Book contents
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- 27 Introductory Essay: Endothelial Cell Input
- 28 Hemodynamics in the Determination of Endothelial Phenotype and Flow Mechanotransduction
- 29 Hypoxia-Inducible Factor 1
- 30 Integrative Physiology of Endothelial Cells: Impact of Regional Metabolism on the Composition of Blood-Bathing Endothelial Cells
- 31 Tumor Necrosis Factor
- 32 Vascular Permeability Factor/Vascular Endothelial Growth Factor and Its Receptors: Evolving Paradigms in Vascular Biology and Cell Signaling
- 33 Function of Hepatocyte Growth Factor and Its Receptor c-Met in Endothelial Cells
- 34 Fibroblast Growth Factors
- 35 Transforming Growth Factor-β and the Endothelium
- 36 Thrombospondins
- 37 Neuropilins: Receptors Central to Angiogenesis and Neuronal Guidance
- 38 Vascular Functions of Eph Receptors and Ephrin Ligands
- 39 Endothelial Input from the Tie1 and Tie2 Signaling Pathway
- 40 Slits and Netrins in Vascular Patterning: Taking Cues from the Nervous System
- 41 Notch Genes: Orchestrating Endothelial Differentiation
- 42 Reactive Oxygen Species
- 43 Extracellular Nucleotides and Nucleosides as Autocrine and Paracrine Regulators within the Vasculature
- 44 Syndecans
- 45 Sphingolipids and the Endothelium
- 46 Endothelium: A Critical Detector of Lipopolysaccharide
- 47 Receptor for Advanced Glycation End-products and the Endothelium: A Path to the Complications of Diabetes and Inflammation
- 48 Complement
- 49 Kallikrein-Kinin System
- 50 Opioid Receptors in Endothelium
- 51 Snake Toxins and Endothelium
- 52 Inflammatory Cues Controlling Lymphocyte–Endothelial Interactions in Fever-Range Thermal Stress
- 53 Hyperbaric Oxygen and Endothelial Responses in Wound Healing and Ischemia–Reperfusion Injury
- 54 Barotrauma
- 55 Endothelium and Diving
- 56 Exercise and the Endothelium
- 57 The Endothelium at High Altitude
- 58 Endothelium in Space
- 59 Toxicology and the Endothelium
- 60 Pericyte–Endothelial Interactions
- 61 Vascular Smooth Muscle Cells: The Muscle behind Vascular Biology
- 62 Cross-Talk between the Red Blood Cell and the Endothelium: Nitric Oxide as a Paracrine and Endocrine Regulator of Vascular Tone
- 63 Leukocyte–Endothelial Cell Interactions
- 64 Platelet–Endothelial Interactions
- 65 Cardiomyocyte–Endothelial Cell Interactions
- 66 Interactions between Hepatocytes and Liver Sinusoidal Endothelial Cells
- 67 Stellate Cell–Endothelial Cell Interactions
- 68 Podocyte–Endothelial Interactions
- 69 Introductory Essay: Endothelial Cell Coupling
- 70 Endothelial and Epithelial Cells: General Principles of Selective Vectorial Transport
- 71 Electron Microscopic–Facilitated Understanding of Endothelial Cell Biology: Contributions Established during the 1950s and 1960s
- 72 Weibel-Palade Bodies: Vesicular Trafficking on the Vascular Highways
- 73 Multiple Functions and Clinical Uses of Caveolae in Endothelium
- 74 Endothelial Structures Involved in Vascular Permeability
- 75 Endothelial Luminal Glycocalyx: Protective Barrier between Endothelial Cells and Flowing Blood
- 76 The Endothelial Cytoskeleton
- 77 Endothelial Cell Integrins
- 78 Aquaporin Water Channels and the Endothelium
- 79 Ion Channels in Vascular Endothelium
- 80 Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling
- 81 Mitogen-Activated Protein Kinases
- 82 Protein Kinase C
- 83 Rho GTP-Binding Proteins
- 84 Protein Tyrosine Phosphatases
- 85 Role of β-Catenin in Endothelial Cell Function
- 86 Nuclear Factor-κB Signaling in Endothelium
- 87 Peroxisome Proliferator-Activated Receptors and the Endothelium
- 88 GATA Transcription Factors
- 89 Coupling: The Role of Ets Factors
- 90 Early Growth Response-1 Coupling in Vascular Endothelium
- 91 KLF2: A “Molecular Switch” Regulating Endothelial Function
- 92 NFAT Transcription Factors
- 93 Forkhead Signaling in the Endothelium
- 94 Genetics of Coronary Artery Disease and Myocardial Infarction: The MEF2 Signaling Pathway in the Endothelium
- 95 Vezf1: A Transcriptional Regulator of the Endothelium
