Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T15:27:14.791Z Has data issue: false hasContentIssue false

Chapter 42 - Cryptomeria

Cupressales: Taxodiaceae s.s.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall to sometimes massive evergreen trees with a typically conical, tapering crown when young, becoming billowing and multi-domed with age, with numerous semi-rigid glossy-surfaced awl-shaped leaves radiating all around the shoots. The male cones when present are small and numerous per shoot, each nearly sessile in the axil of a leaf near the growing tip of a branchlet. The female cones are globular, on the tips of short spur branchlets lateral to growing branchlet tips. Each cone bract–scale unit has numerous forward-pointing awns.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 32 - 52
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basilici, G., Martinetto, E., Pavia, G. & Violanti, D. 1997. Paleoenvironmental evolution in the Pliocene marine-coastal succession of Val Chiusella (Ivrea, NW Italy). Bollettino della Societa Paleontologica Italiana 36(1–2): 2352.Google Scholar
Boulter, M.C. 1970. Cryptomeria, a significant component of the European Tertiary. Palaeontologische Abhandlingen, Abteilung B; Palaeobotanik 3: 279286.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J. & Hedin, L.O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491497.CrossRefGoogle Scholar
Chapin, F.S., Walker, L.R., Fastic, C.L. & Sharman, L.C. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 36: 149175.CrossRefGoogle Scholar
Chen, Y., Tang, S.Z., Zhao, M.S. Ni, B.Y. & Chen, X.Y. 2008. Demographic genetic structure of Cryptomeria japonica var sinensis in Taimushan Nature Reserve, China. Journal of Integrative Plant Biology 50: 11711177.CrossRefGoogle Scholar
Cheng, S.S., Chang, H.T., Wu, C.L. & Chang, S.T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98(2): 456459.CrossRefGoogle Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chiba, S. 1950. Triploids and tetraploids of Sugi (Cryptomeria japonica D. Don) selected in the forest nursery. Bulletin of the Government Forestry Experimental Station 49: 99108 (seen as abstract only).Google Scholar
Chiba, Y. 1998. Simulation of CO2 budget and ecological implications of sugi (Cryptomeria japonica) man-made forests in Japan. Ecological Modelling 111: 269281.CrossRefGoogle Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Claus, A. & George, E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 16171625.CrossRefGoogle Scholar
Coccolini, G.B.L. Sugi tree stands in ancient Italy. International Geological Congress, Abstracts (2008): 33 (seen as abstract only).Google Scholar
Crews, T. 1995. Changes in soil phosphorous and ecosystem dynamics across a long soil chronosequence in Hawaii. Ecology 111: 407424.Google Scholar
Danjon, F., Barker, D.H., Drexhage, M. & Stokes, A. 2008. Using three-dimensional plant root architecture in models of shallow-slope stability. Annals of Botany 101(8): 12811293.CrossRefGoogle ScholarPubMed
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
deFerre, Y. 1952. Additions et corrections ä l’etude du genre Keteleeria. 1. Keteleeria Roulletii Bull Soc Hist Nat Toulouse 87: 340342.Google Scholar
Denk, T., Grimsson, F. & Kvaček, Z. 2005. The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society 149: 369417.CrossRefGoogle Scholar
Dietrich, W.E. & Perron, J.T. 2006. The search for a topographic signature of life. Nature 439: 411418.CrossRefGoogle ScholarPubMed
Earle, C. 2007. Cryptomeria japonica. The Gymnosperm database. www.conifers.org/cu/cr/index.htm.Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan from late Pliocene to early Pleistocene. Quaternary International 184(1): 7583.CrossRefGoogle Scholar
Fujimaki, R., Tateno, R. & Tokuchi, N. 2007. Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research 12(2): 96102.CrossRefGoogle Scholar
Fukuda, M., Lehara, T. & Matsumoto, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 116.CrossRefGoogle Scholar
Fukushima, K., Tateno, R. & Tokuchi, N. 2011. Nitrogen dynamics during stand development after clear-cutting of Japanese cedar (Cryptomeria japonica) plantations. Journal of Forest Research 16: 394404.CrossRefGoogle Scholar
