Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T02:51:18.917Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2010

Mats Larsson
Affiliation:
Stockholms Universitet
Ann E. Orel
Affiliation:
University of California, Davis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ghazaly, Abdellahi El M. O., Jureta, J., Urbain, X., & Defrance, P. 2004, “Total cross sections and kinetic energy release for the electron impact dissociation of H2+ and D2+,” J. Phys. B 37, pp. 2467–2483.CrossRefGoogle Scholar
Abouelaziz, H., Gomet, J. C., Pasquerault, D., & Rowe, B. R. 1993, “Measurements of C3H3+, C5H3+, C6H6+, C7H5+, and C10H8+ dissociative recombination rate coefficients,” J. Chem. Phys. 99, pp. 237–243.CrossRefGoogle Scholar
Abouelaziz, H., Queffelec, J. L., Rebrion, C., Rowe, B. R., Gomet, J. C., & Canosa, A. 1992, “Dissociative recombination of HCS+ and H3S+ ions studied in a flowing afterglow apparatus,” Chem. Phys. Lett. 194, pp. 263–267.CrossRefGoogle Scholar
Abrahamsson, K., Andler, G., Bagge, L., et al. 1993, “CRYRING – a synchrotron cooler and storage ring,” Nucl. Instr. Methods Phys. Res. B 79, pp. 269–272.CrossRefGoogle Scholar
Abreu, V. J., Solomon, S. C., Sharp, W. E., & Hays, P. B. 1988, “The dissociative recombination of O2+: The quantum yield of O(1S) and O(1D),” J. Geophys. Res. 88, pp. 4140–4144.CrossRefGoogle Scholar
Adams, N. G. 1992, “Spectroscopic determination of the products of electron–ion recombination,” Adv. Gas Phase Ion. Chem. 1, pp. 271–310.Google Scholar
1993, “Flowing afterglow studies of electron–ion recombination using Langmuir probes and optical spectroscopy,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 99–111.CrossRefGoogle Scholar
1994, “Afterglow techniques with spectroscopic detection for determining the rate coefficients and products of dissociative electron–ion recombination,” Int. J. Mass Spectrom. Ion Proc. 132, pp. 1–27.CrossRef
Adams, N. G. & Babcock, L. M. 1994a, “Optical emissions for the dissociative recombination of N2H+ and HCO+,” J. Phys. Chem. 98, pp. 4564–4569.CrossRefGoogle Scholar
1994b, “Vibrational excitation in the products of electron–ion recombination: A test of theory for ions of interstellar significance,” Astrophys. J. 434, pp. 184–187.CrossRef
2005, “Molecular ion recombination in trapped and flowing plasmas: methods, recent results, new goals, open questions,” J. Phys.: Conf. Ser. 4, pp. 38–49.
Adams, N. G., & Smith, D. 1987, “Recent advances in the studies of reaction rates relevant to interstellar chemistry,” in Astrochemistry, IAU Symp. 120, eds. Vardya, M. S. & Tarafdar, S. P., Dordrecht: Reidel Publishing Company, pp. 1–18.CrossRefGoogle Scholar
1988a, “Flowing afterglow and SIFT,” in Techniques for the Study of Ion Molecule Reactions, eds. Farrar, J. M. & Saunders, J. W. H., Techniques of Chemistry, Vol. 20, New York: Wiley Interscience, pp. 165–220.Google Scholar
1988b, “Laboratory studies of dissociative recombination and mutual neutralization and their relevance to interstellar chemistry,” in Rate Coefficients in Astrochemistry, eds. Millar, T. J. & Williams, D. A., Dordrecht: Kluwer, pp. 173–192.CrossRefGoogle Scholar
1988c, “Measurements of the dissociative recombination coefficients for several polyatomic ion species at 300 K,” Chem. Phys. Lett. 144, pp. 11–14.CrossRef
1989, “FALP studies of positive ion/electron recombination,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A. & Guberman, S. L., Singapore: World Scientific, pp. 124–140.CrossRefGoogle Scholar
Adams, N. G., Babcock, L. M., & McLain, J. L. 2003, “Electron–ion recombination,” in Encyclopedia of Mass Spectrometry, Vol. 1: Theory and Ion Chemistry, ed. Armentrout, P., Amsterdam: Elsevier, pp. 542–555.Google Scholar
Adams, N. G., Herd, C. R., & Smith, D. 1989, “Development of the flowing afterglow/Langmuir probe technique for studying the neutral products of dissociative recombination using spectroscopic techniques: OH production in the HCO2+ + e reaction,” J. Chem. Phys. 91, pp. 963–973.CrossRefGoogle Scholar
1990, “Determination of the products of dissociative recombination reactions,” in The Physics of Electronic and Atomic Collisions: XVI International Conference (XVI ICPEAC, New York, NY), eds. Dalgarno, A., Freund, R. S., Koch, P. M., Lubell, M. S., & Lucatorto, T. B., AIP Conf. Proceedings Vol. 205, New York: American Institute of Physics, pp. 90–95.Google Scholar
Adams, N. G., Poterya, V., & Babcock, L. M. 2006, “Electron molecular ion recombination: Product excitation and fragmentation,” Mass Spectrom. Rev. 25, pp. 798–828.CrossRefGoogle ScholarPubMed
Adams, N. G., Smith, D., & Alge, E. 1984, “Measurements of dissociative recombination rate coefficients of H3+, HCO+, N2H+, and CH5+ at 95 K and 300 K using the FALP apparatus,” J. Chem. Phys. 81, pp. 1778–1784.CrossRefGoogle Scholar
Adams, N. G., Herd, C. R., Geoghegan, M, et al. 1991, “Laser induced fluorescence and vacuum ultraviolet spectroscopic studies of H-atom production in dissociative recombination of some protonated ions,” J. Chem. Phys. 94, pp. 4852–4857.CrossRefGoogle Scholar
Ajello, J. M., & Chutjian, A. 1979, “Line shapes for attachment of threshold electrons to SF6 and CFCl3: Threshold photoelectron (TPSA) studies of Xe, CO, and C2H2,” J. Chem. Phys. 71, pp. 1079–1087.CrossRefGoogle Scholar
Al-Khalili, A., Danared, H., Larsson, M., et al. 1998, “Dissociative recombination of 3HeH+: comparison of spectra obtained with 100, 10 and 1 meV temperature electron beams,” Hyperfine Interact. 114, pp. 281–287.CrossRefGoogle Scholar
Al-Khalili, A., Thomas, R., Ehlerding, A., et al. 2004, “Dissociative recombination cross section and branching ratios of protonated dimethyl disulfide and N-methylacetamide,” J. Chem. Phys. 121, pp. 5700–5708.CrossRefGoogle ScholarPubMed
Al-Khalili, A., Rosén, S., Danared, H., et al. 2003, “Absolute high-resolution rate coefficients for dissociative recombination of electrons with HD+: Comparisons of results from three heavy-ion storage rings,” Phys. Rev. A 68, pp. 042702-1–14.CrossRefGoogle Scholar
Alge, E., Adams, N. G., & Smith, D. 1983, “Measurements of the dissociative recombination coefficients of O2+, NO+ and NH4+ in the temperature range 200–600 K,” J. Phys. B 16, pp. 1433–1444.CrossRefGoogle Scholar
Amano, T. 1988. “Is the dissociative recombination of H3+ really slow? A new spectroscopic measurement of the rate constant,” Astrophys. J. Lett. 329, pp. L121–L124.CrossRefGoogle Scholar
1990, “The dissociative recombination rate coefficient of H3+, HN2+, and HCO+,” J. Chem. Phys. 92, pp. 6492–6501.CrossRef
Amitay, Z., & Zajfman, D. 1997, “A new type of multiparticle three-dimensional imaging detector with subnanosecond time resolution,” Rev. Sci. Instrum. 68, pp. 1387–1392.CrossRefGoogle Scholar
Amitay, Z., Baer, A., Dahan, M., et al. 1998, “Dissociative recombination of HD+ in selected vibrational quantum states,” Science 281, pp. 75–78.CrossRefGoogle ScholarPubMed
Amitay, Z., Baer, A., Dahan, M., et al. 1999, “Dissociative recombination of vibrationally excited HD+: State-selective experimental investigation,” Phys. Rev. A 60, pp. 3769–3785.CrossRefGoogle Scholar
Amitay, Z., Zajfman, D., Forck, P., et al. 1996a, “Dissociative recombination of cold OH+: Evidence for indirect recombination through excited core Rydberg states,” Phys. Rev. A 53, pp. R644–R647.CrossRefGoogle Scholar
Amitay, Z., Zajfman, D., Forck, P., et al. 1996b, “Dissociative recombination of CH+: cross section and final states,” Phys. Rev. A 54, pp. 4032–4050.CrossRefGoogle Scholar
Andersen, J. U., Hvelplund, P., Nielsen, S. B., et al. 2002, “The combination of an electrospray ion source and an electrostatic storage ring for lifetime and spectroscopy experiments on biomolecules,” Rev. Sci. Instr. 73, pp. 1284–1287.CrossRefGoogle Scholar
Andersen, L. H. 1993, Electron–ion recombination at low energy, Thesis, Aarhus University, Aarhus.Google Scholar
Andersen, L. H., & Bolko, J. 1990, “Radiative recombination between fully stripped ions and free electrons,” Phys. Rev. A 42, pp. 1184–1191.CrossRefGoogle ScholarPubMed
Andersen, L. H., Andersen, T., & Hvelplund, P. 1997, “Studies of negative ions in storage rings,” Adv. At. Mol. Opt. Phys. 38, pp. 155–191.CrossRefGoogle Scholar
Andersen, L. H., Heber, O., & Zajfman, D. 2000, “Dissociative recombination of polyatomic ions: Branching ratios and isotopic effects,” in Astrochemistry: From Molecular Clouds to Planetary Systems, IAU Symp. 197, eds. Minh, Y. C. & Dishoeck, E. F., San Francisco: ASP, pp. 265–271.Google Scholar
2004, “Physics with electrostatic rings and traps,” J. Phys. B. 37, pp. R57–R88.CrossRef
Andersen, L. H., Bak, J., Boyé, S., et al. 2001b, “Resonant and nonresonant electron impact detachment of CN− and BO−,” J. Chem. Phys. 115, pp. 3566–3570.CrossRefGoogle Scholar
Andersen, L. H., Bilodeau, R., Jensen, M. J., Nielsen, S. B., Sfvan, C. P., & Seiersen, K. 2001a, “Coulomb and centrifugal barrier bound dianion resonances of NO2,” J. Chem. Phys. 114, pp. 147–151.CrossRefGoogle Scholar
Andersen, L. H., Johnson, P. J., Kella, D., Pedersen, H. B., & Vejby-Christensen, L. 1997, “Dissociative-recombination and excitation measurements with H2+ and HD+,” Phys. Rev. A 55, pp. 2799–2808.CrossRefGoogle Scholar
Andersen, L. H., Heber, O., Kella, D., Pedersen, H. B., Vejby-Christensen, L., & Zajfman, D. 1996a, “Production of water molecules from dissociative recombination of H3O+ with electrons,” Phys. Rev. Lett. 77, pp. 4891–4894.CrossRefGoogle Scholar
Andersen, L. H., Hvelplund, P., Kella, D., et al. 1996b, “Resonance structure in the electron-impact detachment cross section of C2• caused by the formation of C22•,” J. Phys. B 29, pp. L643–L649.CrossRefGoogle Scholar
Andersen, L. H., Mathur, D., Schmidt, H. T., & Vejby-Christensen, L. 1995, “Electron- impact detachment of D−: near-threshold behavior and the nonexistence of D2− resonances,” Phys. Rev. Lett. 74, pp. 892–895.CrossRefGoogle ScholarPubMed
Andersen, T. 2004, “Atomic negative ions: structure, dynamics and collisions,” Phys. Rep. 394, pp. 157–313.CrossRefGoogle Scholar
Andersen, T., Kjeldsen, H., Knudsen, H., & Folkmann, F. 2001c, “Absolute cross section for photoionization of CO+ leading to longlived metastable CO2+,” J. Phys. B 34, pp. L327–L332.CrossRefGoogle Scholar
Andersson, P. U., Öjekull, J., Pettersson, J. B. C., et al. 2003, “Dissociative recombination of D5+: Cross-sections and branching ratios,” in 23rd International Conference on Photonic, Electronic and Atomic Collisions (XXIII ICPEAC, Stockholm, Sweden), Abstracts of contributed papers, Vol. II, eds. Anton, J.et al., Stockholm: Universitetsservice US AB, p. Mo111.Google Scholar
Andrew, B. H. (ed.) 1980, Interstellar Molecules, IAU Symp. 87, Reidel Publishing Company, Dordrecht.CrossRefGoogle Scholar
Angelova, G., LeGarrec, J. L., Rebrion-Rowe, C., Rowe, B. R., Novotny, O., & Mitchell, J. B. A. 2004, “The dissociative recombination of CF3+,” J. Phys. B 37, pp. 4135–4141.CrossRefGoogle Scholar
Angelova, G., Novotny, O., Mitchell, J. B. A., et al. 2004a, “Branching ratios for the dissociative recombination of hydrocarbon ions. II. The cases of C4Hn+ (n = 1–9),” Int. J. Mass Spectrom. 232, pp. 195–203.CrossRefGoogle Scholar
Angelova, G., Novotny, O., Mitchell, J. B. A., et al. 2004b, “Branching ratios for the dissociative recombination of hydrocarbon ions. III. The cases of C3Hn+ (n = 1–9),” Int. J. Mass Spectrom. 232, pp. 195–203.CrossRefGoogle Scholar
Ångström, J. A. 1869, “Spectrum of the aurora borealis,” Phil. Mag. 38, pp. 246–247.CrossRefGoogle Scholar
Anicich, V. G., 1993a, “Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds,” J. Phys. Chem. Ref. Data 22, pp. 1469–1569.CrossRefGoogle Scholar
1993b, “A survey of bimolecular ion–molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds: 1993 supplement,” Astrophys. J. Suppl. Ser. 84, pp. 215–315.CrossRef
2003, An Index of the Literature for Bimolecular Gas Phase Cation- Molecule Reaction Kinetics, JPL Publication 03-19, Pasadena: Jet Propulsion Laboratory.
