Book contents
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- 27 Introductory Essay: Endothelial Cell Input
- 28 Hemodynamics in the Determination of Endothelial Phenotype and Flow Mechanotransduction
- 29 Hypoxia-Inducible Factor 1
- 30 Integrative Physiology of Endothelial Cells: Impact of Regional Metabolism on the Composition of Blood-Bathing Endothelial Cells
- 31 Tumor Necrosis Factor
- 32 Vascular Permeability Factor/Vascular Endothelial Growth Factor and Its Receptors: Evolving Paradigms in Vascular Biology and Cell Signaling
- 33 Function of Hepatocyte Growth Factor and Its Receptor c-Met in Endothelial Cells
- 34 Fibroblast Growth Factors
- 35 Transforming Growth Factor-β and the Endothelium
- 36 Thrombospondins
- 37 Neuropilins: Receptors Central to Angiogenesis and Neuronal Guidance
- 38 Vascular Functions of Eph Receptors and Ephrin Ligands
- 39 Endothelial Input from the Tie1 and Tie2 Signaling Pathway
- 40 Slits and Netrins in Vascular Patterning: Taking Cues from the Nervous System
- 41 Notch Genes: Orchestrating Endothelial Differentiation
- 42 Reactive Oxygen Species
- 43 Extracellular Nucleotides and Nucleosides as Autocrine and Paracrine Regulators within the Vasculature
- 44 Syndecans
- 45 Sphingolipids and the Endothelium
- 46 Endothelium: A Critical Detector of Lipopolysaccharide
- 47 Receptor for Advanced Glycation End-products and the Endothelium: A Path to the Complications of Diabetes and Inflammation
- 48 Complement
- 49 Kallikrein-Kinin System
- 50 Opioid Receptors in Endothelium
- 51 Snake Toxins and Endothelium
- 52 Inflammatory Cues Controlling Lymphocyte–Endothelial Interactions in Fever-Range Thermal Stress
- 53 Hyperbaric Oxygen and Endothelial Responses in Wound Healing and Ischemia–Reperfusion Injury
- 54 Barotrauma
- 55 Endothelium and Diving
- 56 Exercise and the Endothelium
- 57 The Endothelium at High Altitude
- 58 Endothelium in Space
- 59 Toxicology and the Endothelium
- 60 Pericyte–Endothelial Interactions
- 61 Vascular Smooth Muscle Cells: The Muscle behind Vascular Biology
- 62 Cross-Talk between the Red Blood Cell and the Endothelium: Nitric Oxide as a Paracrine and Endocrine Regulator of Vascular Tone
- 63 Leukocyte–Endothelial Cell Interactions
- 64 Platelet–Endothelial Interactions
- 65 Cardiomyocyte–Endothelial Cell Interactions
- 66 Interactions between Hepatocytes and Liver Sinusoidal Endothelial Cells
- 67 Stellate Cell–Endothelial Cell Interactions
- 68 Podocyte–Endothelial Interactions
- 69 Introductory Essay: Endothelial Cell Coupling
- 70 Endothelial and Epithelial Cells: General Principles of Selective Vectorial Transport
- 71 Electron Microscopic–Facilitated Understanding of Endothelial Cell Biology: Contributions Established during the 1950s and 1960s
- 72 Weibel-Palade Bodies: Vesicular Trafficking on the Vascular Highways
- 73 Multiple Functions and Clinical Uses of Caveolae in Endothelium
- 74 Endothelial Structures Involved in Vascular Permeability
- 75 Endothelial Luminal Glycocalyx: Protective Barrier between Endothelial Cells and Flowing Blood
- 76 The Endothelial Cytoskeleton
- 77 Endothelial Cell Integrins
- 78 Aquaporin Water Channels and the Endothelium
- 79 Ion Channels in Vascular Endothelium
- 80 Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling
- 81 Mitogen-Activated Protein Kinases
- 82 Protein Kinase C
- 83 Rho GTP-Binding Proteins
- 84 Protein Tyrosine Phosphatases
- 85 Role of β-Catenin in Endothelial Cell Function
- 86 Nuclear Factor-κB Signaling in Endothelium
- 87 Peroxisome Proliferator-Activated Receptors and the Endothelium
- 88 GATA Transcription Factors
- 89 Coupling: The Role of Ets Factors
- 90 Early Growth Response-1 Coupling in Vascular Endothelium
- 91 KLF2: A “Molecular Switch” Regulating Endothelial Function
- 92 NFAT Transcription Factors
- 93 Forkhead Signaling in the Endothelium
- 94 Genetics of Coronary Artery Disease and Myocardial Infarction: The MEF2 Signaling Pathway in the Endothelium
- 95 Vezf1: A Transcriptional Regulator of the Endothelium
- 96 Sox Genes: At the Heart of Endothelial Transcription
- 97 Id Proteins and Angiogenesis
