Skip to main content Accessibility help
×
  • Cited by 42
Publisher:
Cambridge University Press
Online publication date:
December 2009
Print publication year:
2006
Online ISBN:
9780511617867

Book description

In its first six chapters this 2006 text seeks to present the basic ideas and properties of the Jacobi elliptic functions as an historical essay, an attempt to answer the fascinating question: 'what would the treatment of elliptic functions have been like if Abel had developed the ideas, rather than Jacobi?' Accordingly, it is based on the idea of inverting integrals which arise in the theory of differential equations and, in particular, the differential equation that describes the motion of a simple pendulum. The later chapters present a more conventional approach to the Weierstrass functions and to elliptic integrals, and then the reader is introduced to the richly varied applications of the elliptic and related functions. Applications spanning arithmetic (solution of the general quintic, the functional equation of the Riemann zeta function), dynamics (orbits, Euler's equations, Green's functions), and also probability and statistics, are discussed.

Reviews

'This solid text is a good place to start when working with elliptic functions and it is the sort of book that you will keep coming back to as reference text.'

Source: Mathematics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Further reading
Abel, N. H., 1881, Oeuvres Complètes, 2 vols., Christiana, Gr⊘ndahl and Son.
Agnew, R. P., 1960, Differential Equations, second edn., New York, McGraw-Hill.
Ahlfors, L. V., 1979, Complex Analysis, third edn., New York, McGraw-Hill.
Apostol, T. M., 1969, Mathematical Analysis, Reading, Mass, Addison-Wesley.
Appell, P., 1878, Sur une interprétation des valeurs imaginaires du temp en mécanique, C. R. Acad. Sci. Paris, 87, 1074–1077.
Baker, H. F., 1992, Principles of Geometry, 6 vols., Cambridge, Cambridge University Press.
Bateman, H., 1953, Higher Transcendental Functions, 3 vols., (eds. Erdélyi, Magnus, Oberhettinger and Tricomi) New York, McGraw-Hill.
Beardon, A. F., 1991, Iteration of Rational Functions, Graduate texts in Mathematics, 132, Section 4.3, New York, Springer.
Biane, P., Pitman, J. and Yor, M., 2001, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bulletin American Math. Soc., 38, 435–465.
Birch, B. J. and Swinnerton-Dyer, H. P. F., 1965, Notes on elliptic curves, II, J. Reive Angew. Math., 218, 79–108.
Bowman, F., 1961, Introduction to Elliptic Functions with Applications, New York, Dover.
Briot, C. and Bouquet, J. C., 1875, Théorie des fonctions élliptiques, Paris, Gauthier Villars.
Burnside, W. S. and Panton, A. W., 1901, Theory of Equations (especially Vol. II) Dublin, Dublin University Press.
Cassels, J. W. S., 1991, Lectures on Elliptic Curves, London Mathematical Society Student Texts, 24, Cambridge, Cambridge University Press.
Cayley, A., 1895, An Elementary Treatise on Elliptic Functions, London, George Bell and Sons.
Coddington, E. A., 1961, An Introduction to Ordinary Differential Equations, Englewood Cliffs, N. J., Prentice-Hall.
Coddington, E. A. and Levinson, N., 1955, Theory of Differential Equations, New York, McGraw-Hill.
Copson, E. T., 1935, An Introduction to the Theory of Functions of a Complex Variable, Oxford, Oxford University Press.
Cornell, G., Silverman, J. H. and Stevens, G., 1997, Modular Forms and Fermat's Last Theorem, Berlin, Springer.
Courant, R. and Hilbert, D., 1968, Methoden der mathematischen Physik, 2 Vols., Berlin, Springer.
Cox, D. A., 1984, The Arithmetic-Geometric Mean of Gauss, L'Enseig. Math., 30, 275–330.
Coxeter, H. S. M., 1961, Introduction to Geometry, New York and London, Wiley, (second edn., 1969).
Davenport, H., 1952, The Higher Arithmetic, Hutchinson's, University Library, London, Hutchinson.
Dickson, L. E., 1934, History of the Theory of Numbers (especially Vol. 2, Chapter 9), New York, G. E. Stechert & Co.
Durell, C. V., 1948, Projective Geometry, London, Macmillan.
Dutta, M. and Debnath, L., 1965, Elements of the Theory of Elliptic and Associated Functions with Applications, Calcutta, The World Press Private Ltd.