Anicich, V. G., & Huntress, W. T. Jr. 1986, “A survey of bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds,” Astrophys. J. Suppl. Ser. 62, pp. 553–672.CrossRefGoogle Scholar
Anisimov, A. I., Vinogradov, N. I., & Golant, V. E. 1964, “Measurement of the volume removal coefficient for electrons in plasma decay in oxygen,” Sov. Phys. Techn. Phys. 8, pp. 850–851.Google Scholar
Appleton, E. V. 1937, “The Bakerian Lecture – Regularities and irregularities in the ionosphere – I,” Proc. Roy. Soc. A 162, pp. 451–479.CrossRefGoogle Scholar
1949, “The ionosphere,” in Les Prix Nobel en 1947, ed. Holmberg, M. A., Stockholm: Nordstedt, P. A. & Söner, , pp. 101–107.Google Scholar
Appleton, E. V., & Barnett, M. A. F. 1925a, “Local reflection of wireless waves from upper atmosphere,” Nature 115, pp. 333–334.CrossRefGoogle Scholar
1925b, “On some direct evidence of downward atmospheric reflection of electric rays,” Proc. Roy. Soc. A 109, pp. 621–641.CrossRef
Appleton, E. V., & Weekes, K. 1939, “On lunar tides in the upper atmosphere,” Proc. Roy. Soc. A 171, pp. 171–187.CrossRefGoogle Scholar
Ashfold, M. N. R., & Baggot, J. E. (eds.) 1987, Molecular Photodissociation Dynamics, Advances in Gas-Phase Photochemistry and Kinetics, London: The Royal Society of Chemistry.Google Scholar
Auerbach, D., Cacak, R., Caudano, R., et al. 1977, “Merged electron–ion beam experiments I. Methods and measurements of (e−H2+) and (e−H3+) dissociative recombination cross section,” J. Phys. B 10, pp. 3797–3820.CrossRefGoogle Scholar
Azuma, T., Tanuma, H., & Shiromaru, H. 2004, “Present and future projects of TMU atomic physics group,” J. Phys.: Conf. Ser. 2, pp. 143–151.Google Scholar
Bahati, E. M., Jureta, J. J., Belić, D. S., Cherkani-Hassani, H., Abdellahi, M. O., & Defrance, P. 2001c, “Electron impact dissociation and ionization of N2+,” J. Phys. B 34, pp. 2963–2973.CrossRefGoogle Scholar
Bahati, E. M., Jureta, J. J., Belić, D. S., Rachafi, S., & Defrance, P. 2001b, “Electron impact ionization and dissociation of CO2+ to C+ and O+,” J. Phys. B 34, pp. 1757–1767.CrossRefGoogle Scholar
Bahati, E. M., Jureta, J. J., Cherkani-Hassani, H., & Defrance, P. 2001a, “Electron impact single ionization and dissociative excitation of H3O+, HD2O+ and D3O+,” J. Phys. B 34, pp. L333–L337.CrossRefGoogle Scholar
Bahati, E. M., Thomas, R. D., Vane, C. R., & Bannister, M. E. 2005, “Electron impact dissociation of D13CO+ molecular ions to 13CO+ ions,” J. Phys. B 38, pp. 1645–1655.CrossRefGoogle Scholar
Baird, S., Chanel, M., Möhl, D., & Tranquille, D. 1990, “LEAR,” Part. Accel. 26, pp. 223–228.Google Scholar
Balint-Kurtis, G. B. 2003, “Wavepacket theory of photodissociation and reactive scattering,” Adv. Chem. Phys. 128, pp. 249–301.Google Scholar
Banaszkiewicz, M., Lara, L. M., Rodrigo, R., Lopéz-Moreno, J. J., & Molina-Cuberos, G. J. 2000, “A coupled model of Titan's atmosphere and ionosphere,” Icarus 147, pp. 386–404.CrossRefGoogle Scholar
Bannister, M. E. 2005, “Experiments on electron-impact ionization of atomic and molecular ions,” in Atomic and Molecular Data and Their Applications, eds. Kato, T., Funaba, H., & Kato, D., AIP Conf. Proceedings Vol. 771, New York: American Institute of Physics, pp. 172–179.Google Scholar
Bannister, M. E., Krause, H. F., Vane, C. R., et al. 2003, “Electron-impact dissociation of CH+ ions: Measurement of C+ fragment ions,” Phys. Rev. A 68, pp. 042714-1–6.CrossRefGoogle Scholar
Bardsley, J. N. 1967, “The theory of dissociative recombination,” in Fifth International Conference on the Physics of Electronic and Atomic Collisions (V ICPEAC, Leningrad, USSR), Abstracts of Papers, eds. Flaks, I. P. & Solovyol, E. S., Leningrad: Nauka, pp. 338–340.Google Scholar
1968a, “Configuration interaction in the continuum states of molecules,” J. Phys. B 1, pp. 349–364.CrossRef
1968b, “The theory of dissociative recombination,” J. Phys. B 1, pp. 365–380.CrossRef
1983, “Dissociative recombination of electrons with NO+,” Planet. Space Sci. 31, pp. 667–671.CrossRef
Bardsley, J. N., & Biondi, M. A. 1970, “Dissociative recombination,” Adv. At. Mol. Phys. 6, pp. 1–57.CrossRefGoogle Scholar
Bardsley, J. N., & Junker, B. R. 1973, “Dissociative recombination of CH+ ions,” Astrophys. J. Lett. 183, pp. L135–L137.CrossRefGoogle Scholar
Barrios, A., Sheldon, J. W., Hardy, K. A., & Peterson, J. R. 1992, “Superthermal component in an effusive beam of metastable krypton: evidence of Kr2+ dissociative recombination,” Phys. Rev. Lett. 69, pp. 1348–1351.CrossRefGoogle Scholar
Barth, C. A., Fastie, W. G., Hord, C. W., et al. 1969, “Mariner 6: Ultraviolet spectrum of Mars upper atmosphere,” Science 165, pp. 1004–1005.CrossRefGoogle ScholarPubMed
Bates, D. R. 1950a, “Electron recombination in helium,” Phys. Rev. 77, pp. 718–719.CrossRefGoogle Scholar
1950b, “Dissociative recombination,” Phys. Rev. 78, pp. 492–493.CrossRef
1982, “Airglow and auroras,” in Applied Atomic Collisions, Vol. 1: Atmospheric Physics and Chemistry, eds. Massey, H. S. W. & Bates, D. R., New York: Academic Press, pp. 149–224.Google Scholar
1986, “Products of dissociative recombination of polyatomic ions,” Astrophys. J. 306, pp. L45–L47.CrossRef
1987a, “Interstellar cloud chemistry revisited,” in Recent Studies in Atomic and Molecular Processes, ed. Kingston, A. E., New York: Plenum Press, pp. 1–27. This book is referenced in the literature under a plethora of names: “Modern Applications of Atomic and Molecular Processes,” “Modern Applications of Atomic and Molecular Physics,” “Recent Studies in Atomic and Molecular Physics.” It is the proceedings of a conference held in honor of the 70th birthday of Professor David Bates, held November 17–18, 1986, at the Queen's University of Belfast, Belfast, Northern Ireland. It has ISBN 0306426870.Google Scholar
1987b, “Polyatomic ions: Bond energies, most stable isomeric form and low excited states,” Int. J. Mass Spectrom. Ion Proc. 80, pp. 1–16.CrossRef
1989, “Dissociative recombination of polyatomic ions: Curve crossing,” Astrophys. J. 344, pp. 531–534.CrossRef
1990, “Oxygen green and red line emission and O2+ dissociative recombination,” Planet. Space Sci. 38, pp. 889–902.CrossRef
1991a, “Super dissociative recombination,” J. Phys. B 24, pp. 703–709.CrossRef
1991b, “Dissociative recombination of polyatomic ions,” J. Phys. B 24, pp. 3267–3284.CrossRef
1992a, “Single-electron transitions and cluster ion super-dissociative recombination,” J. Phys. B 25, pp. 3067–3073.CrossRef
1992b, “Dissociative recombination when potential energy curves do not cross,” J. Phys. B 25, pp. 5479–5488.CrossRef
1993a, “Prevalance of rapid dissociative recombination in absence of crossing of potentials,” Proc. R. Soc. Lond. A 443, pp. 257–264.CrossRef
1993b, “Vibrational excitations of products of dissociative recombination,” Mon. Not. R. Astron. Soc. 263, pp. 369–374.CrossRef
1994, “Dissociative recombination: crossing and tunneling modes,” Adv. At. Mol. Opt. Phys. 34, pp. 427–486.CrossRef
Bates, D. R. & Dalgarno, A. 1962, “Electronic recombination,” in Atomic and Molecular Processes, ed. Bates, D. R., New York: Academic Press, pp. 245–271.Google Scholar
Bates, D. R., & Herbst, E. 1988, “Dissociative recombination: Polyatomic positive ion reactions with electrons and negative ions,” in Rate Coefficients in Astrochemistry, eds. Millar, T. J. & Williams, D. A., Dordrecht: Kluwer, pp. 41–48.CrossRefGoogle Scholar
Bates, D. R., & Massey, H. S. W. 1943a, “The negative ions of atomic and molecular oxygen,” Phil. Trans. R. Soc. Lond. A 239, pp. 269–304.CrossRefGoogle Scholar
1943b, “The properties of neutral and ionized oxygen and their influence on the upper atmosphere,” Rep. Prog. Phys. 9, pp. 62–74.
1946, “The basic reactions in the upper atmosphere. I,” Proc. Roy. Soc. A 187, pp. 261–296.CrossRef
1947, “The basic reactions in the upper atmosphere. II. The theory of recombination in the ionized layers,” Proc. Roy. Soc. A 192, pp. 1–16.CrossRef
Bates, D. R., & Mitchell, J. B. A. 1991, “Rate coefficients for N2+(v) dissociative recombination,” Planet. Space Sci. 39, pp. 1297–1300.CrossRefGoogle Scholar
Bates, D. R., & Spitzer, L. 1951, “The density of molecules in interstellar space,” Astrophys. J. 113, pp. 441–463.CrossRefGoogle Scholar
Bates, D. R., & Zipf, E. C. 1980, “The O(1S) quantum yield from O2+ dissociative recombination,” Planet. Space Sci. 28, pp. 1081–1086.CrossRefGoogle Scholar
Bates, D. R., Guest, M. F., & Kendall, R. A. 1993, “Enigma of H3+ dissociative recombination,” Planet. Space Sci. 41, pp. 9–15.CrossRefGoogle Scholar
Bates, D. R., Kingston, A. E., & McWhirter, R. W. P. 1962, “Recombination of electrons and ions I. Optically thin plasmas,” Proc. Roy. Soc. A 267, pp. 297–312.CrossRefGoogle Scholar
Bauer, E., & Wu, T.-Y. 1956, “Cross sections of dissociative recombination,” Can. J. Phys. 34, pp. 1436–1447.Google Scholar
Beck, M. H., Jäckle, A., Worth, G. A., & Meyer, H.-D. 2000, “The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wave packets,” Phys. Rep. 324, pp. 1–105.CrossRefGoogle Scholar
Becker, K. H. (ed.) 1998, Novel Aspects of Electron-Molecule Collisions, Singapore: World Scientific.CrossRefGoogle Scholar
Berkner, K. H., Morgan, T. J., Pyle, R. V., & Stearns, J. W. 1971, “Dissociation cross sections for 410- to 1800-keV H3+ ions in collisions with H2 and N2 gases,” in The Physics of Electronic and Atomic Collisions: 7th International Conference (VII ICPEAC, Amsterdam, the Netherlands), eds. Brancomb, L. M.et al., Amsterdam: North-Holland Publishing Company, pp. 422–423.Google Scholar
Bernath, P., & Amano, T. 1982, “Detection of the infrared fundamental band of HeH+,” Phys. Rev. Lett. 48, pp. 20–22.CrossRefGoogle Scholar
Berry, R. S., & Leach, S. 1979, “Elementary attachment and detachment processes. II,” Adv. Electr. El. Phys. 57, pp. 1–144.Google Scholar
Bethe, H. A. 1935, “Theory of disintegration of nuclei by neutrons,” Phys. Rev. 47, pp. 747–759.CrossRefGoogle Scholar
Bialecke, E. P., & Dougal, A. A. 1958, “Pressure and temperature variation of the electron–ion recombination coefficient in nitrogen,” J. Geophys. Res. 63, pp. 539–546.CrossRefGoogle Scholar
Biondi, M. A. 1951, “Concerning the mechanism of electron-ion recombination. II,” Phys. Rev. 83, pp. 1078–1080.CrossRefGoogle Scholar
1956, “High-speed, direct recording Fabry-Perot interferometer,” Rev. Sci. Instr. 27, pp. 36–39.CrossRef
1963, “Studies of the mechanism of electron–ion recombination. I,” Phys. Rev. 129, pp. 1181–1188.CrossRef
1964, “Electron-ion and ion-ion recombination,” Ann. Géophys. 20, pp. 34–46.