- 96 Sox Genes: At the Heart of Endothelial Transcription
- 97 Id Proteins and Angiogenesis
- 98 Introductory Essay: Endothelial Cell Output
- 99 Proteomic Mapping of Endothelium and Vascular Targeting in Vivo
- 100 A Phage Display Perspective
- 101 Hemostasis and the Endothelium
- 102 Von Willebrand Factor
- 103 Tissue Factor Pathway Inhibitor
- 104 Tissue Factor Expression by the Endothelium
- 105 Thrombomodulin
- 106 Heparan Sulfate
- 107 Antithrombin
- 108 Protein C
- 109 Vitamin K–Dependent Anticoagulant Protein S
- 110 Nitric Oxide as an Autocrine and Paracrine Regulator of Vessel Function
- 111 Heme Oxygenase and Carbon Monoxide in Endothelial Cell Biology
- 112 Endothelial Eicosanoids
- 113 Regulation of Endothelial Barrier Responses and Permeability
- 114 Molecular Mechanisms of Leukocyte Transendothelial Cell Migration
- 115 Functions of Platelet-Endothelial Cell Adhesion Molecule-1 in the Vascular Endothelium
- 116 P-Selectin
- 117 Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1
- 118 E-Selectin
- 119 Endothelial Cell Apoptosis
- 120 Endothelial Antigen Presentation
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
83 - Rho GTP-Binding Proteins
from PART II - ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- 27 Introductory Essay: Endothelial Cell Input
- 28 Hemodynamics in the Determination of Endothelial Phenotype and Flow Mechanotransduction
- 29 Hypoxia-Inducible Factor 1
- 30 Integrative Physiology of Endothelial Cells: Impact of Regional Metabolism on the Composition of Blood-Bathing Endothelial Cells
- 31 Tumor Necrosis Factor
- 32 Vascular Permeability Factor/Vascular Endothelial Growth Factor and Its Receptors: Evolving Paradigms in Vascular Biology and Cell Signaling
- 33 Function of Hepatocyte Growth Factor and Its Receptor c-Met in Endothelial Cells
- 34 Fibroblast Growth Factors
- 35 Transforming Growth Factor-β and the Endothelium
- 36 Thrombospondins
- 37 Neuropilins: Receptors Central to Angiogenesis and Neuronal Guidance
- 38 Vascular Functions of Eph Receptors and Ephrin Ligands
- 39 Endothelial Input from the Tie1 and Tie2 Signaling Pathway
- 40 Slits and Netrins in Vascular Patterning: Taking Cues from the Nervous System
- 41 Notch Genes: Orchestrating Endothelial Differentiation
- 42 Reactive Oxygen Species
- 43 Extracellular Nucleotides and Nucleosides as Autocrine and Paracrine Regulators within the Vasculature
- 44 Syndecans
- 45 Sphingolipids and the Endothelium
- 46 Endothelium: A Critical Detector of Lipopolysaccharide
- 47 Receptor for Advanced Glycation End-products and the Endothelium: A Path to the Complications of Diabetes and Inflammation
- 48 Complement
- 49 Kallikrein-Kinin System
- 50 Opioid Receptors in Endothelium
- 51 Snake Toxins and Endothelium
- 52 Inflammatory Cues Controlling Lymphocyte–Endothelial Interactions in Fever-Range Thermal Stress
- 53 Hyperbaric Oxygen and Endothelial Responses in Wound Healing and Ischemia–Reperfusion Injury
- 54 Barotrauma
- 55 Endothelium and Diving
- 56 Exercise and the Endothelium
- 57 The Endothelium at High Altitude
- 58 Endothelium in Space
- 59 Toxicology and the Endothelium
- 60 Pericyte–Endothelial Interactions
- 61 Vascular Smooth Muscle Cells: The Muscle behind Vascular Biology
- 62 Cross-Talk between the Red Blood Cell and the Endothelium: Nitric Oxide as a Paracrine and Endocrine Regulator of Vascular Tone
- 63 Leukocyte–Endothelial Cell Interactions
- 64 Platelet–Endothelial Interactions
- 65 Cardiomyocyte–Endothelial Cell Interactions
- 66 Interactions between Hepatocytes and Liver Sinusoidal Endothelial Cells
- 67 Stellate Cell–Endothelial Cell Interactions
- 68 Podocyte–Endothelial Interactions
- 69 Introductory Essay: Endothelial Cell Coupling
- 70 Endothelial and Epithelial Cells: General Principles of Selective Vectorial Transport
- 71 Electron Microscopic–Facilitated Understanding of Endothelial Cell Biology: Contributions Established during the 1950s and 1960s
- 72 Weibel-Palade Bodies: Vesicular Trafficking on the Vascular Highways
- 73 Multiple Functions and Clinical Uses of Caveolae in Endothelium