Dym, H. and McKean, H. P., 1972, Fourier Series and Integrals, New York and London, Academic Press.
Eberlein, W. F., 1954, The Elementary Transcendental Functions, Amer. Math. Monthly, 61, 386–392.
Eberlein, W. F. 1966, The Circular Function(s), Math. Mag., 39, 197–201.
Erdos, P., 2000, Spiraling the earth with C. G. J. Jacobi, American Journal of Physics, 68 (10), 888–895.
Evelyn, C. J. A., Money-Coutts, G. B. and Tyrrell, J. A., 1974, The Seven Circles Theorem and Other New Theorems, London, Stacey International.
Faltings, G., 1995, The proof of Fermat's Last Theorem by R. Taylor and A. Wiles, Not. Amer. Math. Soc., 42, No.7, 743–746.
Fuchs, L., 1870, Die Periodicitäz moduln der hyperelliptischen Integrale als Funktionen eines Parameters aufgefasst, J. reine angew. Math., 71, 91–136.
Gauss, C. F., 1799, Arithmetisch Geometrisches Mittel, Werke III, 361–432.
Gauss, C. F. 1801, Disquisitiones Arithmeticae, Leipzig, Fleischer, reprinted by Impression Anastaltique, Culture et Civilisation, Bruxelles, 1968. English translation by A. A. Clarke, Yace University Press, 1966. Also in Gauss, C. F., 1870, Werke, I, Leipzig, Teubner.
Glaisher, J. W. L., 1881, On some elliptic functions and trigonometrical theorems, Messenger of Mathematics, X, 92–97.
Glaisher, J. W. L. 1882, Systems of formulae in elliptic functions, Messenger of Mathematics, , 86.
Glaisher, J. W. L., 1907, On the representation of a number as the sum of two, four, six, eight, ten and twelve squares, Quart. J. Pure Appl. Math., XXXVIII, 1–62.
Green, M. B.Schwarz, J. M. and Witten, E., 1987, Superstring Theory, Cambridge, Cambridge University Press.
Greenhill, A. G., 1892, The Applications of Elliptic Functions, London, Macmillan.
Grosswald, E., 1984, Representations of Integers as Sums of Squares, New York, Springer-Verlag.
Halphen, G. H., 1886–91, Traité des fonctions élliptiques et de leurs applications, 3 vols., Paris, Gauthier-Villars.
Hancock, H., 1958, Lectures on the Theory of Elliptic Functions, New York, Dover.
Hardy, G. H., 1944, A Course of Pure Mathematics, Cambridge, Cambridge University Press.
Hardy, G. H. and Wright, E. M., 1979, An Introduction to the Theory of Numbers, fifth edn., Oxford, Oxford University Press.
Hermite, C., 1862, Sur les theorems de M. Kronecker relatifs aux formes quadratiques, Comptes Rendus de l'Academie des Sciences, LV, 11–85, (See Oeuvres, II, Paris, Gauthier-Villars, 1908, pp. 241–263.)
Hermite, C. 1861, Lettre addressée à M. Liouville, Theorie des Fonctions Elliptiques et ses Applications Arithmétiques, Comptes RendeesLIII; Oeuvres, 109–124.
Hurwitz, A. and Courant, R., 1964, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Berlin, Springer.
Jacobi, C. G. J., 1829, Fundamenta Nova Theoriae Functionarum Ellipticarum, reprinted in Gesammelte Werke, I, (1882), 49–239.
Jacobi, C. G. J. 1835, Journal für Math., XIII, 54–56; Gesammelte Werke, II, (1882), 25–26.
Jacobi, C. G. J. 1838, Theorie der elliptischen Funktionen aus der Eigenschaften der Thetareihen abgeleitet, Gesammelte Werke, I, (1882), 497–538.
Jones, G. A. and Singerman, D., 1987, Complex Functions, Cambridge, Cambridge University Press.
Jordan, M. C., 1893, Cours d'analyse de l'Ecole Polytechnique, Paris, Gauthier-Villars.
Kendall, M. G., 1941, Correlation and elliptic functions, J. Royal Statistical Society, 104, 281–283.
Klein, F., 1884, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen von fünften Grade, Leipzig, Teubner; English translation, The Icosahedron and the Solution of Equations of the Fifth Degree, trans. G. G. Morrice, New York, Dover.
Klein, F. and Fricke, R., 1890, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Leipzig, Teubner.