Genet, M., Stokes, A., Fourcaud, T., Hu, X. & Lu, Y. 2006. Soil fixation by tree roots: changes in root reinforcement parameters with age in Cryptomeria japonica D. Don. plantations. Pp 535542 in Marui, H., Marutani, T., Watanabe, N., et al. (eds.), Interpraevent 2006, Disaster Mitigation of Debris Flows, Slope Failures and Landslides.Tokyo: Universal Academy Press.Google Scholar
Genet, M., Kokutse, N., Stokes, A., et al. 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management 256(8): 15171526.CrossRefGoogle Scholar
Gota, Y., Kondo, T., Hayashi, E., et al. 2004. Influences of genetic and environmental factors on the concentration of the allergen cry j 1 in sugi (Cryptomeria japonica) pollen. Tree Physiology 24: 409414.CrossRefGoogle Scholar
Gray, D.H. & Sotir, R.D. 1996. Biotechnical and Soil Bioengineering Slope Stabilization. New York: Wiley.Google Scholar
Greenway, D.R. 1987. Vegetation and slope stability. Pp 187230 in Anderson, M.G. & Richards, K.S. (eds.), Slope Stability. New York: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hamaoka, T. 1933. Regeneration of Cryptomeria japonica in natural forest of Yakushima Island. Journal of the Society of Forestry 15: 150162 (in Japanese).Google Scholar
Harris, T.M. 1935 The fossil flora of Scoresby Sound, east Greenland. Pt. 4. Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddel. Grønland 112: 1176.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in Southern Kyushu, Japan. The Quaternary Research (Daiyonki-Kenkyu) 23(1): 120.CrossRefGoogle Scholar
Hayashi, Y. 1960. Taxonomical and Phytogeographical Study of Japanese Conifers. Tokyo: Norin-Shuppan.Google Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology and Palaeoecology 80: 107127.CrossRefGoogle Scholar
Hirayama, K. & Sakimoto, M. 2005. Seedling demography and establishment of Cryptomeria japonica in cool-temperate, old-growth, conifer hardwood forest in the snowy region of Japan. Journal of Forest Research 10: 6771.CrossRefGoogle Scholar
Hongo, M. 2009. Middle Pleistocene pollen biostratigraphy in the Osaka sedimentary basin, southwest Japan, with special reference to paleoenvironmental change. Journal of the Geological Society of Japan 115: 6479.Google Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Igarashi, Y. & Oba, T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01–2421. Quaternary Science Reviews 25(13–14): 14471459.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jaehnichen, H. 1998. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Biterfelder und Baltischen Bernstein. Mitteilungen aus dem Museum fuer Naturkunde in Berlin 1: 167178 (seen as abstract only).Google Scholar
Jenny, H. 1980. Soil Genesis with Ecological Perspectives. New York: Springer.Google Scholar
Kado, T., Yoshimaru, H., Tsumura, Y. & Tachoda, H. 2003. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164: 15471559.CrossRefGoogle Scholar
Kado, T., Ushio, Y., Yoshimaru, H., Tsumura, Y. & Tachida, H. 2006. Contrasting patterns of DNA variation in natural populations of closely related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes and Genetic Systems 81: 103113.CrossRefGoogle ScholarPubMed
Kamada, M. 2005. Hierarchically structured approach for restoring natural forest: trial in Tokushima Prefecture, Shikoku, Japan. Landscape and Ecological Engineering 1: 6170.CrossRefGoogle Scholar
Kitayama, K. & Mueller-Dombois, D. 1995. Vegetation changes during long-term soil development in the Hawaiian montane rainforest zone. Vegetatio 111: 120.CrossRefGoogle Scholar
Kiyonaga, J. 1990. Pollen analysis of Holocene sediments from lowland along the Kashio River, southwestern part of Yokohama, Japan. The Quaternary Research (Daiyonki-Kenkyu) 29(4): 351360.CrossRefGoogle Scholar
Kobayashi, T., Nakagawa, Y., Tamaki, M., Hiraki, T. & Aikawa, M. 2001. Cloud water deposition to forest canopies of Cryptomeria japonica at Mt. Rokko, Kobe, Japan. Water Air and Soil Pollution 130: 601606.CrossRefGoogle Scholar
Kondo, T. & Kuramoto, N. 2007. Cryptomeria japonica. Pp 211221 in Kole, C. (ed.), Genome Mapping and Molecular Breeding in Plants. Berlin: Springer.Google Scholar
Kondo, T., Hizume, M. & Kubota, R. 1982. Variation of fluorescent chromosome bands of Cryptomeria japonica. Journal of the Japanese Forestry Society 67: 184189.Google Scholar