1973, “The effects of ion complexity on electron–ion recombination,” Comments At. Mol. Phys. 4, pp. 85–91.
1978, “Objections to the N2+ + e dissociative recombination coefficients inferred from analysis of Atmosphere Explorer measurements,” Geophys. Res. Lett. 5, pp. 661–664.CrossRef
2003, “Dissociative recombination of electrons and ions: The early experiments,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 13–23.CrossRefGoogle Scholar
Biondi, M. A., & Brown, S. C. 1949a, “Measurements of ambipolar diffusion in helium,” Phys. Rev. 75, pp. 1700–1705.CrossRefGoogle Scholar
1949b, “Measurement of electron–ion recombination,” Phys. Rev. 76, pp. 1697–1700.CrossRef
Biondi, M. A., & Holstein, T., 1951, “Concerning the mechanism of electron-ion recombination,” Phys. Rev. 82, pp. 962–963.CrossRefGoogle Scholar
Birtwistle, D. T., & Herzenberg, A. 1971, “Vibrational excitation of N2 resonance scattering of electrons,” J. Phys. B 4, pp. 53–70.CrossRefGoogle Scholar
Bishop, D. M., & Cheung, L. M. 1979, “Theoretical investigation of HeH+,” J. Mol. Spectrosc. 75, pp. 462–473.CrossRefGoogle Scholar
Black, J. H. 1978, “Molecules in planetary nebulae,” Astrophys. J. 222, pp. 125–131.CrossRefGoogle Scholar
Black, J. H., & Van Dishoeck, E. F. 1989, “Dissociative recombination in interstellar clouds,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 317–328.CrossRefGoogle Scholar
Bluhme, H., Jensen, M. J., Br⊘ndsted Nielsen, S., et al. 2004, “Electron scattering on stored mononucleotide anions,” Phys. Rev. A 70, pp. 020701-1–4.CrossRefGoogle Scholar
Boger, G. I., & Sternberg, A. 2006, “Bistability in interstellar gas-phase chemistry,” Astrophys. J. 645, pp. 314–323.CrossRefGoogle Scholar
Bohr, N. 1919, “On the model of a triatomic hydrogen molecule,” Meddel. från K. Vet.-Akad:s Nobelinstitut 5, pp. 1–16.Google Scholar
Bordas, M. C., Lembo, L. J., & Helm, H 1991, “Spectroscopy and multichannel quantum-defect theory analysis of the np Rydberg series of H3,” Phys. Rev. A 44, pp. 1817–1827.CrossRefGoogle ScholarPubMed
Bottcher, C. 1974, “Theory of dissociative recombination,” Proc. R. Soc. Lond. A 340, pp. 301–322.CrossRefGoogle Scholar
1976, “Dissociative recombination of the hydrogen molecular ion,” J. Phys. B 9, pp. 2899–2921.CrossRef
Bottcher, C., & Docken, K. 1974, “Autoionizing states of the hydrogen molecule,” J. Phys. B 7, pp. L5–L8.CrossRefGoogle Scholar
Bowers, M. T. 1989, “Photodissociation dynamics of small cluster ions,” in Ion and Cluster Ion Spectroscopy and Structure, ed. Maier, J. P., Amsterdam: Elsevier, pp. 241–273.Google Scholar
Boyé, S., Krogh, H., Nielsen, I. B., et al. 2003, “Vibrationally resolved photoabsorption spectroscopy of red fluorescent protein chromophore anions,” Phys. Rev. Lett. 90, pp. 118103-1–4.CrossRefGoogle ScholarPubMed
Braeuning, H., & Salzborn, E. 2005, “Ion–ion collision processes: Experiment,” in Atomic and Molecular Data and their Applications, eds. Kato, T., Funaba, H., & Kato, D., AIP Conf. Proceedings, Vol. 771, New York: American Institute of Physics, pp. 219–228.Google Scholar
Branscomb, L. M. 1962, “Photodetachment,” in Atomic and Molecular Processes, ed. Bates, D. R., New York: Academic Press, pp. 100–140.Google Scholar
Broström, L., Larsson, M., Mannervik, S., & Sonnek, D. 1991, “The visible photoabsorption spectrum and potential curves of ArN+,” J. Chem. Phys. 94, pp. 2734–2740.CrossRefGoogle Scholar
Bruna, P. J. 1975, “Theoretical study of the properties of HCO+ at equilibrium,” Astrophys. Lett. 16, pp. 107–113.Google Scholar
Brune, W. H., Schwab, J. J., & Anderson, J. G. 1983, “Laser magnetic resonance, resonance fluorescence, and resonance absorption studies of the reaction kinetics of O + OH → H + O2, O + HO2 → OH + O2, N + OH → H + NO, and N + HO2 → products at 300 K between 1 and 5 torr,” J. Phys. Chem. 87, pp. 4503–4514.CrossRefGoogle Scholar
Brunger, M. J., & Buckman, S. J. 2002, “Electron-molecule scattering cross sections. I. Experimental techniques and data for diatomic molecules,” Phys. Rep. 357, pp. 215–458.CrossRefGoogle Scholar
Brunger, M. J., Buckman, S. J., & Newman, D. S. 1990, “Low energy electron scattering from H2,” Aust. J. Phys. 43, pp. 665–682.CrossRefGoogle Scholar
Buckman, S. J., Panajotovic, R., & Jelisavcic, M. 2004, “Low energy electron-molecule collision cross sections,” Phys. Scripta T110, pp. 166–171.CrossRefGoogle Scholar
Buhl, D., & Snyder, L. E. 1970, “Unidentified interstellar microwave line,” Nature 228, pp. 267–269.CrossRefGoogle ScholarPubMed
Bultel, A., & Chéron, B. G. 2005, “Role of molecular ions in plasmas of atmospheric and energetic interest,” J. Phys.: Conf. Ser. 4, pp. 205–210.Google Scholar
Burdett, N. A., & Hayhurst, A. N. 1978, “Kinetics of gas phase electron–ion recombination by NO+ + e− → N + O from measurements in flames,” J. Chem. Soc. Faraday Trans. 1 74, pp. 53–62.CrossRefGoogle Scholar
Burke, P. G., Hibbert, A., & Robb, W. D. 1971, “Electron scattering by complex atoms,” J. Phys. B 4, pp. 153–161.CrossRefGoogle Scholar
Butler, C. J., & Hayhurst, A. N. 1996, “Kinetics of dissociative recombination of H3O+ ions with free electrons in premixed flames,” J. Chem. Soc. Faraday Trans. 92, pp. 707–714.CrossRefGoogle Scholar
Butler, J. M., Babcock, L. M., & Adams, N. G. 1997, “Effects of deuteration on vibrational excitation in the products of the electron recombination of HCO+ and N2H+,” Mol. Phys. 91, pp. 81–90.CrossRefGoogle Scholar
Canosa, A., Gomet, J. C., Rowe, B. R., Mitchell, J. B. A., & Queffelec, J. L. 1992, “Further measurements of the H3+ (v = 0,1,2) dissociative recombination rate coefficient,” J. Chem. Phys. 97, pp. 1028–1037.CrossRefGoogle Scholar
Canosa, A., Gomet, J. C., Rowe, B. R., & Queffelec, J. L. 1991a, “Flowing afterglow Langmuir probe measurement of N2+(v = 0) dissociative recombination rate coefficient,” J. Chem. Phys. 94, pp. 7159–7163.CrossRefGoogle Scholar
Canosa, A., Rowe, B. R., Mitchell, J. B. A., Gomet, J. C., & Rebrion, C. 1991b, “New measurements of the H3+ and HCO+ dissociative recombination rate coefficient,” Astron. Astrophys. 248, pp. L19–L21.Google Scholar
Cao, Y. S., & Johnsen, R. 1991, “Recombination of N4+ ions with electrons,” J. Chem. Phys. 95, pp. 7356–7359.CrossRefGoogle Scholar
Carata, L., Orel, A. E., & Suzor-Weiner, A. 1999, “Dissociative recombination of He2+ molecular ions,” Phys. Rev. A 59, pp. 2804–2812.CrossRefGoogle Scholar
Carata, L., Orel, A. E., Raoult, M., Schneider, I. F., & Suzor-Weiner, A. 2000, “Core-excited resonances in the dissociative recombination of CH+ and CD+,” Phys. Rev. A 62, pp. 052711-1–10.CrossRefGoogle Scholar
Carata, L., Schneider, I. F., Suzor-Weiner, A., Tennyson, J., & Lange, C. A. 1997, “The role of Rydberg states in dissociative recombination, as revealed by ion storage ring experiments [and discussion],” Phil. Trans. R. Soc. Lond. A 355, pp. 1677–1691.CrossRefGoogle Scholar
Carney, G. D., & Porter, R. N. 1980, “Ab initio prediction of the rotation-vibration spectrum of H3+ and D3+,” Phys. Rev. Lett. 45, pp. 537–541.CrossRefGoogle Scholar
Carrington, A., Kennedy, R. A., Softley, T. P., Fournier, P. G., & Richard, E. G. 1983, “Infrared bound to quasibound vibration–rotation spectrum of HeH+ and its isotopes,” Chem. Phys. 81, pp. 251–261.CrossRefGoogle Scholar
Casavecchia, P. 2001, “Chemical reaction dynamics with molecular beams,” Rep. Prog. Phys. 63, pp. 355–414.CrossRefGoogle Scholar
Chang, J. S., Hobson, R. M., Ichikawa, Y., Kaneda, T., Maruyama, N., & Teii, S. 1989, “Dissociative recombination of Ne2+ at elevated electron and gas temperatures,” J. Phys. B, 22, pp. L665–L668.CrossRefGoogle Scholar
Chapman, S. 1931, “The Bakerian Lecture – Some phenomena of the upper atmosphere,” Proc. Roy. Soc. A 132, pp. 353–374.CrossRefGoogle Scholar
Chen, C. L., Leiby, C. C., & Goldstein, L. 1961, “Electron temperature dependence of the recombination coefficient in pure helium,” Phys. Rev. 121, pp. 1391–1400.CrossRefGoogle Scholar
Chen, J. C. Y., & Mittleman, M. H. 1967, “The role of Rydberg states in dissociative recombination,” in Fifth International Conference on the Physics of Electronic and Atomic Collisions (V ICPEAC, Leningrad, USSR), Abstracts of papers, eds. Flaks, I. P., & Solovyol, E. S., Leningrad: Nauka, pp. 329–331.Google Scholar
Chen, Q., & Goodings, J. M. 1998, “Chemical kinetics of yttrium ionization in H2−O2−N2 flames,” Int. J. Mass Spectrom. 176, pp. 1–12.CrossRefGoogle Scholar
1999, “Chemical kinetics of lanthanum ionization in H2−O2−N2 flames,” Int. J. Mass Spectrom. 188, pp. 213–224.CrossRef
Chen, Q., Milburn, R. K., Hopkinson, A. C., Bohme, D. K., & Goodings, J. M. 1999, “Magnesium chemistry in the gas phase: calculated thermodynamic properties and experimental ion chemistry in H2−O2−N2 flames,” Int. J. Mass Spectrom. 184, pp. 153–173.CrossRefGoogle Scholar
Christoffersen, R. E., Hagstrom, S., & Prosser, F. 1964, “H3+ molecule ion. Its structure and energy,” J. Chem. Phys. 40, pp. 236–237.CrossRefGoogle Scholar
Christophorou, L. G. (ed.) 1984a, Electron–Molecule Interactions and Their Applications, Vol. 1, New York: Academic Press.Google Scholar
1984b, Electron–Molecule Interactions and Their Applications, Vol. 2, New York: Academic Press.