Knopp, M., 1970, Modular Forms in Analytic Number Theory, Chicago, Markham.
Koblitz, N., 1991, A Course in Number Theory and Cryptography, New York, Berlin and Heidelberg, Springer.
Kronecker, L., 1860, Über die Anzahl der verschiedenen Classen quadratische Formen von negative Determinante, J. reine. angew. Math.57; (reprinted in Werke (1895–1931), 5 vols., Leipzig, Teubner, 248–255, reprinted New York, Chelsea, 1968.)
Landau, E., 1947, Vorlesungen über Zahlentheorie, Part 1, Chelsea reprint, New York, Chelsea, 114–125.
Lang, S., 1987, Elliptic Functions, second edn., Berlin, Springer.
Lawden, D. F., 1989, Elliptic Functions and Applications, Applied Mathematical Sciences, vol. 80, New York, Springer-Verlag.
Lowan, A. N., Blanch, G. and Horenstein, W., 1942, On the inversion of the q-series associated with Jacobian elliptic functions, Bull. Amer. Math. Soc., 48, 737–738.
McKean, H. and Moll, V., 1997, Elliptic Curves, Function Theory, Geometry, Arithmetic, Cambridge, Cambridge University Press.
Nevanlinna, R. and Paatero, V., 1969, Introduction to Complex Analysis (tr. T. Kövari and G. S. Goodman), Reading, Mass, Addison-Wesley.
Neville, E. H., 1944, The Jacobian elliptic functions, Oxford, Oxford University Press.
Newboult, H. O., 1946, Analytical Methods in Dynamics, Oxford, Oxford University Press.
Ore, O., 1957, Niels Henrik Abel: Mathematician Extraordinary, Minneapolis, University of Minnesota Press.
Osgood, W. F., 1935, Advanced Calculus, New York, Macmillan.
Polya, G., 1921, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Math. Ann., 84,149–60. Reprinted in Collected Papers, vol. 4, 69–80, Cambridge, Mass, MIT Press, 1974–84.
Polya, G. 1927, Elementarer Beweis einer Thetaformel, Sitz. der Phys. Math. Klasse, 158–161, Berlin, Preuss. Akad. der Wiss. Reprinted in Collected Papers, Vol. 1, 303–306, Cambridge, Mass MIT Press, 1974–84.
Polya, G. 1954, Induction and Analogy in Mathematics and Patterns of Plausible Inference (2 vols.), New Jersey, Princeton.
Prasolov, V. and Solovyev, Y., 1997, Elliptic Functions and Elliptic Integrals, Translations of Mathematical Monographs, Vol. 170, Providence, Rhode Island, American Mathematical Society.
Rademacher, H., 1973, Topics in Analytic Number Theory, Berlin, Springer.
Rayleigh, Lord, 1929, The Theory of Sound, 2 vols., second edn., London, Macmillan.
Rigby, J. F., 1981, On the Money-Coutts configuration of 9 anti-tangent cycles, Proc. London Mathematical Society, 43, (1), 110–132.
Serre, J.-P., 1970, Cours d'Arithmétique, Paris, Presses Universitaires de France. (English translation, 1973, A Course in Arithmetic, GTM 7, Berlin, Springer-Verlag.)
Siegel, C. L., 1969, Topics in Complex Function Theory, Vol. 1, New York, Wiley-Interscience.
Smith, H. J. S., 1965, Report on the Theory of Numbers, New York, Chelsea.
Stewart, I. N., 2003, Galois Theory, third edn. Buca Raton, Florida, Chapman and Hall, CRC Press.
Tannery, J. and Molk, J., 1893–1902, Elements de la théorie des Functions Elliptiques, 4 vols., Paris, Gauthier-Villars. Reprinted New York, Chelsea, 1972.
Tannery, J. and Molk, J. 1939, The Theory of Functions, Oxford, Oxford University Press.
Titchmarsh, E. C., 1986, The Theory of the Riemann Zeta-functions, revised by D. R. Heath-Brown, Oxford, Oxford University Press.
Tyrrell, J. A. and Powell, M. T., 1971, A theorem in circle geometry, Bull. London Mathematical Society, 3, 70–74.
du Val, P., 1973, Elliptic Functions and Elliptic Curves, London Mathematical Society Lecture Note Series, 9, Cambridge, Cambridge University Press.
Watson, G. N., 1939, Three triple integrals, Oxford Quart. J. Math., 10, 266–276.
