Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T04:50:15.734Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 December 2009

J. V. Armitage
Affiliation:
University of Durham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Elliptic Functions , pp. 378 - 382
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H., 1881, Oeuvres Complètes, 2 vols., Christiana, Gr⊘ndahl and Son.Google Scholar
Agnew, R. P., 1960, Differential Equations, second edn., New York, McGraw-Hill.Google Scholar
Ahlfors, L. V., 1979, Complex Analysis, third edn., New York, McGraw-Hill.Google Scholar
Apostol, T. M., 1969, Mathematical Analysis, Reading, Mass, Addison-Wesley.Google Scholar
Appell, P., 1878, Sur une interprétation des valeurs imaginaires du temp en mécanique, C. R. Acad. Sci. Paris, 87, 1074–1077.Google Scholar
Baker, H. F., 1992, Principles of Geometry, 6 vols., Cambridge, Cambridge University Press.Google Scholar
Bateman, H., 1953, Higher Transcendental Functions, 3 vols., (eds. Erdélyi, Magnus, Oberhettinger and Tricomi) New York, McGraw-Hill.Google Scholar
Beardon, A. F., 1991, Iteration of Rational Functions, Graduate texts in Mathematics, 132, Section 4.3, New York, Springer.CrossRefGoogle Scholar
Biane, P., Pitman, J. and Yor, M., 2001, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bulletin American Math. Soc., 38, 435–465.CrossRefGoogle Scholar
Birch, B. J. and Swinnerton-Dyer, H. P. F., 1965, Notes on elliptic curves, II, J. Reive Angew. Math., 218, 79–108.Google Scholar
Bowman, F., 1961, Introduction to Elliptic Functions with Applications, New York, Dover.Google Scholar
Briot, C. and Bouquet, J. C., 1875, Théorie des fonctions élliptiques, Paris, Gauthier Villars.Google Scholar
Burnside, W. S. and Panton, A. W., 1901, Theory of Equations (especially Vol. II) Dublin, Dublin University Press.Google Scholar
Cassels, J. W. S., 1991, Lectures on Elliptic Curves, London Mathematical Society Student Texts, 24, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Cayley, A., 1895, An Elementary Treatise on Elliptic Functions, London, George Bell and Sons.Google Scholar
Coddington, E. A., 1961, An Introduction to Ordinary Differential Equations, Englewood Cliffs, N. J., Prentice-Hall.Google Scholar
Coddington, E. A. and Levinson, N., 1955, Theory of Differential Equations, New York, McGraw-Hill.Google Scholar
Copson, E. T., 1935, An Introduction to the Theory of Functions of a Complex Variable, Oxford, Oxford University Press.Google Scholar
Cornell, G., Silverman, J. H. and Stevens, G., 1997, Modular Forms and Fermat's Last Theorem, Berlin, Springer.
Courant, R. and Hilbert, D., 1968, Methoden der mathematischen Physik, 2 Vols., Berlin, Springer.CrossRefGoogle Scholar
Cox, D. A., 1984, The Arithmetic-Geometric Mean of Gauss, L'Enseig. Math., 30, 275–330.Google Scholar
Coxeter, H. S. M., 1961, Introduction to Geometry, New York and London, Wiley, (second edn., 1969).Google Scholar
Davenport, H., 1952, The Higher Arithmetic, Hutchinson's, University Library, London, Hutchinson.Google Scholar
Dickson, L. E., 1934, History of the Theory of Numbers (especially Vol. 2, Chapter 9), New York, G. E. Stechert & Co.Google Scholar
Durell, C. V., 1948, Projective Geometry, London, Macmillan.Google Scholar
Dutta, M. and Debnath, L., 1965, Elements of the Theory of Elliptic and Associated Functions with Applications, Calcutta, The World Press Private Ltd.Google Scholar
Dym, H. and McKean, H. P., 1972, Fourier Series and Integrals, New York and London, Academic Press.Google Scholar
Eberlein, W. F., 1954, The Elementary Transcendental Functions, Amer. Math. Monthly, 61, 386–392.CrossRefGoogle Scholar
Eberlein, W. F. 1966, The Circular Function(s), Math. Mag., 39, 197–201.CrossRefGoogle Scholar
Erdos, P., 2000, Spiraling the earth with C. G. J. Jacobi, American Journal of Physics, 68 (10), 888–895.CrossRefGoogle Scholar
Evelyn, C. J. A., Money-Coutts, G. B. and Tyrrell, J. A., 1974, The Seven Circles Theorem and Other New Theorems, London, Stacey International.Google Scholar
Faltings, G., 1995, The proof of Fermat's Last Theorem by R. Taylor and A. Wiles, Not. Amer. Math. Soc., 42, No.7, 743–746.Google Scholar
Fuchs, L., 1870, Die Periodicitäz moduln der hyperelliptischen Integrale als Funktionen eines Parameters aufgefasst, J. reine angew. Math., 71, 91–136.CrossRefGoogle Scholar
Gauss, C. F., 1799, Arithmetisch Geometrisches Mittel, Werke III, 361–432.Google Scholar
Gauss, C. F. 1801, Disquisitiones Arithmeticae, Leipzig, Fleischer, reprinted by Impression Anastaltique, Culture et Civilisation, Bruxelles, 1968. English translation by A. A. Clarke, Yace University Press, 1966. Also in Gauss, C. F., 1870, Werke, I, Leipzig, Teubner.