Christophorou, L. G., & Olthoff, J. K. 2001, “Electron interactions with excited atoms and molecules,” Adv. At. Mol. Opt. Phys. 44, pp. 155–293.CrossRefGoogle Scholar
Chutjian, A., & Alajajian, S. H. 1985, “s-wave threshold in electron attachment: Observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, pp. 2885–2892.CrossRef
Chutjian, A., Garscadden, A., & Wadehra, J. M. 1996, “Electron attachment to molecules at low electron energies,” Phys. Rep. 264, pp. 393–470.CrossRefGoogle Scholar
Clark, R. E. H. (ed.) 2006, Summary Report of Final IAEA Research Co-ordination Meeting. Data For Molecular Processes in Edge Plasmas, INDC International Nuclear Data Committee, INDC(NDS)-0491, Vienna: IAEA.Google Scholar
Cohen, J. S. 1976, “Multistate curve-crossing model for scalttering: associative ionization and excitation transfer in helium,” Phys. Rev. A 13, pp. 99–114.CrossRefGoogle Scholar
Collins, C. B., & Robertson, W. W. 1965, “Comments on collisional–radiative recombination of He2+ into dissociative states,” J. Chem. Phys. 43, p. 4188.CrossRefGoogle Scholar
Collins, L. A., & Schneider, B. I. 1983, “Linear algebraic approach to electronic excitation of atoms and molecules by electron impact,” Phys. Rev. A 27, pp. 101–111.CrossRefGoogle Scholar
Collins, G. F., Pegg, D. J., Fritioff, K., et al. 2005, “Electron-impact fragmentation of Cl2•,” Phys. Rev. A 72, pp. 042708-1–7.CrossRefGoogle Scholar
Compton, R. N., & Bardsley, J. N. 1984, “Dissociation of molecules by slow electrons,” in Electron–Molecule Collisions, eds. Shimamura, I., & Takayanagi, K., New York: Plenum Press, pp. 275–349.CrossRef
Connor, T. R., & Biondi, M. A. 1965, “Dissociative recombination in neon: spectral line-shape studies,” Phys. Rev. 140, pp. A778–A791.CrossRefGoogle Scholar
Conroy, H. 1964, “Potential energy surfaces for the H3+ molecule-ion,” J. Chem. Phys. 40, pp. 603–604.CrossRefGoogle Scholar
Continetti, R. E. 2000, “Dissociative photodetachment studies of transient molecules by coincidence techniques,” in Photoionization and Photodetachment, Part II, ed Ng, C.-Y., Advanced Series in Physical Chemistry, Vol. 10B, Singapore: World Scientific, pp. 748–808.CrossRefGoogle Scholar
Cook, P. A., Langford, S. R., Dixon, R. N., & Ashford, M. N. R. 2001, “An experimental and ab initio reinvestigation of Lyman-α photodissociation of H2S and H2D,” J. Chem. Phys. 114, pp. 1672–1684.CrossRefGoogle Scholar
Cooper, H. J., Håkansson, K., & Marshall, A. G. 2005, “The role of electron capture dissociation in biomolecular analysis,” Mass Spectrom. Rev. 24, pp. 201–222.CrossRefGoogle ScholarPubMed
Cooper, R., Sonsbeek, R. J., & Bhave, R. N. 1993, “Pulse radiolysis of ion-electron recombination in gaseous argon,” J. Chem. Phys. 98, pp. 383–389.CrossRefGoogle Scholar
Coulson, C. A. 1935, “The electronic structure of H3+,” Proc. Camb. Phil. Soc. 31, pp. 244–259.CrossRefGoogle Scholar
1951, Valence, London: Oxford University Press.
Cox, S. G., Critchley, D. J., McNab, I. R., & Smith, F. E. 1999, “High-resolution spectroscopy of ion beams,” Meas. Sci. Technol. 10, pp. R101–R128.CrossRefGoogle Scholar
Crandall, D. H., Kaupilla, W. E., Phaneuf, R. A., Taylor, P. O., & Dunn, G. H. 1974, “Absolute cross sections for electron impact excitation of N2+,” Phys. Rev. A 9, pp. 2545–2551.CrossRefGoogle Scholar
Cravens, T. E. 2003, “Dissociative recombination in cometary ionospheres,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 385–400.CrossRefGoogle Scholar
Cravens, T. E., Robertson, I. P., & Waite, J. H. Jr. 2006, “Composition of Titan's ionosphere,” Geophys. Res. Lett. 33, pp. 07105-1–4.CrossRefGoogle Scholar
Crofton, M. W., Altman, R. S., Haese, N. N., & Oka, T. 1989, “Infrared spectra of 4HeH+, 4HeD+, 3HeH+, and 3HeD+,” J. Chem. Phys. 91, pp. 5882–5886.CrossRefGoogle Scholar
Crompton, R. W. 1994, “Benchmark measurements of cross sections for electron collisions: Electron swarm methods,” Adv. At. Mol. Opt. Phys. 33, pp. 97–148.CrossRefGoogle Scholar
Cunningham, A. J., & Hobson, R. M. 1969, “Experimental measurement of dissociative recombination in vibrationally excited gases,” Phys. Rev. 185, pp. 98–100.CrossRefGoogle Scholar
1972a, “Dissociative recombination at elevated temperatures I. Experimental measurements in krypton afterglows,” J. Phys. B 5, pp. 1773–1783.CrossRef
1972b, “Dissociative recombination at elevated temperatures III. O2+ dominated afterglows,” J. Phys. B 5, pp. 2320–2327.CrossRef
1972c, “Dissociative recombination at elevated temperatures IV. N2+ dominated afterglows,” J. Phys. B 5, pp. 2328–2331.CrossRef
Cunningham, A. J., Malley, O' T. F., & Hobson, R. M. 1981, “On the role of vibrational excitation in dissociative recombination,” J. Phys. B 14, pp. 773–782.CrossRefGoogle Scholar
Čurík, R., & Greene, C. H. 2007a, “Indirect dissociative recombination of LiH+ fueled by complex resonance manifolds,” Phys. Rev. Lett. 98, pp. 173201-1–4.CrossRefGoogle Scholar
2007b, “Vibrational excitation and dissociative recombination of LiH+,” Mol. Phys. 105, pp. 1565–1574.
Dabrowski, I., & Herzberg, G. 1977, “The predicted infrared spectrum of HeH+ and its possible astrophysical importance,” Trans. NY Acad. Sci. 38, pp. 14–25.CrossRefGoogle Scholar
Dahan, M., Fishman, R., Heber, O., et al. 1998, “A new type of electrostatic ion trap for storage of fast ion beams,” Rev. Sci. Instr. 69, pp. 76–83.CrossRefGoogle Scholar
Dalgarno, A. 1993, “Chemistry of supernova 1987A,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R, Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 243–248.CrossRefGoogle Scholar
1994, “Terrestrial and extraterrestrial H3+,” Adv. At. Mol. Opt. Phys. 32, pp. 57–68.CrossRef
2000, “Dissociative recombination in astrophysical environments,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 1–12.CrossRefGoogle Scholar
2005, “Molecular processes in the early Universe,” J. Phys.: Conf. Ser. 4, pp. 10–16.
2006, “The galactic cosmic ray ionization rate,” Proc. Natl. Acad. Sci. USA 103, pp. 12269–12273.CrossRef
Dalitz, R. H. 1953, “On the analysis of τ-meson data,” Phil. Mag. 44, pp. 1068–1080.CrossRefGoogle Scholar
Danared, H. 1993, “Fast electron cooling with a magnetically expanded electron beam,” Nucl. Instr. Meth. Phys. Res. A 335, pp. 397–401.CrossRefGoogle Scholar
1995, “Electron cooling for atomic physics,” Phys. Scripta T59, pp. 121–125.CrossRef
Danared, H., Andler, G., Bagge, L., et al. 1994, “Electron cooling with an ultracold electron beam,” Phys. Rev. Lett. 72, pp. 3775–3778.CrossRefGoogle ScholarPubMed
Danared, H., Källberg, A., Liljeby, L., & Rensfelt, K. G. 1998, “The CRYRING super conducting electron cooler,” in Proceedings of the 6th Particle Acceleration Conference, Bristol: Institute of Physics Publishing, pp. 1031–1033.Google Scholar
Dance, D. F., Harrison, M. F. A., Rundel, R. D., & Smith, A. C. H. 1967, “A measurement of the cross section for proton production in collisions between electrons and H2+ ions,” Proc. Phys. Soc. 92, pp. 577–588.CrossRefGoogle Scholar
Danilov, A. D., & Ivanov-Kholodny, G. S. 1965, “Research on ion-molecule reactions and dissociative recombination in the upper atmosphere and in the laboratory,” Sov. Phys. Usp. 8, pp. 92–116.CrossRefGoogle Scholar
Datz, S. 2001, “Dynamics of dissociative recombination of molecular ions: three-body breakup of triatomic di-hydrides,” J. Phys. Chem. A 105, pp. 2369–2373.CrossRefGoogle Scholar
Datz, S., & Larsson, M. 1992, “Radiative lifetimes for all vibrational levels in the X1Σ+ state of HeH+ and its relevance to dissociative recombination experiments in ion storage rings,” Phys. Scripta 46, pp. 343–347.CrossRefGoogle Scholar
Datz, S., Larsson, M., Strömholm, C., et al. 1995a, “Dissociative recombination of H2D+: Cross sections, branching fractions, and isotope effects,” Phys. Rev. A 52, pp. 2901–2909.CrossRefGoogle Scholar
Datz, S., Rosén, S., Al-Khalili, A., et al. 2000a, “Three-body breakup dynamics in dissociative recombination,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 200–209.CrossRefGoogle Scholar
Datz, S., Sundström, G., Biedermann, Ch., et al. 1995b, “Branching processes in the dissociative recombination of H3+,” Phys. Rev. Lett. 74, pp. 896–899.CrossRefGoogle Scholar
Datz, S., Thomas, R., Rosén, S., et al. 2000b, “Dynamics of three-body breakup in dissociative recombination: H2O+,” Phys. Rev. Lett. 85, pp. 5555–5558.CrossRefGoogle Scholar
Davidson, D. F., & Hobson, R. M. 1987, “The shock tube determination of the dissociative recombination rate of NO+,” J. Phys. B 20, pp. 5753–5756.CrossRefGoogle Scholar
Deloche, R., Monchicourt, P., Cheret, M., & Lambert, F. 1976, “High-pressure helium afterglow at room temperature,” Phys. Rev. A 13, pp. 1140–1176.CrossRefGoogle Scholar
Dempster, A. J. 1916, “The ionization and dissociation of hydrogen molecules and the formation of H3,” Phil. Mag. 31, pp. 438–443.CrossRefGoogle Scholar
Derkatch, A. M., Al-Khalili, A., Vikor, L., et al. 1999, “Branching ratios in dissociative recombination of the C2H2+ molecular ion,” J. Phys. B 32, pp. 3391–3398.CrossRefGoogle Scholar
Derkits, C., Bardsley, J. N., and Wadehra, 1979, “Dissociative recombination in e−D2+ collisions,” J. Phys. B 12, pp. L529–L531.CrossRefGoogle Scholar
Dinelli, B. M., Miller, S., & Tennyson, J. 1992, “Bands of H3+ up to 4v2: rovibrational transitions from first principle calculations,” J. Mol. Spectrosc. 153, pp. 718–725; ibid. 1992, Erratum, 156, p. 243.CrossRefGoogle Scholar
Dinelli, B. M., Neale, L., Polyansky, O. L., & Tennyson, T. 1997, “New assignments for the infrared spectrum of H3+,” J. Mol. Spectrosc. 181, pp. 142–150.CrossRefGoogle Scholar
Diner, A., Toker, Y., Strasser, D., et al. 2004, “Size-dependent electron-impact detachment of internally cold Cn• and Aln•,” Phys. Rev. Lett. 93, pp. 063402-1–4.CrossRefGoogle ScholarPubMed
Dittner, P. F., Datz, S., Miller, P. D., Pepmiller, P. L., & Fou, C. M. 1986, “Dielectronic recombination measurements of P4+, S5+, and Cl6+,” Phys. Rev. A 33, pp. 124–130.CrossRefGoogle ScholarPubMed
Dixon, R. N., Hwang, D. W., Yang, X. F., Harich, S., Lin, J. J., & Yang, X. 1999, “Chemical ‘double slits’: Dynamical interference of photodissociation pathways in water,” Science 285, pp. 1249–1253.CrossRefGoogle Scholar
Djurić, N. 2005, “Recent experimental studies of electron-impact excitation of atomic and molecular ions,” in Atomic and Molecular Data and their Applications, eds. Kato, T., Funaba, H., & Kato, D., AIP Conf. Proceedings Vol. 771, New York: American Institute of Physics, pp. 162–171.Google Scholar
Djurić, N., Chung, Y.-S., Wallbank, B., & Dunn, G. H. 1997, “Measurement of light fragments in dissociative excitation of molecular ions: CD+,” Phys. Rev. A 56, pp. 2887–2892.CrossRefGoogle Scholar
Djurić, N., Dunn, G. H., & Al-Khalili, A. 2001, “Resonant ion-pair formation and dissociative recombination in electron collisions with ground-state HF+ ions,” Phys. Rev. A 64, pp. 022713-1–9.CrossRefGoogle Scholar