Kondo, Y., Ipsen, H., Lowenstein, H., Karpas, A. & Hsieh, L. 1997. Comparison of concentrations of Cry j 1 and Cry j 2 in diploid and triploid Japanese cedar (Cryptomeria japonica) pollen extracts. Allergy 52: 455459.CrossRefGoogle ScholarPubMed
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kurata, S. 1965. Notes of Japanese ferns (35). Journal of Geobotany 13: 75.Google Scholar
Kurata, S. 1971. Illustrated Important Forest Trees of Japan. Tokyo: Chikyu Shuppan.Google Scholar
Kuroda, T. & Ozawa, T. 1996. Paleoclimatic and vegetational changes during the Pleistocene and Holocene in the Ryukyu Islands inferred from pollen assemblages. Journal of Geography (Chigaku Zasshi) 105(3): 328342.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, C.-X. & Yang, Q. 2003. [Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 25: 177–80.Google ScholarPubMed
Li, L. & Hsu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451.Google Scholar
Li, Z., Saito, Y., Matsumoto, E., et al., 2006. Palynological record of climate change during the last deglaciation from the Song Hong (Red River) delta, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology 235(4): 406430.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007a. Epidermal structures of Cryptomeria japonica and implications to the fossil record. Acta Palaeobotanica 47: 281289.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007b. Epidermal structures of giant redwood and comparison with those of coast redwood and dawn redwood. Journal of Beijing Forestry University 29: 711 (in Chinese with English abstract).Google Scholar
Machida, H. & Arai, F. 1983. Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. Journal of Volcanology and Geothermal Research 18(1–4): 151164.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Martinetto, E. 2001. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41(2): 299319.Google Scholar
Masui, J. 1951. Relation between the geology and the growth of Cryptomeria in the Kaneyama district, Yamagata prefecture. Japanese Association of Mineralogists 35: 107116.Google Scholar
Matsushita, M. 1990. Holocene vegetation history of the Matsuzaki Lowland of the Izu Peninsula, central Japan. Japanese Journal of Ecology 40(1): 15.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Chromosome counts of selected genera of conifers. Journal of Genetics 54: 181185.CrossRefGoogle Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Miura, M. & Yamamoto, S.I. 2003. Structure and dynamics of a Castanopsis cuspidata var. sieboldii population in an old-growth, evergreen, broad-leaved forest: the importance of sprout regeneration. Ecological Research 18: 115129.CrossRefGoogle Scholar
Miura, S., Hirai, K. & Yamada, T. 2002. Transport rates of surface materials on steep forested slopes induced by raindrop splash erosion. Journal of Forest Research 7(4): 201211.CrossRefGoogle Scholar
Morford, S.L., Houlton, B.Z. & Dahlgren, R.A. 2011. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477: 7881.CrossRefGoogle ScholarPubMed
Moriguchi, Y., Matsumoto, A., Saito, M., Tsumura, Y. & Taira, H. 2001. DNA analysis of clonal structure of an old-growth, isolated forest of Cryptomeria japonica in a snowy region. Canadian Journal of Forest Research 31: 377383.CrossRefGoogle Scholar
Morita, Y., Yagi, H., Inokuchi, T. & Yamazaki, T. 2002. Vegetation history of the southern Tohoku district, based on pollen analysis of Aranuma in the Shirataka Lakes, Yamagata prefecture. The Quaternary Research (Daiyonki-Kenkyu) 41(5): 375387.CrossRefGoogle Scholar
Murai, S. 1947. Major forestry tree species in the Tohoku region and their varietal problems. Kokudo Saiken Zourin Gijutsu Kouenshu, 1947: 131151.Google Scholar
Muroyama, Y. & Tamai, S. 1986. The population dynamics of sugi seedlings in the natural forest of Ashu. Bulletin Kyoto University Forestry 58: 95103 (in Japanese with English summary).Google Scholar
Nagakura, J., Kaneko, S., Takahashi, M. & Tange, T. 2008. Nitrogen promotes water consumption in seedlings of Cryptomeria japonica but not in Chamaecyparis obtusa. Forest Ecology and Management 255: 25332541.CrossRefGoogle Scholar
Nevolina, S.I. 1984. Late Cretaceous flora of the Amur Region (the Partizansk flora after AN Kryshtofovich). Ezhegodnik VPO 27: 219235.Google Scholar