- 98 Introductory Essay: Endothelial Cell Output
- 99 Proteomic Mapping of Endothelium and Vascular Targeting in Vivo
- 100 A Phage Display Perspective
- 101 Hemostasis and the Endothelium
- 102 Von Willebrand Factor
- 103 Tissue Factor Pathway Inhibitor
- 104 Tissue Factor Expression by the Endothelium
- 105 Thrombomodulin
- 106 Heparan Sulfate
- 107 Antithrombin
- 108 Protein C
- 109 Vitamin K–Dependent Anticoagulant Protein S
- 110 Nitric Oxide as an Autocrine and Paracrine Regulator of Vessel Function
- 111 Heme Oxygenase and Carbon Monoxide in Endothelial Cell Biology
- 112 Endothelial Eicosanoids
- 113 Regulation of Endothelial Barrier Responses and Permeability
- 114 Molecular Mechanisms of Leukocyte Transendothelial Cell Migration
- 115 Functions of Platelet-Endothelial Cell Adhesion Molecule-1 in the Vascular Endothelium
- 116 P-Selectin
- 117 Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1
- 118 E-Selectin
- 119 Endothelial Cell Apoptosis
- 120 Endothelial Antigen Presentation
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
65 - Cardiomyocyte–Endothelial Cell Interactions
from PART II - ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- 27 Introductory Essay: Endothelial Cell Input
- 28 Hemodynamics in the Determination of Endothelial Phenotype and Flow Mechanotransduction
- 29 Hypoxia-Inducible Factor 1
- 30 Integrative Physiology of Endothelial Cells: Impact of Regional Metabolism on the Composition of Blood-Bathing Endothelial Cells
- 31 Tumor Necrosis Factor
- 32 Vascular Permeability Factor/Vascular Endothelial Growth Factor and Its Receptors: Evolving Paradigms in Vascular Biology and Cell Signaling
- 33 Function of Hepatocyte Growth Factor and Its Receptor c-Met in Endothelial Cells
- 34 Fibroblast Growth Factors
- 35 Transforming Growth Factor-β and the Endothelium
- 36 Thrombospondins
- 37 Neuropilins: Receptors Central to Angiogenesis and Neuronal Guidance
- 38 Vascular Functions of Eph Receptors and Ephrin Ligands
- 39 Endothelial Input from the Tie1 and Tie2 Signaling Pathway
- 40 Slits and Netrins in Vascular Patterning: Taking Cues from the Nervous System
- 41 Notch Genes: Orchestrating Endothelial Differentiation
- 42 Reactive Oxygen Species
- 43 Extracellular Nucleotides and Nucleosides as Autocrine and Paracrine Regulators within the Vasculature
- 44 Syndecans
- 45 Sphingolipids and the Endothelium
- 46 Endothelium: A Critical Detector of Lipopolysaccharide
- 47 Receptor for Advanced Glycation End-products and the Endothelium: A Path to the Complications of Diabetes and Inflammation
- 48 Complement
- 49 Kallikrein-Kinin System
- 50 Opioid Receptors in Endothelium
- 51 Snake Toxins and Endothelium
- 52 Inflammatory Cues Controlling Lymphocyte–Endothelial Interactions in Fever-Range Thermal Stress
- 53 Hyperbaric Oxygen and Endothelial Responses in Wound Healing and Ischemia–Reperfusion Injury
- 54 Barotrauma
- 55 Endothelium and Diving
- 56 Exercise and the Endothelium
- 57 The Endothelium at High Altitude
- 58 Endothelium in Space
- 59 Toxicology and the Endothelium
- 60 Pericyte–Endothelial Interactions
- 61 Vascular Smooth Muscle Cells: The Muscle behind Vascular Biology
- 62 Cross-Talk between the Red Blood Cell and the Endothelium: Nitric Oxide as a Paracrine and Endocrine Regulator of Vascular Tone
- 63 Leukocyte–Endothelial Cell Interactions
- 64 Platelet–Endothelial Interactions
- 65 Cardiomyocyte–Endothelial Cell Interactions
- 66 Interactions between Hepatocytes and Liver Sinusoidal Endothelial Cells
- 67 Stellate Cell–Endothelial Cell Interactions
- 68 Podocyte–Endothelial Interactions
- 69 Introductory Essay: Endothelial Cell Coupling
- 70 Endothelial and Epithelial Cells: General Principles of Selective Vectorial Transport
- 71 Electron Microscopic–Facilitated Understanding of Endothelial Cell Biology: Contributions Established during the 1950s and 1960s
- 72 Weibel-Palade Bodies: Vesicular Trafficking on the Vascular Highways
- 73 Multiple Functions and Clinical Uses of Caveolae in Endothelium
- 74 Endothelial Structures Involved in Vascular Permeability
- 75 Endothelial Luminal Glycocalyx: Protective Barrier between Endothelial Cells and Flowing Blood