Djurić, N., Neau, A., Rosén, S., Zong, W., & Dunn, G. H. 2000, “Light-ionic fragment production in dissociative electron–molecular-ion collisions: Detection of D+ and D2+ from NDn+ (n = 2−4) and ODn+ (n = 2,3),” Phys. Rev. A 62, pp. 032702-1–6.CrossRefGoogle Scholar
Djurić, N., Zhou, S., Dunn, G. H., & Bannister, M. E. 1998, “Electron-impact dissociative excitation of CDn+ (n = 2–5): Detection of light fragment ions D+ and D2+,” Phys. Rev. A 58, pp. 304–308.CrossRefGoogle Scholar
Dolder, ., & Peart, B. 1972, “Comments on Rundel's discussion of proton production by collisions between electrons and H2+,” J. Phys. B 5, pp. L129–L133.CrossRefGoogle Scholar
1976, “Collisions between electrons and ions,” Rep. Prog. Phys. 39, pp. 693–749.CrossRef
1986, “Electron–ion and ion–ion collisions with intersecting beams,” Adv. At. Mol. Phys. 22, pp. 197–241.CrossRef
Domcke, W., & Estrada, H. 1988, “Friction and memory effects in the dynamics of short-lived negative ions,” J. Phys. B 21, pp. L205–L211.CrossRefGoogle Scholar
Donahue, T. M., Parkinson, T., Zipf, E. C., Doering, J. P., Fastie, W. G., & Miller, R. E. 1968, “Excitation of the auroral green line by dissociative recombination of the oxygen molecular ion: analysis of two rocket experiments,” Planet. Space Sci. 16, pp. 737–747.CrossRefGoogle Scholar
Dörner, R., Vogt, T. Mergel., et al. 1996, “Ratio of cross sections for single to double ionization of He by 85–400 eV photons,” Phys. Rev. Lett. 76, pp. 2654–2657.CrossRefGoogle Scholar
Douglas, A. E., & Herzberg, G. 1941, “CH+ in interstellar space and in the laboratory,” Astrophys. J. 94, p. 381.CrossRefGoogle Scholar
Dreuw, A., & Cederbaum, L. S. 2000, “Nature of the repulsive Coulomb barrier in multiply charged negative ions,” Phys. Rev. A 63, pp. 012501-1–13.CrossRefGoogle Scholar
2002, “Multiply charged anions in the gas phase,” Chem. Rev. 102, pp. 181–200.CrossRef
Drossart, P., Maillard, J.–P., & Caldwell, J. 1989, “Detection of H3+ on Jupiter,” Nature 340, pp. 539–541.CrossRefGoogle Scholar
Duane, W., & Wendt, G. L. 1917, “A reactivity modification of hydrogen produced by alpha-radiation,” Phys. Rev. 10, pp. 116–128.CrossRefGoogle Scholar
Dubé, L., & Herzenberg, A. 1975, “Resonant electron–molecule scattering: The impulse approximation in N2O,” Phys. Rev. A 11, pp. 1314–1325.CrossRefGoogle Scholar
DuBois, R. D., Jeffries, J. B., & Dunn, G. H. 1978, “Dissociative recombination cross sections for NH4+ ions and electrons,” Phys. Rev. A 17, pp. 1314–1320.CrossRefGoogle Scholar
Dubrovsky, G. V., & Ob'edkov, V. D. 1967, “Decay of molecular hydrogen ions through collisions with thermal electrons,” Sov. Astron. –AJ 11, pp. 305–307.Google Scholar
Dubrovsky, G. V., Ob'edkov, V. D., & Janev, R. K. 1967, “The deacy of two-atom molecules in collisions with electrons,” in Fifth International Conference on the Physics of Electronic and Atomic Collisions (V ICPEAC, Leningrad, USSR), Abstracts of papers, eds. Flaks, I. P. & Solovyol, E. S., Leningrad: Nauka, pp. 342–345.Google Scholar
Dulaney, J. L., Biondi, M. A., & Johnsen, R. 1987, “Electron temperature dependence of the recombination of electrons with NO+ ions,” Phys. Rev. A 36, pp. 1342–1350.CrossRefGoogle ScholarPubMed
1988, “Electron temperature dependence of the recombination of electrons with O4+ ions,” Phys. Rev. A 37, pp. 2539–2542.CrossRef
Dunn, G. H., & Djurić, N. 1998, “Electron impact dissociative excitation and ionization of molecular ions,” in Novel Aspects of Electron–Molecule Collisions, ed. Becker, K. H., Singapore: World Scientific, pp. 241–281.CrossRefGoogle Scholar
Dunn, G. H., & Zyl, B. 1967, “Electron impact dissociation of H2+,” Phys. Rev. 154, pp. 40–51.CrossRefGoogle Scholar
Dunn, G. H., Zyl, B., & Zare, R. N. 1965, “Dissociation of H2+ by electron impact,” Phys. Rev. Lett. 15, pp. 610–612.CrossRefGoogle Scholar
Dunn, G. H., Belić, D. S., Djurić, N., & Mueller, D. W. 1984, “Dielectronic recombination,” in Atomic Physics 9, eds. Dyck, R. S. & Fortson, E. Norval, Singapore: World Scientific, pp. 505–522.Google Scholar
Dunning, F. B. 1995, “Electron–molecule collisions at very low electron energies,” J. Phys. B 28, pp. 1645–1672.CrossRefGoogle Scholar
Durrance, S. T., Barth, C. A., & Stewart, A. I. F. 1980, “Pioneer Venus observations of the Venus dayglow spectrum 1250–1430 Å,” Geophys. Res. Lett. 7, pp. 222–224.CrossRefGoogle Scholar
Eddington, A. S. 1926, “Diffuse matter in interstellar space,” Proc. Roy. Soc. A 111, pp. 424–456.CrossRefGoogle Scholar
Ehlerding, A., Arnold, S. T., Viggiano, A. A., et al. 2003, “Rates and products of the dissociative recombination of C3H7+ in low-energy electron collisions,” J. Phys. Chem. A 107, pp. 2179–2184.CrossRefGoogle Scholar
Ehlerding, A., Hellberg, F., Thomas, R., et al. 2004, “Dissociative recombination of C2H+ and C2H4+: Absolute cross sections and product branching ratios,” Phys. Chem. Chem. Phys. 6, pp. 949–954.CrossRef
Ehlerding, A., Viggiano, A. A., Hellberg, F., et al. 2006, “The dissociative recombination of fluorocarbon ions III: CF2+ and CF3+,” J. Phys. B 39, pp. 805–812.CrossRefGoogle Scholar
Ehrhardt, H., & Morgan, L. A. (eds.) 1994, Electron Collisions with Molecules, Clusters and Surfaces, New York: Plenum Press.CrossRefGoogle Scholar
Einfeld, T., Chichini, A., Maul, C., & Gericke, K.-H. 2004, “Photodissociation dynamics of phosgene: new observations by applying a three-dimensional imaging technique,” J. Chem. Phys. 116, pp. 2803–2810.CrossRefGoogle Scholar
Eletskii, A. V., & Smirnov, B. M. 1982, “Dissociative recombination of electrons and molecular ions,” Sov. Phys. Usp. 25, pp. 13–30.CrossRefGoogle Scholar
Ghazaly, El M. O. A., Svendsen, A., Bluhme, H., et al. 2004, “Electron scattering on centrosymmetric molecular dianions Pt(CN)42• and Pt(CN)62•,” Phys. Rev. Lett. 93, pp. 203201-1–4.CrossRefGoogle Scholar
Ghazaly, El M. O. A., Svendsen, A., Bluhme, H., et al. 2005, “Electron scattering on p-benzoquionone anions,” Chem. Phys. Lett. 405, pp. 278–281.CrossRefGoogle Scholar
Ellis, A., Feher, M., & Wright, T. 2005, Electronic and Photoelectron Spectroscopy: Fundamentals and Case Studies, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Eritt, M., Diner, A., Toker, Y., et al. 2006, “Size effects in the interaction between ionic clusters and low-energy electrons,” Phys. Scr. 73, pp. C32–C35.CrossRefGoogle Scholar
Erman, P., Karawajczyk, A., Rachlew-Källne, E., & Strömholm, C. 1995, “Photoionization and photodissociation of nitric oxide in the range 9–35 eV,” J. Chem. Phys. 102, pp. 3064–3076.CrossRefGoogle Scholar
Estrada, H., & Domcke, W. 1989, “Non-Markovian dynamics of electron–molecule collision complexes,” Phys. Rev. A 40, pp. 1262–1278.CrossRefGoogle ScholarPubMed
Faire, A. C., & Champion, K. S. W. 1959, “Measurements of dissociative recombination and diffusion in nitrogen at low pressures,” Phys. Rev. 113, pp. 1–6.CrossRefGoogle Scholar
Faire, A. C., Fundingland, O. T., Aden, A. L., & Champion, K. S. W. 1958, “Electron recombination coefficient in nitrogen at low pressures,” J. Appl. Phys. 29, pp. 928–930.CrossRefGoogle Scholar
Fehér, M., Rohrbacher, A., & Maier, J. P. 1994, “Infrared laser kinetic spectroscopy of the H3+ ion,” Chem. Phys. 185, pp. 357–364.CrossRefGoogle Scholar
Fehsenfeld, F. C., Schmeltekopf, A. L., Goldan, P. D., Schiff, H. I., & Ferguson, E. E. 1965, “Thermal energy ion–neutral reaction rates. I. Some reactions of helium ions,” J. Chem. Phys. 44, pp. 4087–4094.CrossRefGoogle Scholar
Fenn, J. B. 2003, “Electrospray wings for molecular elephants,” in Le prix Nobel, The Nobel Prizes 2002, ed. Frängsmyr, T., Stockholm: Nordstedts, EditaTryckeri, AB, pp. 154–184.Google Scholar
Ferguson, E. E., Fehsenfeld, F. C., & Schmeltekopf, A. L. 1965, “Dissociative recombination in helium afterglow,” Phys. Rev. 138, pp. A381–A385.CrossRefGoogle Scholar
Feynman, R. P. 1939, “Forces in molecules,” Phys. Rev. 56, pp. 340–343.CrossRefGoogle Scholar
Filippelli, A. R., Lin, C. C., Anderson, L. W., & McConkey, J. W. 1994, “Principles and methods for measurement of electron impact excitation cross sections for atoms and molecules by optical techniques,” Adv. At. Mol. Opt. Phys. 33, pp. 1–62.CrossRefGoogle Scholar
Finch, C. D., & Dunning, F. B. 2000, “Rydberg atoms: A nanoscale laboratory to examine the dynamics of electron attachment,” Comm. Mod. Phys. 2, pp. D89–D97.Google Scholar
Flannery, M. R. 1994, “Electron–ion and ion–ion recombination processes,” Adv. At. Mol. Opt. Phys. 32, pp. 117–147.CrossRefGoogle Scholar
1995, “Semiclassical-classical path hybrid theory of direct electron–ion recombination and a proposal for e− + H3+ recombination,” in Atomic and Molecular Physics: Fourth US/Mexico Symposium, eds. Alvarez, I., Cisneros, C., & Morgan, T. J., Singapore: World Scientific, pp. 329–341.CrossRefGoogle Scholar
Florescu, A. I., Suzor-Weiner, A., Leininger, T., & Gadéa, F. X. 2004, “Non-adiabatic mechanisms in dissociative recombination,” Phys. Scripta T110, pp. 172–177.CrossRefGoogle Scholar
Florescu-Mitchell, A. I., & Mitchell, J. B. A. 2006, “Dissociative recombination,” Phys. Rep. 430, pp. 277–374.CrossRefGoogle Scholar
Flower, D. R., & Roueff, E. 1979, “On the formation and destruction of HeH+ in gaseous nebulae and the associated infrared emission line spectrum,” Astron. Astrophys. 72, pp. 361–366.Google Scholar
Forand, J. L., Mitchell, J. B. A., & McGowan, J. Wm. 1985, “Triatomic molecular dissociation: a method for measuring individual decay channel cross sections,” J. Phys. E 18, pp. 623–626.CrossRefGoogle Scholar
Forck, P., Broude, C., Grieser, M., et al. 1994, “New resonances in the dissociative recombination of vibrationally cold CD+,” Phys. Rev. Lett. 72, pp. 2002–2005.CrossRefGoogle ScholarPubMed
Forck, P., Grieser, M., Habs, D., et al. 1993a, “Molecular physics in a storage ring: dissociative recombination and excitation of cold HD+,” Nucl. Instr. Meth. B 79, pp. 273–275.CrossRefGoogle Scholar
Forck, P., Grieser, M., Habs, D., et al. 1993b, “Dissociative recombination of HD+ at the Test Storage Ring,” Phys. Rev. Lett. 70, pp. 426–429.CrossRefGoogle Scholar
Fox, J. L. 1986, “The vibrational distribution of O2+ in the dayside ionosphere,” Planet. Space Sci. 34, pp. 1241–1252.CrossRefGoogle Scholar
1989, “Dissociative recombination in aeronomy,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A. & Guberman, S. L., Singapore: World Scientific, pp. 264–285.CrossRefGoogle Scholar
1993a, “The production and escape of nitrogen atoms on Mars,” J. Geophys. Res. 98(E2), pp. 3287–3310.
1993b, “Dissociative recombination in planetary ionospheres,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 219–242.CrossRefGoogle Scholar
1996, “Hydrocarbon ions in the ionosphere of Titan and Jupiter,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 40–46.CrossRefGoogle Scholar
2000, “Applications of velocity distributions of atomic products in dissociative recombination to aeronomy,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 25–30.CrossRefGoogle Scholar
2005, “Effects of dissociative recombination on the composition of planetary atmospheres,” J. Phys.: Conf. Ser. 4, pp. 32–37.