Glaisher, J. W. L., 1881, On some elliptic functions and trigonometrical theorems, Messenger of Mathematics, X, 92–97.Google Scholar
Glaisher, J. W. L. 1882, Systems of formulae in elliptic functions, Messenger of Mathematics, , 86.Google Scholar
Glaisher, J. W. L., 1907, On the representation of a number as the sum of two, four, six, eight, ten and twelve squares, Quart. J. Pure Appl. Math., XXXVIII, 1–62.Google Scholar
Green, M. B.Schwarz, J. M. and Witten, E., 1987, Superstring Theory, Cambridge, Cambridge University Press.Google Scholar
Greenhill, A. G., 1892, The Applications of Elliptic Functions, London, Macmillan.Google Scholar
Grosswald, E., 1984, Representations of Integers as Sums of Squares, New York, Springer-Verlag.Google Scholar
Halphen, G. H., 1886–91, Traité des fonctions élliptiques et de leurs applications, 3 vols., Paris, Gauthier-Villars.Google Scholar
Hancock, H., 1958, Lectures on the Theory of Elliptic Functions, New York, Dover.Google Scholar
Hardy, G. H., 1944, A Course of Pure Mathematics, Cambridge, Cambridge University Press.Google Scholar
Hardy, G. H. and Wright, E. M., 1979, An Introduction to the Theory of Numbers, fifth edn., Oxford, Oxford University Press.Google Scholar
Hermite, C., 1862, Sur les theorems de M. Kronecker relatifs aux formes quadratiques, Comptes Rendus de l'Academie des Sciences, LV, 11–85, (See Oeuvres, II, Paris, Gauthier-Villars, 1908, pp. 241–263.)Google Scholar
Hermite, C. 1861, Lettre addressée à M. Liouville, Theorie des Fonctions Elliptiques et ses Applications Arithmétiques, Comptes RendeesLIII; Oeuvres, 109–124.Google Scholar
Hurwitz, A. and Courant, R., 1964, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Berlin, Springer.Google Scholar
Jacobi, C. G. J., 1829, Fundamenta Nova Theoriae Functionarum Ellipticarum, reprinted in Gesammelte Werke, I, (1882), 49–239.Google Scholar
Jacobi, C. G. J. 1835, Journal für Math., XIII, 54–56; Gesammelte Werke, II, (1882), 25–26.
Jacobi, C. G. J. 1838, Theorie der elliptischen Funktionen aus der Eigenschaften der Thetareihen abgeleitet, Gesammelte Werke, I, (1882), 497–538.Google Scholar
Jones, G. A. and Singerman, D., 1987, Complex Functions, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Jordan, M. C., 1893, Cours d'analyse de l'Ecole Polytechnique, Paris, Gauthier-Villars.Google Scholar
Kendall, M. G., 1941, Correlation and elliptic functions, J. Royal Statistical Society, 104, 281–283.CrossRef
Klein, F., 1884, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen von fünften Grade, Leipzig, Teubner; English translation, The Icosahedron and the Solution of Equations of the Fifth Degree, trans. G. G. Morrice, New York, Dover.Google Scholar
Klein, F. and Fricke, R., 1890, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Leipzig, Teubner.Google Scholar
Knopp, M., 1970, Modular Forms in Analytic Number Theory, Chicago, Markham.Google Scholar
Koblitz, N., 1991, A Course in Number Theory and Cryptography, New York, Berlin and Heidelberg, Springer.Google Scholar
Kronecker, L., 1860, Über die Anzahl der verschiedenen Classen quadratische Formen von negative Determinante, J. reine. angew. Math.57; (reprinted in Werke (1895–1931), 5 vols., Leipzig, Teubner, 248–255, reprinted New York, Chelsea, 1968.)