- 76 The Endothelial Cytoskeleton
- 77 Endothelial Cell Integrins
- 78 Aquaporin Water Channels and the Endothelium
- 79 Ion Channels in Vascular Endothelium
- 80 Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling
- 81 Mitogen-Activated Protein Kinases
- 82 Protein Kinase C
- 83 Rho GTP-Binding Proteins
- 84 Protein Tyrosine Phosphatases
- 85 Role of β-Catenin in Endothelial Cell Function
- 86 Nuclear Factor-κB Signaling in Endothelium
- 87 Peroxisome Proliferator-Activated Receptors and the Endothelium
- 88 GATA Transcription Factors
- 89 Coupling: The Role of Ets Factors
- 90 Early Growth Response-1 Coupling in Vascular Endothelium
- 91 KLF2: A “Molecular Switch” Regulating Endothelial Function
- 92 NFAT Transcription Factors
- 93 Forkhead Signaling in the Endothelium
- 94 Genetics of Coronary Artery Disease and Myocardial Infarction: The MEF2 Signaling Pathway in the Endothelium
- 95 Vezf1: A Transcriptional Regulator of the Endothelium
- 96 Sox Genes: At the Heart of Endothelial Transcription
- 97 Id Proteins and Angiogenesis
- 98 Introductory Essay: Endothelial Cell Output
- 99 Proteomic Mapping of Endothelium and Vascular Targeting in Vivo
- 100 A Phage Display Perspective
- 101 Hemostasis and the Endothelium
- 102 Von Willebrand Factor
- 103 Tissue Factor Pathway Inhibitor
- 104 Tissue Factor Expression by the Endothelium
- 105 Thrombomodulin
- 106 Heparan Sulfate
- 107 Antithrombin
- 108 Protein C
- 109 Vitamin K–Dependent Anticoagulant Protein S
- 110 Nitric Oxide as an Autocrine and Paracrine Regulator of Vessel Function
- 111 Heme Oxygenase and Carbon Monoxide in Endothelial Cell Biology
- 112 Endothelial Eicosanoids
- 113 Regulation of Endothelial Barrier Responses and Permeability
- 114 Molecular Mechanisms of Leukocyte Transendothelial Cell Migration
- 115 Functions of Platelet-Endothelial Cell Adhesion Molecule-1 in the Vascular Endothelium
- 116 P-Selectin
- 117 Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1
- 118 E-Selectin
- 119 Endothelial Cell Apoptosis
- 120 Endothelial Antigen Presentation
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
Summary
The vascular system delivers blood containing oxygen (O2) and nutrients to tissues according to their local needs. In the finest branches of the vascular tree, capillaries consist of little more than a monolayer of endothelial cells (ECs) surrounded by an extracellular matrix and occasional pericytes. At these sites, microvascular endothelium is in intimate contact with underlying parenchymal cells.
In the heart, capillary ECs lie in close proximity to cardiomyocytes. As a result, significant cross-talk occurs between these two cell types, which involves reciprocal gene regulation, signal transduction, and energy supply (1). Changes in endothelial–myocyte cross-talkmay contribute to and/or arise from numerous cardiac pathologies. In this chapter, we review in vitro and in vivo studies that provide mechanistic insight into the nature of this cell–cell communication.
MORPHOLOGICAL CONSIDERATIONS
The endothelium serves as the interface between the circulation and the vascular wall, integrating local and systemic events that regulate vascular function. During embryogenesis, the vascular endothelium is the first cardiovascular cell type to differentiate. These cells provide critical cues to all stages of cardiovascular development, and they are critically involved in myocardial trabeculation and the formation of primitive nutrient vessels.
In the normal heart, the ratio of the number of ECs to cardiac myocytes is approximately three to one (1). Three types of ECs have been identified in the heart based on their location: (a) endocardial ECs, which line the ventricles and atria; (b) myocardial microvascular ECs that line the arterioles, venules, and capillaries of the myocardium; and (c) ECs of epicardial arteries and veins (2–5). Of these, endocardial and microvascular ECs are in closest contact with cardiomyocytes.
- Type
- Chapter
- Information
- Endothelial Biomedicine , pp. 602 - 608Publisher: Cambridge University PressPrint publication year: 2007
- 1
- Cited by