Ngee, P.S., Yoshimura, T. & Lee, C.Y. 2004. Foraging populations and control strategies of subterranean termites in the urban environment, with special reference to baiting. Japanese Journal of Environmental Entomology and Zoology 15(3): 197215.Google Scholar
Noguchi, K., Nagakura, J. & Kaneko, S. 2013. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after three years of nitrogen fertilisation. Frontiers in Plant Science 4: 347.CrossRefGoogle Scholar
Ohba, K. 1993. Clonal forestry with sugi (Cryptomeria japonica). Pp 6689 in Ahuja, M.R. & Libby, W.J. (eds.), Clonal Forestry 2: Conservation and Application. Berlin: Springer.CrossRefGoogle Scholar
Ohte, N., Mitchell, M.J., Shibata, H., et al. 2001. Comparative evaluation on nitrogen saturation of forest catchments in Japan and northeastern United States. Water Air and Soil Pollution 130: 649654.CrossRefGoogle Scholar
Ooi, N., Minaki, M. & Noshiro, S. 1990. Vegetation changes around the Last Glacial Maximum and effects of the Aira-Tn ash, at the Itai-Teragatani site, central Japan. Ecological Research 5: 8191.Google Scholar
Page, C.N. 1999. The Cryptomeria forests of Yakushima Island. International Dendrology Society Bulletin 1999: 4750.Google Scholar
Parker, L.R. & Balsley, J.K. 1989. Coal Mines as Localities for Studying Dinosaur Trace Fossils: Dinosaur Tracks and Traces. Cambridge: Cambridge University Press.Google Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. and Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees: Structure and Function 21: 385402.CrossRefGoogle Scholar
Rose, R. & Ketchum, J.S. 2002. Interaction of vegetation control and fertilization on conifer species across the Pacific Northwest. Canadian Journal of Forest Research 32: 136152.CrossRefGoogle Scholar
Sahashi, N., Ikuse, M., Ohmoto, T., et al. 1990. Relationship between seasonal and annual total pollen counts of Cryptomeria japonica and Cupressaceae and number of outpatients with Sugi pollinosis in central Japan. Review of Palaeobotany and Palynology 64: 7986.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schneider, W. 1986. Phytogenetic silifications in the Miocene brown coal and their importance for stratigraphy, facies and seam genesis. Z Geol Wiss (German Democratic Republic) 14(2).Google Scholar
Seiwa, K., Ando, M., Imaji, A., Tomita, M. & Kanou, K. 2009. Spatio-temporal variation of environmental signals inducing seed germination in temperate conifer plantations and natural hardwood forests in northern Japan. Forest Ecology and Management 257(1): 361369.CrossRefGoogle Scholar
Shibata, E., Waguchi, Y. & Yoneda, Y. 1994. Role of tree diameter in the damage caused by the sugi bark borer (Coleoptera: Carambycidae) to the Japanese cedar, Cryptomeria japonica. Environmental Entomology 23: 7679.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Srinivasen, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stokes, A., Spanos, I., Norris, J., & Cammeraat, E.L.H. 2007. Eco and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. New York: Springer.CrossRefGoogle Scholar
Suzuki, E. 1997. The dynamics of old Cryptomeria japonica forest on Yakushima Island. Tropics 6: 421428.CrossRefGoogle Scholar
Suzuki, E. & Tsukahara, J. 1987. Age structure and regeneration of old growth Cryptomeria japonica forests on Yakushima Island. Tokyo Botanical Magazine 100: 233241.CrossRefGoogle Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Taira, H., Tsumura, Y., Tomaru, N. & Ohba, K. 1997. Regeneration system and genetic diversity of Cryptomeria japonica growing at different altitudes. Canadian Journal of Forest Research 27: 447452.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Takahara, H. & Takeoka, M. 1992. Postglacial vegetation history around Torihama, Fukui prefecture, Japan. Ecological Research 7: 7985.CrossRefGoogle Scholar
Takahashi, T., Tani, N., Taira, H. & Tsumura, Y. 2005. Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. Journal of Plant Research 118: 8390.CrossRefGoogle ScholarPubMed
Takahashi, T., Tani, N., Niiyama, K., Yoshida, S. & Tsumura, Y. 2008. Genetic succession and spatial genetic structure in a natural old-growth Cryptomeria japonica forest revealed by nuclear and chloroplast microsatellite markers. Forest Ecology and Management 255: 28202828.CrossRefGoogle Scholar
