.A. & Barton, C.E. 2000. Late-glacial and Holocene record of vegetation and climate from Cynthia Bay, Lake St Clair, Tasmania. Journal of Quaternary Science 15: 725732.3.0.CO;2-8>CrossRefGoogle Scholar
Jordan, G.J. 1995. Extinct conifers and conifer diversity in the Early Pliocene of western Tasmania. Review of Palaeobotany and Palynology 84: 375387.CrossRefGoogle Scholar
Kirkpatrick, J.B. 1982. Phytogeographical analysis of Tasmanian alpine floras. Journal of Biogeography 9: 225271.CrossRefGoogle Scholar
Kirkpatrick, J.B. 1983. Treeless plant communities of the Tasmanian high country. Proceedings of the Ecological Society of Australia 12: 6177.Google Scholar
Kirkpatrick, J.B. 1997. Alpine Tasmania: An Illustrated Guide to the Flora and Vegetation. Melbourne: Oxford University Press.Google Scholar
Kirkpatrick, J.B. & Bridle, K.L. 1998. Environmental relationships of floristic variation in the alpine vegetation of southeast Australia. Journal of Vegetation Science 9: 251260.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Fowler, M. 1998. Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biological Conservation 85: 171182.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Harwood, C.E. 1980. Vegetation of an infrequently burned Tasmanian mountain region. Proceedings of the Royal Society of Victoria 91: 79107.Google Scholar
Lynch, A.J.J. & Kirkpatrick, J.B. 1995. Pattern and process in alpine vegetation and landforms at Hill One, Southern Range, Tasmania. Australian Journal of Botany 43: 537554.CrossRefGoogle Scholar
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora in Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Markgraf, V., Bradbury, J.P. & Busby, J.R. 1986. Paleoclimates in southwestern Tasmania during the last 13,000 years. Palaios 1: 368380.CrossRefGoogle Scholar
Moar, N.T. 1973. Contributions to the Quaternary history of the New Zealand flora: 7. Two Aranuian pollen diagrams from central South Island. New Zealand Journal of Botany 11(2): 291303.CrossRefGoogle Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Paull, R. & Hill, R.S. 2009. Libocedrus macrofossils from Tasmania (Australia). International Journal of Plant Sciences 170: 381399.CrossRefGoogle Scholar
Paull, R.S. 2006. Cenozoic Cupressaceae macrofossils from southeastern Australia: comparisons with extant genera/species. PhD thesis, University of Adelaide (seen as abstract only).Google Scholar
Peterson, J.A. & Robinson, G. 1969. Trend surface mapping of cirque floor levels. Nature 222: 7576.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctic say? Australian Systematic Botany 22: 57106.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×