Landau, E., 1947, Vorlesungen über Zahlentheorie, Part 1, Chelsea reprint, New York, Chelsea, 114–125.Google Scholar
Lang, S., 1987, Elliptic Functions, second edn., Berlin, Springer.CrossRefGoogle Scholar
Lawden, D. F., 1989, Elliptic Functions and Applications, Applied Mathematical Sciences, vol. 80, New York, Springer-Verlag.CrossRefGoogle Scholar
Lowan, A. N., Blanch, G. and Horenstein, W., 1942, On the inversion of the q-series associated with Jacobian elliptic functions, Bull. Amer. Math. Soc., 48, 737–738.CrossRefGoogle Scholar
McKean, H. and Moll, V., 1997, Elliptic Curves, Function Theory, Geometry, Arithmetic, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Nevanlinna, R. and Paatero, V., 1969, Introduction to Complex Analysis (tr. T. Kövari and G. S. Goodman), Reading, Mass, Addison-Wesley.Google Scholar
Neville, E. H., 1944, The Jacobian elliptic functions, Oxford, Oxford University Press.Google Scholar
Newboult, H. O., 1946, Analytical Methods in Dynamics, Oxford, Oxford University Press.Google Scholar
Ore, O., 1957, Niels Henrik Abel: Mathematician Extraordinary, Minneapolis, University of Minnesota Press.Google Scholar
Osgood, W. F., 1935, Advanced Calculus, New York, Macmillan.Google Scholar
Polya, G., 1921, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Math. Ann., 84,149–60. Reprinted in Collected Papers, vol. 4, 69–80, Cambridge, Mass, MIT Press, 1974–84.Google Scholar
Polya, G. 1927, Elementarer Beweis einer Thetaformel, Sitz. der Phys. Math. Klasse, 158–161, Berlin, Preuss. Akad. der Wiss. Reprinted in Collected Papers, Vol. 1, 303–306, Cambridge, Mass MIT Press, 1974–84.Google Scholar
Polya, G. 1954, Induction and Analogy in Mathematics and Patterns of Plausible Inference (2 vols.), New Jersey, Princeton.Google Scholar
Prasolov, V. and Solovyev, Y., 1997, Elliptic Functions and Elliptic Integrals, Translations of Mathematical Monographs, Vol. 170, Providence, Rhode Island, American Mathematical Society.CrossRefGoogle Scholar
Rademacher, H., 1973, Topics in Analytic Number Theory, Berlin, Springer.CrossRefGoogle Scholar
Rayleigh, Lord, 1929, The Theory of Sound, 2 vols., second edn., London, Macmillan.Google Scholar
Rigby, J. F., 1981, On the Money-Coutts configuration of 9 anti-tangent cycles, Proc. London Mathematical Society, 43, (1), 110–132.CrossRefGoogle Scholar
Serre, J.-P., 1970, Cours d'Arithmétique, Paris, Presses Universitaires de France. (English translation, 1973, A Course in Arithmetic, GTM 7, Berlin, Springer-Verlag.)Google Scholar
Siegel, C. L., 1969, Topics in Complex Function Theory, Vol. 1, New York, Wiley-Interscience.Google Scholar
Smith, H. J. S., 1965, Report on the Theory of Numbers, New York, Chelsea.
Stewart, I. N., 2003, Galois Theory, third edn. Buca Raton, Florida, Chapman and Hall, CRC Press.CrossRef
Tannery, J. and Molk, J., 1893–1902, Elements de la théorie des Functions Elliptiques, 4 vols., Paris, Gauthier-Villars. Reprinted New York, Chelsea, 1972.Google Scholar
Tannery, J. and Molk, J. 1939, The Theory of Functions, Oxford, Oxford University Press.Google Scholar
Titchmarsh, E. C., 1986, The Theory of the Riemann Zeta-functions, revised by D. R. Heath-Brown, Oxford, Oxford University Press.
Tyrrell, J. A. and Powell, M. T., 1971, A theorem in circle geometry, Bull. London Mathematical Society, 3, 70–74.CrossRefGoogle Scholar
du Val, P., 1973, Elliptic Functions and Elliptic Curves, London Mathematical Society Lecture Note Series, 9, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Watson, G. N., 1939, Three triple integrals, Oxford Quart. J. Math., 10, 266–276.CrossRefGoogle Scholar
Watson, G. N. 1944, A Treatise on the Theory of Bessel Functions, Cambridge, Cambridge University Press.Google Scholar
Weber, H. 1908, Lehrbuch der Algebra (especially Vol. 3), second edn. Braunschweig, Vieweg. Reprinted New York, Chelsea, 1961.Google Scholar
Weierstrass, K., 1883, Zur Theorie der elliptischen Funktionen, Sitzungberichte der Akadamie des Wissenschaften zu Berlin, 193–203. (Math. Werke, 2, 1895, 257–309) Berlin, Mayer and Müller.Google Scholar
Weil, A., 1975, Elliptic Functions according to Eisenstein and Kronecker, Berlin, Springer.Google Scholar
Whittaker, E. T., 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, fourth edn., Cambridge, Cambridge University Press.Google Scholar
Whittaker, E. T., and Watson, G. N., 1927, A Course of Modern Analysis, fourth edn., Cambridge, Cambridge University Press.Google Scholar
Williams, D., 2001, Weighing the Odds – a Course in Probability and Statistics, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Zagier, D., 1991, The Birch–Swinnerton-Dyer conjecture from a naïve point of view, Prog. Math., 89, 377–389.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×