Watson, G. N. 1944, A Treatise on the Theory of Bessel Functions, Cambridge, Cambridge University Press.
Weber, H. 1908, Lehrbuch der Algebra (especially Vol. 3), second edn. Braunschweig, Vieweg. Reprinted New York, Chelsea, 1961.
Weierstrass, K., 1883, Zur Theorie der elliptischen Funktionen, Sitzungberichte der Akadamie des Wissenschaften zu Berlin, 193–203. (Math. Werke, 2, 1895, 257–309) Berlin, Mayer and Müller.
Weil, A., 1975, Elliptic Functions according to Eisenstein and Kronecker, Berlin, Springer.
Whittaker, E. T., 1937, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, fourth edn., Cambridge, Cambridge University Press.
Whittaker, E. T., and Watson, G. N., 1927, A Course of Modern Analysis, fourth edn., Cambridge, Cambridge University Press.
Williams, D., 2001, Weighing the Odds – a Course in Probability and Statistics, Cambridge, Cambridge University Press.
Zagier, D., 1991, The Birch–Swinnerton-Dyer conjecture from a naïve point of view, Prog. Math., 89, 377–389.
Alling, N. L., 1981, Real Elliptic Curves, Amsterdam, North-Holland.
Bell, E. T., 1939, Men of Mathematics, London, Victor Gollancz.
Birkhoff, G. and MacLane, S., 1948, A Survey of Modern Algebra, New York, Macmillan.
Eagle, A., 1958, The Elliptic Functions as They Should Be, Cambridge, Cambridge University Press.
Eberlein, W. F., 1977, On Euler's Infinite Product for the Sine, J. Math. Anal., 58, 147–151.
Fagnano, G. C. di, 1911–12, Opera Mathematiche, ed. D. Alighieri di Albrighit, Milan, Segati e c.
Fricke, R., 1913, Elliptische Funktionen, Encyk. Math. Wiss., II.b.3.2. (2), 177–348, Leipzig.
Fricke, R. 1916, 1992, Die elliptischen Funktionen und ihre Awendungen, 2 vols., Leipzig, Teubner.
Fricke, R. 1926, Vorlesungen über die Therie der Automorphen Funktionen, Leipzig, Teubner.
Gauss, C. F., 1797, Elegantiores integralis dx proprietates et de curva lemniscata. Werke, III, 404–432.
Goldstein, H., 1980, Classical Mechanics, second edn., Reading, Mass., Addison Wesley.
Hille, E., 1962, Analytic Function Theory, Vol. II, Boston, Ginn and Company.
Hille, E. 1976, Ordinary Differential Equations in the Complex Domain, New York, Wiley-Interscience.
Jahnke, E. and Emde, F., 1945, Tables of Functions with Formulae and Curves, New York, Dover.
Kilmister, C. W. and Reeve, J. E., 1966, Rational Mechanics, London, Longman's, Green & Co. Ltd.
Landsberg, M., 1893, Zur Theorie der Gauss'schen Summen und der linearen Transformation der Theta funktionen, J. reine angew. Math., 111, 234–253.
Mordell, L. J., 1917, On the representation of numbers as sums of 2r squares, Quarterly Journal of Mathematics, 48, 93–104.
Neville, E. H., 1944, The Jacobian Elliptic Functions, Oxford, Oxford University Press.
Newboult, H. O., 1946, Analytical Methods in Dynamics, Oxford, Oxford University Press.
Rauch, H. E. and Lebowitz, A., 1973, Elliptic Functions, Theta Functions and Riemann Surfaces, Baltimore, Williams and Wilkins.
Schwarz, H. A., 1893, Formelen und Lehrsätze zum Gebrauch der elliptischen Funktionen nach Vorlesungen und Aufzeichnungen des Herren Prof. K. Weierstrasse, second edn., Berlin, Springer-Verlag.
Silverman, J., 1986, The Arithmetic of Elliptic Curves, GTM 106, New York, Springer-Verlag.
Spenceley, G. W. and Spenceley, R. M., 1947, Smithsonian Elliptic Functions Tables, Washington, Smithsonian Institution.
Synge, J. L. and Griffiths, B. A., 1959, Principles of Mechanics, third edn., New York, McGraw-Hill.
Vladut, S. G., 1991, Kronecker's Jugendtraum and Modular Functions, studies in the Development of Modern Mathematics, volume 2, New York, Gordon and Breach Science Publications.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.