Takaso, T. & Owens, J.N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83(9): 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae–Coniferales). American Journal of Botany 77(9): 12091221.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tamai, S., Sakai, T., Matsushita, Y. 1985. Studies on tree dynamics in a mixed forest of Cryptomeria japonica and broadleaved trees, with special reference to the current seedlings of Cryptomeria japonica D.Don. Japanese Journal of Ecology 35: 433441.Google Scholar
Tani, N., Tsumura, Y. & Sato, H. 2003. Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology 12: 859868.CrossRefGoogle Scholar
Teranishi, H., Kenda, Y., Katoh, T., Oura, E. & Taira, H. 2000. Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research 14: 6570.CrossRefGoogle Scholar
Toda, Y. 1979. The karyotype of Cryptomeria japonica D.Don. IV. La Kromosomo 14: 404407 (in Japanese).Google Scholar
Tomaru, N., Tsumura, Y. & Ohba, K. 1994. Genetic variation and population differentiation in natural populations of Cryptomeria japonica. Plant Species Biology 9: 191199.CrossRefGoogle Scholar
Tomizawa, H. & Maruyama, K. 1993. Distribution and survivorship of seedlings of Cryptomeria japonica natural forests on Sado Island. Journal of the Japanese Forestry Society 75: 460462 (in Japanese).Google Scholar
Tsukada, M. 1981. Cryptomeria japonica D.Don I. Pollen dispersal and logistic forest expansion. Journal of Japanese Ecology 31: 310320.Google Scholar
Tsukada, M. 1982. Cryptomeria japonica: glacial refugia and the late-glacial and postglacial migration. Ecology 63: 10911105.CrossRefGoogle Scholar
Tsukada, M. 1985. Map of vegetation during the Last Glacial Maximum in Japan. Quaternary Research 23(3): 369381.CrossRefGoogle Scholar
Tsukada, M. 1986. Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quaternary Research 26: 135152.CrossRefGoogle Scholar
Tsukamoto, J. 1991. Downhill movement of litter and its implication for ecological studies in three types of forest in Japan. Ecological Research 6(3): 333345.CrossRefGoogle Scholar
Tsumura, Y. & Ohba, K. 1992. Allozyme variation of five natural populations of Cryptomeria japonica in western Japan. Japanese Journal of Genetics 67: 299308.Google Scholar
Tsumura, Y. & Ohba, K. 1993. Genetic structure of geographical marginal populations of Cryptomeria japonica. Canadian Journal of Forest Research 23: 859863.CrossRefGoogle Scholar
Tsumura, Y. & Tomaru, N. 1999. Genetic diversity of Cryptomeria japonica using co-dominant markers based on sequence-tagged sites. Theoretical and Applied Genetics 98: 396404.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vidal, J. 1960. Les Forets du Laos. Revue Bois et Forets des Tropiques 70: 521.CrossRefGoogle Scholar
Vitousek, P.M. & Farrington, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 100: 6375.CrossRefGoogle Scholar
Walker, T.W. & Syers, J.K. 1976. The fate of phosphorous during pedogenesis. Geoderma 15: 119.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Yamashita, T., Kasuya, N., Nishimura, S. & Takeda, H. 2004. Comparison of two coniferous plantations in central Japan with respect to forest productivity, growth phenology and soil nitrogen dynamics. Forest Ecology and Management 200(1–3): 215226.CrossRefGoogle Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle ScholarPubMed
Yasue, M., Ogiyama, K., Suto, S., et al. 1987. Geographical differentiation of natural Cryptomeria stands analysed by diterpene hydrocarbon constituents of individual trees. Journal of the Japanese Forestry Society 69: 152156.Google Scholar
Yi, T.-M, Li, C.-S. & Xu, J.-X. 2003. Late Miocene woods of Taxodiaceae from Yunnan, China. Acta Botanica Sinica 45: 384389.Google Scholar
Zhu, J., Tadooka, N., Takata, K. & Koizumi, A. 2005. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. Journal of Wood Science 51: 95101.CrossRefGoogle Scholar
Zinnani, I. & Chiba, S. 1951. Naturally occurring tetraploids of Cryptomeria japonica. Ikushugaku Zasshi (Japanese Journal of Breeding) 1: 4346 (in Japanese).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cryptomeria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cryptomeria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cryptomeria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.006
Available formats
×