Fox, J. L., & Hać, A. 1997, “Spectrum of hot O at the exabase of the terrestrial planets,” J. Geophys. Res. 102 (A11), pp. 24005–24011.CrossRefGoogle Scholar
Fox, J. N., & Hobson, R. M. 1966, “Temperature dependence of dissociative recombination coefficients in argon,” Phys. Rev. Lett. 17, pp. 161–163.CrossRefGoogle Scholar
Franck, J., & Hertz, G. 1914, “Über zusammenstössen zwischen Elektronen und den Molekülen des Quecksiblerdampfes und die Ionisierungsspannung desselben,” Ver. d. D. Phys. Ges. 16, pp. 457–467.Google Scholar
Frederick, J. E., Rusch, D. W., Victor, G. A., Sharp, W. E., Hays, P. B., & Brinton, H. C. 1976, “The OI (λ5577 Å) Airglow: Observations and excitation mechanisms,” J. Geophys. Res. 81, pp. 3923–3930.CrossRefGoogle Scholar
Frisch, P. 1972, “Abundances of interstellar CH and CH+ radicals,” Astrophys. J. 173, pp. 301–316.CrossRefGoogle Scholar
Fritioff, K., Sandström, J., Andersson, P., et al. 2004, “Observation of an excited C42 ion,” J. Phys. B 37, pp. 2241–2246.CrossRefGoogle Scholar
Frommhold, L., & Biondi, M. A. 1969, “Interferometric study of dissociative recombination radiation in neon and argon afterglows,” Phys. Rev. 185, pp. 244–252.CrossRefGoogle Scholar
Frommhold, L., Biondi, M. A., & Mehr, F. J. 1968, “Electron-temperature dependence of electron–ion recombination in neon,” Phys. Rev. A 165, pp. 44–52.CrossRefGoogle Scholar
Galli, D., & Palla, F. 1998, “The chemistry of the early Universe,” Astron. Astrophys. 335, pp. 403–420.Google Scholar
Galloway, E. T., & Herbst, E. 1991, “Can phase space theory reproduce experimental neutral product branching ratios for dissociative recombination reactions?,” Astrophys. J. 376, pp. 531–539.CrossRefGoogle Scholar
Ganguli, B., Biondi, M. A., Johnsen, R., & Dulaney, J. L. 1988, “Electron-temperature dependence of the recombination of HCO+ ions with electrons,” Phys. Rev. A 37, pp. 2543–2547.CrossRefGoogle ScholarPubMed
Geballe, T. R., & Oka, T. 1996, “Detection of H3+ in interstellar space,” Nature 384, pp. 334–335.CrossRefGoogle ScholarPubMed
2006, “A key molecular ion in the universe and in the laboratory,” Science 312, pp. 1610–1612.CrossRef
Geballe, T. R., McCall, B. J., Hinkle, K. H., & Oka, T. 1999, “Detection of H3+ in the diffuse interstellar medium: The Galactic center and Cygnus OB2 number 12,” Astrophys. J. 510, pp. 251–257.CrossRefGoogle Scholar
Geoghegean, M., Adams, N. G., & Smith, D. 1991, “Determination of the electron–ion dissociative recombination coefficients for several molecular ions at 300 K,” J. Phys. B 24, pp. 2589–2599.CrossRefGoogle Scholar
Geppert, W., Ehlerding, A., Hellberg, F., et al. 2004a, “First observation of four-body breakup in electron recombination: C2D5+,” Phys. Rev. Lett. 93, pp. 153201-1–4.CrossRefGoogle Scholar
Geppert, W. D., Ehlerding, A., Hellberg, F., et al. 2004b, “Dissociative recombination of nitrile ions: DCCCN+ and DCCCND+,” Astrophys. J. 613, pp. 1302–1309.CrossRefGoogle Scholar
Geppert, W. D., Hamberg, M., Thomas, R. D., et al. 2006a, “Dissociative recombination of protonated methanol,” Faraday Discuss. 133, pp. 177–190.CrossRefGoogle Scholar
Geppert, W. D., Hellberg, F., Ehlerding, A., et al. 2004c, “Dissociative recombination of S18O2+: Evidence for three-body breakup,” Astrophys. J. 610, pp. 1228–1233.CrossRefGoogle Scholar
Geppert, W. D., Hellberg, F.,Österdahl., F., et al. 2006b, “Dissociative recombination of CD3OD2+,” in Astrochemistry: Recent Successes and Current Challenges, IAU Symp. 231, Cambridge: Cambridge University Press, pp. 117–124.Google Scholar
Geppert, W. D., Thomas, R., Ehlerding, A.et al. 2004d, “Extraordinary branching ratios in astrophysically important dissociative recombination reactions,” Faraday Discuss. 127, pp. 425–437.CrossRefGoogle Scholar
Geppert, W. D., Thomas, R., Ehlerding, A., et al. 2004e, “Dissociative recombination of C3H4+: preferential formation of the C3H3 radical,” Int. J. Mass Spectrom. 237, pp. 25–32.CrossRefGoogle Scholar
Geppert, W. D., Thomas, R. D., Ehlerding, A.et al. 2005, “Dissociative recombination branching ratios and their influence on interstellar clouds,” Phys.: Conf. Ser. 4, pp. 26–31.Google Scholar
Geppert, W. D., Thomas, R., Hellberg, F., et al. 2004f, “Dissociative recombination of N2OD+,” Phys. Chem. Chem. Phys. 6, pp. 3415–3419.CrossRefGoogle Scholar
Geppert, W. D., Thomas, R., Semaniak, J.et al. 2004g, “Dissociative recombination of N2H+: evidence for the fracture of the N−N bond,” Astrophys. J. 609, pp. 459–464.CrossRefGoogle Scholar
Gillan, C. J., Tennyson, J., & Burke, P. G. 1995, “The UK molecular R-matrix scattering package: A computational perspective,” in Computational Methods for Electron Molecule Collisions, eds. Huo, W. M. & Gianturco, F. A., New York: Plenum Press, pp. 239–254.CrossRefGoogle Scholar
Giusti, A. 1980, “A multichannel quantum defect approach to dissociative recombination,” J. Phys. B 13, pp. 3867–3894.CrossRefGoogle Scholar
Giusti-Suzor, A. 1986, “Recent developments in the theory of dissociative recombination,” in Atomic Processes in Electron–Ion and Ion–Ion Collisions, ed. Brouillard, F., New York: Plenum Press, pp. 223–237.Google Scholar
Giusti-Suzor, A., & Lefebvre-Brion, H. 1977, “The dissociative recombination of CH+ ions,” Astrophys. J. Lett. 214, pp. L101–L103.CrossRefGoogle Scholar
Giusti-Suzor, A., Bardsley, J. N., & Derkits, C. 1983, “Dissociative recombination in low-energy e–H2+ collisions,” Phys. Rev. A 28, pp. 682–691.CrossRefGoogle Scholar
Glockler, G., & Fuller, D. L. 1933, “Helium hydride ion,” J. Chem. Phys. 1, pp. 886–887.CrossRefGoogle Scholar
Glosík, J. 1992, “Dissociative electronic recombination – recent results,” Plasma Phys. Contr. Fusion 34, pp. 2091–2097.CrossRefGoogle Scholar
Glosík, J., & Plašil, R. 2000, “The recombination rate coefficient of a protonated acetone dimer with electrons: indication of a temperature dependence,” J. Phys. B 33, pp. 4483–4494.CrossRefGoogle Scholar
Glosík, J., Novotný, O., & Pysanenko, A. 2003, “The recombination of H3+ and H5+ ions with electrons in hydrogen plasma: dependence on temperature and on pressure of H2,” Plasma Sources Sci. Techn. 12, pp. S117–S122.CrossRefGoogle Scholar
Glosík, J., Bánó, G., Plašil, R., Luca, A., & Zakouřil, P. 1999, “Study of the electron ion recombination in high pressure flowing afterglow: recombination of NH4+.(NH3)2,” Int. J. Mass Spectrom. 189, pp. 103–113.CrossRefGoogle Scholar
Glosík, J., Plašil, R., Poterya, V., Kudrna, P., & Tichý, M. 2000, “The recombination of H3+ ions with electrons: dependence of partial pressure of H2,” Chem. Phys. Lett. 331, pp. 209–214.CrossRefGoogle Scholar
Glosík, J., Plašil, R., Poterya, V., Kudrna, P., Tichý, M., & Pysanenko, A. 2001a, “Experimental study of recombination of H3+ ions with electrons relevant for interstellar and planetary plasmas,” J. Phys. B 34, pp. L485–L494.CrossRefGoogle Scholar
Glosík, J., Plašil, R., Pysanenko, A., et al. 2005, “Recombination studies in a He-Ar-H2 plasma,” J. Phys.: Conf. Ser. 4, pp. 104–110.Google Scholar
Glosík, J., Plašil, R., Zakouřil, P., & Poterya, V. 2001b, “Dissociative recombination of protonated dimer ions H+.(HCOH)2 and H+.(CH3COH)2 with electrons at near thermal energies,” J. Phys. B 34, pp. 2781–2793.CrossRefGoogle Scholar
Goldan, P. D., Schmeltekopf, A. L., Fehsenfeld, F. C., Schiff, H. I., & Ferguson, E. E. 1965, “Thermal energy ion-neutral reaction rates. I. Some reactions of ionospheric interest,” J. Chem. Phys. 44, pp. 4095–4103.CrossRefGoogle Scholar
Golubkov, G. V., & Ivanov, G. K. 1990, “Interaction of auto-decayed state in molecule photodissociation processes,” Nuovo Cimento D 12, pp. 1–20.CrossRefGoogle Scholar
Golubkov, M. G., Golubkov, G. V., & Ivanov, G. K. 1997, “Low-temperature dissociative recombination of electrons with H2+, HD+ and D2+,” J. Phys. B 30, pp. 5511–5534.CrossRefGoogle Scholar
Goodings, J. M., Patterson, P. M., & Hayhurst, A. N. 1995, “Mass-spectrometric study of BaOH+ ions and free electrons from barium added to flames of H2+O2+Ar,” J. Chem. Soc. Faraday Trans. 91, pp. 2257–2267.CrossRefGoogle Scholar
Gougousi, T., Golde, M. F., & Johnsen, R. 1994, “Electron–ion recombination measurements in flowing afterglow plasmas,” Bull. Am. Phys. Soc. Ser. 2 39, p. 1456.Google Scholar
1997, “Electron–ion recombination rate coefficient measurements in a flowing afterglow plasma,” Chem. Phys. Lett. 265, pp. 399–403.CrossRef
Gougousi, T., Johnsen, R., & Golde, M. F. 1995, “Recombination of H3+ and D3+ in a flowing afterglow plasma,” Int. J. Mass Spectrom. Ion Proc. 149/159, pp. 131–151.CrossRefGoogle Scholar
1997a, “Yield determination of OH (v = 0,1) radicals produced by the electron-ion recombination of H3O+ ions,” J. Chem. Phys. 107, pp. 2430–2439.CrossRef
1997b, “Yield determination of OH (v = 0,1) radicals produced by the electron-ion recombination of protonated molecules,” J. Chem. Phys. 107, pp. 2440–2443.CrossRef
Graber, T., Kanter, E. P., Levin, J., Zajfman, D., Vager, Z., & Naaman, R. 1997, “Direct measurement of bending conformations in triatomic dihydride ions,” Phys. Rev. A 56, pp. 2600–2613.CrossRefGoogle Scholar
Graham, S. M., & Goodings, J. M. 1984, “Metallic ions in hydrocarbon flames. II. Mechanism for the reduction of C3H3+ by metals in relation to soot suppression,” Int. J. Mass Spectrom. Ion Proc. 56, pp. 205–222.CrossRefGoogle Scholar
Graham, W. G., Fritsch, W., Hahn, Y., & Tanis, J. A. (eds.) 1992, Recombination of Atomic Ions, New York: Plenum Press.
Green, S., & Herbst, E. 1979, “Metastable isomers: A new class of interstellar molecules,” Astrophys. J. 229, pp. 121–131.CrossRefGoogle Scholar
Greene, C. H., & Kokoouline, V. 2004, “Dissociative recombination of polyatomic molecules: A new mechanism,” Phys. Scripta T110, pp. 178–182.CrossRefGoogle Scholar
2006, “Theoretical progress and challenges in H3+ dissociative recombination,” Phil. Trans. R. Soc. A 364, pp. 2965–2980.CrossRef
Greene, C. H., Kokoouline, V., & Esry, B. D. 2003, “Importance of Jahn-Teller coupling in the dissociative recombination of H3+ by low energy electrons,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 221–233.CrossRefGoogle Scholar
Gross, S. H., & Rasool, S. I. 1964, “The upper atmosphere of Jupiter,” Icarus 3, pp. 311–322.CrossRefGoogle Scholar
Guberman, S. L. 1979, “Potential curves for dissociative recombination of O2+,” Int. J. Quant. Chem.: Quant. Chem. Symp. 13, pp. 531–540.Google Scholar
1983a, “Potential energy curves for dissociative recombination,” in Physics of Ion–Ion and Electron–Ion Collisions, eds. Brouillard, F., & McGowan, J. W., New York: Plenum Press, pp. 167–200.CrossRefGoogle Scholar
1983b, “The doubly excited autoionizing states of H2,” J. Chem. Phys. 78, pp. 1404–1413.CrossRef
1986a, “Windows in direct dissociative recombination cross sections,” Can. J. Phys. 64, pp. 1621–1625.CrossRef
1986b, “Theoretical studies of dissociative recombination,” in Thermophysical Aspects of Re-Entry Flow, eds. Moss, J. N. & Scott, C. D., Progress in Astronautics and Aeronautics Vol. 103, New York: American Institute of Aeronautics and Astronautics, pp. 225–242.CrossRefGoogle Scholar
1987, “The production of O(1S) from dissociative recombination of O2+,” Nature 327, pp. 408–409.CrossRef
1988, “The production of O(1D) from dissociative recombination of O2+,” Planet. Space Sci. 36, pp. 47–53.CrossRef
1989, “Ab initio studies of dissociative recombination,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 45–60.CrossRefGoogle Scholar
1991, “Dissociative recombination of the ground state of N2+,” Geophys. Res. Lett. 18, pp. 1051–1054.CrossRef
1993, “Electron–ion continuum-continuum mixing,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A. & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 47–57.CrossRefGoogle Scholar
1994, “Dissociative recombination without a curve crossing,” Phys. Rev. A 49, pp. R4277–R4280.CrossRef
1995a, “New mechanisms for dissociative recombination,” in The Physics of Electronic and Atomic Collisions: ⅪX International Conference (ⅪX ICPEAC, Whistler, Canada), eds. Dube, L. J., Mitchell, J. B. A., McConkey, J. W., & Brion, C. E., AIP Conf. Proceedings Vol. 360, New York: American Institute of Physics, pp. 307–316.Google Scholar
1995b, “The dissociative recombination of OH+,” J. Chem. Phys. 102, pp. 1699–1704.CrossRef
1997, “Mechanism for the green glow of the upper ionosphere,” Science 278, pp. 1276–1278.CrossRef
2001, “Chemistry – Breaking up is hard to do without an electron,” Science 294, pp. 1474–1475.CrossRef
(ed.) 2003a, Dissociative Recombination of Molecular Ions with Electrons, New York: Kluwer/Plenum Publishers.