- 74 Endothelial Structures Involved in Vascular Permeability
- 75 Endothelial Luminal Glycocalyx: Protective Barrier between Endothelial Cells and Flowing Blood
- 76 The Endothelial Cytoskeleton
- 77 Endothelial Cell Integrins
- 78 Aquaporin Water Channels and the Endothelium
- 79 Ion Channels in Vascular Endothelium
- 80 Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling
- 81 Mitogen-Activated Protein Kinases
- 82 Protein Kinase C
- 83 Rho GTP-Binding Proteins
- 84 Protein Tyrosine Phosphatases
- 85 Role of β-Catenin in Endothelial Cell Function
- 86 Nuclear Factor-κB Signaling in Endothelium
- 87 Peroxisome Proliferator-Activated Receptors and the Endothelium
- 88 GATA Transcription Factors
- 89 Coupling: The Role of Ets Factors
- 90 Early Growth Response-1 Coupling in Vascular Endothelium
- 91 KLF2: A “Molecular Switch” Regulating Endothelial Function
- 92 NFAT Transcription Factors
- 93 Forkhead Signaling in the Endothelium
- 94 Genetics of Coronary Artery Disease and Myocardial Infarction: The MEF2 Signaling Pathway in the Endothelium
- 95 Vezf1: A Transcriptional Regulator of the Endothelium
- 96 Sox Genes: At the Heart of Endothelial Transcription
- 97 Id Proteins and Angiogenesis
- 98 Introductory Essay: Endothelial Cell Output
- 99 Proteomic Mapping of Endothelium and Vascular Targeting in Vivo
- 100 A Phage Display Perspective
- 101 Hemostasis and the Endothelium
- 102 Von Willebrand Factor
- 103 Tissue Factor Pathway Inhibitor
- 104 Tissue Factor Expression by the Endothelium
- 105 Thrombomodulin
- 106 Heparan Sulfate
- 107 Antithrombin
- 108 Protein C
- 109 Vitamin K–Dependent Anticoagulant Protein S
- 110 Nitric Oxide as an Autocrine and Paracrine Regulator of Vessel Function
- 111 Heme Oxygenase and Carbon Monoxide in Endothelial Cell Biology
- 112 Endothelial Eicosanoids
- 113 Regulation of Endothelial Barrier Responses and Permeability
- 114 Molecular Mechanisms of Leukocyte Transendothelial Cell Migration
- 115 Functions of Platelet-Endothelial Cell Adhesion Molecule-1 in the Vascular Endothelium
- 116 P-Selectin
- 117 Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1
- 118 E-Selectin
- 119 Endothelial Cell Apoptosis
- 120 Endothelial Antigen Presentation
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
Summary
Remodeling of the endothelial cell (EC) cytoskeleton is central to many functions of the endothelium. The Rho family of small GTP-binding proteins have been identified as key regulators of F-actin cytoskeletal dynamics in a variety of cell types. They integrate signals from soluble mediators interacting with cytokine, growth factor tyrosine kinase, and G-protein–coupled receptors (GPCRs); as well as signals from cell–cell, and cell–matrix protein adhesion molecules. Recently, it has become appreciated that effector molecules downstream of Rho GTP-binding proteins also modulate several other well described cell signaling pathways. We review the role these molecules play in the cell, with a particular focus on the EC.
HISTORY
The Rho family of small GTP-binding proteins, which consists of 22 members, is part of the larger Ras GTP-binding protein superfamily. These approximately 21-kDa proteins cycle between inactive GDP- and active GTP-bound forms to act as a molecular switch in signal transduction pathways. The members of this family are grouped by virtue of a shared structural motif, the Rho insert loop, that is present in the GTPase domain and contributes to the binding specificity for downstream effector molecules (1,2). In addition to this shared structural feature, most Rho family members undergo post-translational modification to link farnesyl or geranylgeranyl groups to the cysteine in a CAAX motif at the C-terminus of the molecule. Subcellular localization of the molecule is directed by the lipid moiety and, in some family members, is also influenced by additional domains in the C-terminus.
- Type
- Chapter
- Information
- Endothelial Biomedicine , pp. 753 - 763Publisher: Cambridge University PressPrint publication year: 2007