Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
3 - Statistical mechanics of quantum plasmas. Path integral formalism
from Reviews
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
Summary
Abstract
In this review, we consider a quantum Coulomb fluid made of charged point particles (typically electrons and nuclei). We describe various formalisms which start from the first principles of statistical mechanics. These methods allow systematic calculations of the equilibrium quantities in some particular limits. The effective-potential method is evocated first, as well as its application to the derivation of low-density expansions. We also sketch the basic outlines of the standard many-body perturbation theory. This approach is well suited for calculating expansions at high density (for Fermions) or at high temperature. Eventually, we present the Feynman-Kac path integral representation which leads to the introduction of an auxiliary classical system made of extended objects, i.e., filaments (also called “polymers”). The familiar Abe-Meeron diagrammatic series are then generalized in the framework of this representation. The truncations of the corresponding virial-like expansions provide equations of state which are asymptotically exact in the low-density limit at fixed temperature. The usefulness of such equations for describing the inner regions of the sun is briefly illustrated.
Abstract
Dans cette revue, nous considérons un fluide coulombien quantique constitué de charges ponctuelles (typiquement des électrons et des noyaux). Nous décrivons différents formalismes s'appuyant sur les premiers principes de la mécanique statistique. Ces méthodes permettent de calculer les quantités d'équilibre de manière systématique dans des limites particulières. La méthode des potentiels effectifs est d'abord évoquée, ainsi que son application aux développements à basse densité.
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 43 - 77Publisher: Cambridge University PressPrint publication year: 1994