2003b, “Dissociative recombination mechanisms,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 1–11.CrossRefGoogle Scholar
2003c, “The dissociative recombination of N2+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 187–196.CrossRefGoogle Scholar
2004, “Product angular distributions in dissociative recombination,” J. Chem. Phys. 120, pp. 9509–9513.CrossRef
2005, “Dissociative recombination angular distributions,” J. Phys: Conf. Ser. 4, pp. 58–65.
Guberman, S. L., & Giusti-Suzor, A. 1991, “The generation of O(1S) from the dissociative recombination of O2+,” J. Chem. Phys. 95, pp. 2602–2613.CrossRefGoogle Scholar
Guberman, S. L., & Goddard, W. A., III, 1975, “Nature of the excited states of He2,” Phys. Rev. A 12, pp. 1203–1221.CrossRefGoogle Scholar
Gunton, R. C. 1967, “Study of electrons, positive ions and negative ions in oxygen afterglows,” Bull. Am. Phys. Soc. 12, pp. 218–219.Google Scholar
Gunton, R. C., & Shaw, T. M. 1965, “Electron–ion recombination in nitric oxide in the temperature range 196 to 358 K,” Phys. Rev. 140, pp. A756–A763.CrossRefGoogle Scholar
Guo, J., & Goodings, J. M. 2000, “Recombination coefficients for H3O+ ions with electrons e− and with Cl−, Br− and I− at flame temperatures 1820–2400 K,” Chem. Phys. Lett. 329, pp. 393–398.CrossRefGoogle Scholar
2002, “Chemical kinetics of scandium ionization in H2−O2−N2 flames,” Int. J. Mass Spectrom. 214, pp. 349–364.CrossRef
Gutcheck, R. A., & Zipf, E. C. 1973, “Excitation of the CO fourth positive system by the dissociative recombination of CO2+ ions,” J. Geophys. Res. 78, pp. 5429–5436.CrossRefGoogle Scholar
Habs, D., Bauman, W., Berger, J., et al. 1989, “First experiments with the Heidelberg test storage ring TSR,” Nucl. Instrum. Methods Phys. Res. B 43, pp. 390–410.CrossRefGoogle Scholar
Habs, D., Kramp, J., Krause, P., Matl, K., Neumann, R., & Schwalm, D. 1988, “Ultracold ordered electron beam,” Phys. Scr. T22, pp. 269–276.CrossRefGoogle Scholar
Hackam, R. 1965, “Temperature dependence of electron–ion recombination and ion mobilities in nitrogen afterglows,” Planet. Space Sci. 13, pp. 667–674.CrossRefGoogle Scholar
Hahn, Y. 1997, “Electron–recombination processes – an overview,” Rep. Prog. Phys. 60, pp. 691–759.CrossRefGoogle Scholar
Hamberg, M., Geppert, W. D., Rosén, S., et al. 2005, “Branching ratios and absolute cross sections for dissociative recombination processes of N2O+,” Phys. Chem. Chem. Phys. 7, pp. 1664–1668.CrossRefGoogle ScholarPubMed
Hamberg, M., Gepper, W. D., Thomas, R. D., et al. 2007, “Experimental determination of dissociative recombination reaction pathways and absolute reactions cross-sections of CH2OH+, CD2OD+ and CD2OD2+,” Mol. Phys. 105, pp. 899–906.CrossRefGoogle Scholar
Hansel, A., Glantschnig, M., Scheiring, C ., Lindinger, W., & Ferguson, E. E. 1998, “Energy dependence of the isomerization of HCN+ and HNC+via ion molecule reactions,” J. Chem. Phys. 109, pp. 1743–1747.CrossRefGoogle Scholar
Hansen, K., Andersen, J. U., Hvelplund, P., M⊘ller, S. P., Pedersen, U. V., & Petrunin, V. V. 2001, “Observation of a 1/t decay law for hot clusters and molecules in a storage ring,” Phys. Rev. Lett. 87, pp. 123401-1–4.CrossRefGoogle Scholar
Harich, S. A., Hwang, D. W. H., Yang, X., et al. 2000, “Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture,” J. Chem. Phys. 113, pp. 10073–10090.CrossRefGoogle Scholar
Harrison, J. A., Whyte, A. R., & Phillips, L. F. 1986, “Kinetics of reactions of NH with NO and NO2,” Chem. Phys. Lett. 129, pp. 346–352.CrossRefGoogle Scholar
Hartquist, T. W. (ed.) 1990, Molecular Astrophysics, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hartquist, T. W., & Williams, D. A. (eds.) 1998, The Molecular Astrophysics of Stars and Galaxies, Oxford: Clarendon Press.Google Scholar
Hassouna, M., Le Garrec, J. L., Rebrion-Rowe, C., Travers, D., & Rowe, B. R. 2003, “Reactions of electrons with hydrocarbon cations: from linear alkanes to aromatic species,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 49–57.CrossRefGoogle Scholar
Hasted, J. B. 1972, Physics of Atomic Collisions, New York: American Elsevier Publishing Company.Google Scholar
Hatano, Y. 1999, “Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynamics of molecular superexcited states,” Phys. Rep. 313, pp. 109–169.CrossRefGoogle Scholar
2002, “Spectroscopy and dynamics of molecular superexcited states,” in Chemical Applications of Synchrotron Radiation, Part I: Dynamics and VUV Spectroscopy, Advanced Series in Physical Chemistry Vol. 12A, Singapore: World Scientific, pp. 55–111.
2003a, “Formation and dissociation dynamics of molecular superexcited states,” Bull. Chem. Soc. Jpn. 76, pp. 853–864.CrossRef
2003b, “Spectroscopy and dynamics of molecular superexcited states. Aspects of primary processes of radiation chemistry,” Radiat. Phys. Chem. 67, pp. 187–198.CrossRef
Haxton, D. J., McCurdy, C. W., & Rescigno, T. N., 2006, “Angular dependence of dissociative electron attachment to polyatomic molecules: Application to the 2B1 metastable of the H2O and H2S anions,” Phys. Rev. A 73, pp. 062724-1–15.CrossRefGoogle Scholar
Haxton, D. J., Rescigno, T. N., & McCurdy, C. W. 2005, “Topology of the adiabatic potential energy surfaces for the resonance states of the water anion,” Phys. Rev. A 72, pp. 022705-1–12.CrossRefGoogle Scholar
Hayhurst, A. N., & Telford, N. R. 1974, “Kinetics of dissociative recombination of free electrons with hydronium ions in premixed flames,” J. Chem. Soc., Faraday Trans. 1 70, pp. 1999–2010.CrossRefGoogle Scholar
Hays, P. B., & Sharp, W. E. 1973, “Twilight airglow 1. Photoelectrons and [OI] 5577-ångstrom radiation,” J. Geophys. Res. 78, pp. 1153–1166.CrossRefGoogle Scholar
Hazi, A. U., & Taylor, H. S. 1970, “Stabilization method of calculating resonance energies: model problem,” Phys. Rev. A 1, pp. 1109–1120.CrossRefGoogle Scholar
Hazi, A. U., Derkits, C., & Bardsley, J. N. 1983, “Theoretical study of the lowest 1Σg+ doubly excited state of H2,” Phys. Rev. A 27, pp. 1751–1759.CrossRefGoogle Scholar
Heather, R., Jiang, X. P., Metiu, H., Bjorken, J. D., & Dunietz, I. 1988, “Time-dependent theory of Raman scattering for systems with several excited electronic states: Applications to a H3+ model system,” J. Chem. Phys. 90, pp. 6903–6915.CrossRefGoogle Scholar
Heaviside, O. 1902, “Theory of the electric telegraph,” in Encyclopaedia Britannica, tenth edition, Vol. 33, Encyclopaedia Britannica, Inc. pp. 213–218.Google Scholar
Heber, O., Seiersen, K., Bluhme, H., Svendsen, A., Andersen, L. H., & Maunoury, L. 2006, “Dissociative recombination of small carbon cluster ions,” Phys. Rev. A 73, pp. 022712-1–6.CrossRefGoogle Scholar
Hechtfischer, U., Amitay, A., Forck, P., et al. 1998, “Near-threshold photodissociation of cold CH+ in a storage ring,” Phys. Rev. Lett. 80, pp. 2809–2812.CrossRefGoogle Scholar
Hefter, U., Mead, R. D., Schulz, P. A., & Lineberger, W. C. 1983, “Ultrahigh-resolution study of autodetachment study in C2•,” Phys. Rev. A 28, pp. 1429–1439.CrossRefGoogle Scholar
Hellberg, F., Rosén, S., Thomas, R., et al. 2003, “Dissociative recombination of NO+: Dynamics of the X1Σ+ and the a3Σ+ electronic states,” J. Chem. Phys. 118, pp. 6250–6259.CrossRefGoogle Scholar
Hellberg, F., Zhaunerchyk, V., Ehlerding, A., et al. 2005, “Investigating the breakup dynamics of dihydrogen sulfide ions recombining with electrons,” J. Chem. Phys. 122, pp. 224314-1–9.CrossRefGoogle ScholarPubMed
Heller, E. J. 1981, “The semiclassical way to molecular spectroscopy,” Acc. Chem. Res. 14, pp. 368–375.CrossRefGoogle Scholar
Helm, H. 1993, “Predissociation of excited states of H3,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 145–153.CrossRefGoogle Scholar
Helm, H., Galster, U., Mistrík, I., Müller, U., & Reichle, R. 2003, “Coupling of bound states to continuum states in neutral triatomic hydrogen,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 265–274.CrossRefGoogle Scholar
Helm, H., Hazell, I., Walter, C. W., & Cosby, P. C. 1996, “On the branching in dissociative recombination of O2+,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 139–151.CrossRefGoogle Scholar
Heppner, R. A., Walls, F. L., Armstrong, W. T., & Dunn, G. H. 1976, “Cross-section measurements for electron–H3O+ recombination,” Phys. Rev. A 13, pp. 1000–1011.CrossRefGoogle Scholar
Herbst, E. 1978, “What are the products of polyatomic ion–electron dissociative recombination reactions?Astrophys. J. 222, pp. 508–516.CrossRefGoogle Scholar
1988, “Dense interstellar cloud chemistry,” in Rate Coefficients in Astrochemistry, eds. Millar, T. J. & Williams, D. A., Dordrecht: Kluwer, pp. 239–262.CrossRefGoogle Scholar
1989, “Dissociative recombination reactions in the chemistry of dense interstellar clouds,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 303–316.CrossRefGoogle Scholar
2003a, “Dissociative recombination in interstellar clouds,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 351–363.CrossRefGoogle Scholar
2003b, “Isotope fractionation by ion–molecule reactions,” Space Sci. Rev. 106, pp. 293–304.CrossRef
2005, “Molecular ions in interstellar reaction networks,” J. Phys.: Conf. Ser. 4, pp. 17–25.
Herbst, E., & Cuppen, H. M. 2006, “Monte Carlo studies of surface chemistry and nonthermal desorption involving insterstellar grains,” Proc. Natl. Acad. Sci. USA 103, pp. 12257–12262.CrossRefGoogle ScholarPubMed
Herbst, E., & Klemperer, W. 1973, “The formation and depletion of molecules in dense interstellar clouds,” Astrophys. J. 185, pp. 505–533.CrossRefGoogle Scholar
1976, “The formation of interstellar molecules,” Physics Today 29(6), pp. 32–39.CrossRef
Herbst, E., & Lee, H.-H. 1997, “New dissociative recombination product branching fractions and their effect on calculated interstellar molecular abundances,” Astrophys. J. 485, pp. 689–696.CrossRefGoogle Scholar
Herbst, E., Miller, S., Oka, T., & Watson, J. K. G. (eds.) 2000, “Astronomy, physics and chemistry of H3+,” Phil. Trans. R. Soc. Lond. A 358, pp. 2359–2559.CrossRefGoogle Scholar
Herd, C. R., Adams, N. G., & Smith, D. 1990, “OH production in the dissociative recombination of H3O+, HCO2+, and N2OH+: comparison with theory and interstellar implications,” Astrophys. J. 349, pp. 388–392.CrossRefGoogle Scholar
Herman, Z. 2001, “The crossed-beam scattering method in studies of ion-molecule reaction dynamics,” Int. J. Mass Spectrom. 212, pp. 413–443.CrossRefGoogle Scholar
Hernandez, N. 1971, “The signatures profiles of the O(1S) in the airglow,” Planet. Space Sci. 19, pp. 467–476.CrossRefGoogle Scholar
Herzberg, G. 1950, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, New York: Van Nostrand.Google Scholar
1979, “A spectrum of triatomic hydrogen,” J. Chem. Phys. 70, pp. 4806–4807.CrossRef
Herzberg, G., & Lagerqvist, A. 1968, “New spectrum associated with diatomic carbon,” Can. J. Phys. 46, pp. 2363–2373.CrossRefGoogle Scholar
Herzenberg, A., 1968, “Oscillatory energy dependence of resonant electron–molecule scattering,” J. Phys. B 1, pp. 548–558.CrossRefGoogle Scholar
Hickman, A. P. 1987, “Dissociative recombination of electrons with H2+,” J. Phys. B 13, pp. 3867–3894.Google Scholar
Hickman, A. P., Miles, R. D., Hayden, C., & Talbi, D. 2005, “Dissociative recombination of e + HCNH+: Diabatic potential curves and dynamic calculations,” Astron. Astrophys. 438, pp. 31–37.CrossRefGoogle Scholar
Hinojosa, G., Covington, A. M., Phaneuf, R. A., et al. 2002, “Formation of long-lived CO2+ via photoionization of CO+.” Phys. Rev. A 66, pp. 032718-1–5.CrossRefGoogle Scholar
Hirota, T., Yamamoto, S., Mikami, H., & Ohishi, M. 1998, “Abundances of HCN and HNC in dark cloud cores,” Astrophys. J. 503, pp. 717–728.CrossRefGoogle Scholar
Hirschfelder, J. O. 1938, “The energy of the triatomic hydrogen molecule and ion, V,” J. Chem. Phys. 6, pp. 795–806.CrossRefGoogle Scholar
Hogness, T. R., & Lunn, E. G. 1925, “The ionization of hydrogen by electron impact as interpreted by positive ray analysis,” Phys. Rev. 26, pp. 44–55.CrossRefGoogle Scholar
Holt, E. M. 1959, “Electron loss processes in the oxygen afterglow,” Bull. Am. Phys. Soc. 4, pp. 112–113.Google Scholar
Holt, R. B., Richardson, J. M., Howland, B., & McClure, B. T. 1950, “Recombination spectrum and electron density measurements in neon afterglows,” Phys. Rev. 77, pp. 239–241.CrossRefGoogle Scholar
Hotop, H., Ruf, M.-W., & Fabrikant, I. I. 2004, “Resonance and threshold phenomena in low-energy collisions with molecules and clusters,” Phys. Scr. T110, pp. 22–31.CrossRefGoogle Scholar
Hotop, H., Klar, D., Kreil, J., Ruf, M.-W., Schramm, A., & Weber, J. M. 1995, “Studies of low energy electron collisions at sub-meV resolution,” in The Physics of Electronic and Atomic Collisions: ⅪXth International Conference (ⅪX ICPEAC, Whistler, Canada), eds. Dube, L. J., Mitchell, J. B. A., McConkey, J. W., & Brion, C. E., AIP Conf. Proceedings Vol. 360, New York: American Institute of Physics, pp. 267–278.Google Scholar
Hotop, H., Ruf, M.-W., Allan, M., & Fabrikant, I. I. 2003, “Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters,” Adv. At. Mol. Opt. Phys. 49, pp. 85–216.CrossRefGoogle Scholar
Hu, X. K., Mitchell, J. B. A., & Lipson, R. H. 2000, “Resonance-enhanced multiphoton-ionization-photoelectron study of the dissociative recombination and associative ionization of Xe2+,” Phys. Rev. A 62, pp. 052712-1–8.CrossRefGoogle Scholar
Huang, C.-M., Biondi, M. A., & Johnsen, R. 1975, “Variation of electron–NO+-ion recombination coefficient with electron temperature,” Phys. Rev. A 11, pp. 901–905.CrossRefGoogle Scholar
1976, “Recombination of of electrons with NH4+.(NH3)n-series ions,” Phys. Rev. A 14, pp. 984–989.CrossRef
Huang, C.-M., Whitaker, M., Biondi, M. A., & Johnsen, R. 1978, “Electron-temperature dependence of recombination of electrons with H3O+.(H2O)n-series ions,” Phys. Rev. A 18, pp. 64–67.CrossRefGoogle Scholar
Huestis, D. L. 1982, “Introduction and overview [to gas lasers],” Pure Appl. Phys. 43 (Appl. At. Collision Phys. 3), pp. 1–34.Google Scholar
Hulthén, E. 1949, “The 1947 Nobel prize for physics,” in Les Prix Nobel en 1947, ed. Holmberg, M. A., Stockholm: Nordstedt, P. A. & Söner, pp. 20–22.Google Scholar
Humbert, D. (ed.) 2006, Summary Report of First IAEA Research Co-ordination Meeting. Atomic and Molecular Data for Plasma Modelling, INDC International Nuclear Data Committee, INDC(NDS)-0482, IAEA, Vienna.Google Scholar
Hunten, D. M. 1969, “The upper atmosphere of Jupiter,” J. Atmos. Sci. 26, pp. 826–834.2.0.CO;2>CrossRefGoogle Scholar
Hunter, E. P. L., & Lias, S. G. 1998, “Evaluated gas phase basicities and proton affinities of molecules: an update,” J. Phys. Chem. Ref. Data 27, pp. 413–656.CrossRefGoogle Scholar
Huntress, W. T. Jr. 1977, “Laboratory studies of bimolecular reactions of positive ions in interstellar clouds, in comets, and in planetary atmospheres of reducing composition,” Astrophys. J. Suppl. Ser. 33, pp. 495–514.CrossRefGoogle Scholar
Huo, W. M., & Gianturco, F. A. (eds.) 1995, Computational Methods for Electron Molecule Collisions, New York: Plenum Press.CrossRefGoogle Scholar
Hus, H., Yousif, F., Sen, A., & Mitchell, J. B. A. 1988, “Merged-beam studies of the dissociative recombination of H3+ ions with low internal energy,” Phys. Rev. A 38, pp. 658–663.CrossRefGoogle ScholarPubMed
Hus, H., Yousif, F., Noren, C., Sen, A., & Mitchell, J. B. A. 1988, “Dissociative recombination of electrons with H2+ in low vibrational states,” Phys. Rev. Lett. 60, pp. 1006–1009.CrossRefGoogle ScholarPubMed
Illenberg, E. 2000, “Electron capture processes by free and bound molecules,” in Photoionization and Photodetachment, Part II, ed. Ng, C.-Y., Advanced Series in Physical Chemistry Vol. 10B, Singapore: World Scientific, pp. 1063–1160.CrossRefGoogle Scholar
Itikawa, Y. 1994, “Electron collisions with N2, O2 and O: What we do and do not know,” Adv. At. Mol. Opt. Phys. 33, pp. 253–274.CrossRefGoogle Scholar
Itikawa, Y., & Mason, N. 2005, “Rotational excitation of molecules by electron collisions,” Phys. Rep. 414, pp. 1–41.CrossRefGoogle Scholar
Ivanov, G. K., & Golubkov, G. V. 1984, “Coupling of the processes of dissociative recombination and scattering of slow electrons by molecular ions,” Chem. Phys. Lett. 107, pp. 261–264.CrossRefGoogle Scholar
1985, “A simple version of the multichannel quantum defect analysis of inelastic atomic processes involving molecular Rydberg states,” J. Phys. B 18, pp. L383–L387.CrossRef
Ivash, E. V. 1958, “Dissociation of the hydrogen molecule ion by electron impact,” Phys. Rev. 112, pp. 155–158.CrossRefGoogle Scholar
Janev, R. K., 2000, “Role of dissociative recombination and related molecular processes in fusion edge plasmas,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 40–47.CrossRefGoogle Scholar
Janev, R. K., & Reiter, D. 2002, “Collision processes of CHy and CHy+ hydrocarbons with plasma electron and protons,” Phys. Plasma 9, pp. 4071–4081.CrossRefGoogle Scholar
2004, “Collision processes of C2,3Hy and C2,3Hy+ hydrocarbons with plasma electrons and protons,” Phys. Plasma 11, pp. 780–829.CrossRef
Jensen, M. J., Pedersen, U. V., & Andersen, L. H. 2000, “Stability of the ground state vinylidene anion H2CC−,” Phys. Rev. Lett. 84, pp. 1128–1131.CrossRefGoogle ScholarPubMed
Jensen, M. J., Bilodeau, R. C., Heber, O., et al. 1999, “Dissociative recombination and excitation of H2O+ and HDO+,” Phys. Rev. A 60, pp. 2970–2976.CrossRefGoogle Scholar
Jensen, M. J., Bilodeau, R. C., Safvan, C. P., et al. 2000, “Dissociative recombination of the H3O+, HD2O+, and D3O+,” Astrophys. J. 543, pp. 764–774.CrossRefGoogle Scholar
Jensen, M. J., Pedersen, H. B., Safvan, C. P., Seiersen, K., Urbain, X., & Andersen, L. H. 2001, “Dissociative recombination and excitation of H3+,” Phys. Rev. A 63, pp. 052701-1–5.CrossRefGoogle Scholar
Jiang, L., Gutherie, J. A., Chaney, R. C., & Cunningham, A. J. 1989, “Dissociative recombination measurements at elevated temperatures in helium–neon mixtures,” J. Phys. B 22, pp. 3047–3054.CrossRefGoogle Scholar
Jog, V. E., & Biondi, M. A. 1981, “Dissociative recombination of Hg2+ ions and electrons: dependence of the total rate coefficient and excited state production on electron temperature,” J. Phys. B 14, pp. 4719–4727.CrossRefGoogle Scholar
Johnsen, R. 1986, “rf-probe method for measurements of electron densities in plasmas at high densities,” Rev. Sci. Instr. 57, pp. 428–432.CrossRefGoogle Scholar
1987, “Microwave afterglow measurements of dissociative recombination of molecular ions with electrons,” Int. J. Mass Spectrom. Ion Proc. 81, pp. 67–84.CrossRef
1989, “Recombination measurements in microwave plasma afterglows,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Mitchell, J. B. A. and Guberman, S. L., Singapore: World Scientific, pp. 141–150.CrossRefGoogle Scholar
1993a, “Recombination of cluster ions,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 135–143.CrossRefGoogle Scholar
1993b, “Electron-temperature dependence of the recombination of H3O+(H2O)n ions with electrons,” J. Chem. Phys. 98, pp. 5390–5395.CrossRef
2005, “A critical review of H3+ recombination studies,” J. Phys.: Conf. Ser. 4, pp. 83–91.
Johnsen, R., & Mitchell, J. B. A. 1998, “Complex formation in electron–ion recombination of molecular ions,” Adv. Gas Phase Ion. Chem. 3, pp. 49–80.CrossRefGoogle Scholar
Johnsen, R., Shuńko, E. V., Gougousi, T., & Golde, M. F. 1994, “Langmuir-probe measurements in flowing-afterglow plasmas,” Phys. Rev. E 50, pp. 3994–4004.CrossRefGoogle ScholarPubMed
Johnsen, R., Skrzypkowski, M., Gougousi, T., & Golde, M. F. 2000, “Spectroscopic emissions from the recombination of N2O+, N2OH+/HN2O+, CO2+, CO2H+, HCO+/COH+, H2O+, NO2+, HNO+, and LIF measurements of the H atom yield from H3+,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 200–209.CrossRefGoogle Scholar
Johnson, R. A., McClure, B. T., & Holt, R. B. 1950, “Electron removal in helium afterglows,” Phys. Rev. 80, pp. 376–379.CrossRefGoogle Scholar
Joly, J. 1902, “Mr. Marconi's results in day and night wireless telegraphy,” Nature 66, p. 199.CrossRefGoogle Scholar
Jursic, B. S. 1999, “Complete basis set ab initio study of potential energy surfaces of the dissociative recombination reaction HCNH+ + e−,” J. Mol. Struct. (Theochem) 487, pp. 211–220.CrossRefGoogle Scholar
Kaiser, R. I., Bernath, P., Osamura, Y., Petrie, S., & Mebel, A. M. (eds.) 2006, Astrochemistry – From Laboratory Studies to Astronomical Observations, AIP Conf. Proceedings Vol. 855, New York: American Institute of Physics.Google Scholar
Kalhori, S., Thomas, R., Al-Khalili, A., et al. 2004, “Resonant ion-pair formation in electron collisions with rovibrationally cold H3+,” Phys. Rev. A 69, pp. 022713-1–11.CrossRefGoogle Scholar
Kalhori, S., Viggiano, A. A., & Arnold, S. T. 2002, “Dissociative recombination of C2H3+,” Astron. Astrophys. 391, pp. 1159–1165.CrossRefGoogle Scholar
Kaplan, J. 1931, “The light of the night sky,” Phys. Rev. 38, pp. 1048–1051.CrossRefGoogle Scholar
Kasner, W. H. 1967, “Study of the temperature dependence of electron–ion recombination in nitrogen,” Phys. Rev. 164, pp. 194–200.CrossRefGoogle Scholar
1968, “Study of the pressure and temperature dependence of electron–ion recombination in neon,” Phys. Rev. 167, pp. 148–151.CrossRef
Kasner, W. H., & Biondi, M. A. 1965, “Electron–ion recombination in nitrogen,” Phys. Rev. 137, pp. A317–A329.CrossRefGoogle Scholar
1967, “Electron–ion recombination studies in oxygen,” Bull. Am. Phys. Soc. 12, p. 218.
1968, “Temperature dependence of electron−O2+-ion recombination coefficient,” Phys. Rev. 174, pp. 139–144.CrossRef
Kasner, W. H., Rogers, W. A., & Biondi, M. A. 1961, “Electron–ion recombination coefficients in nitrogen and in oxygen,” Phys. Rev. Lett. 7, pp. 321–323.CrossRefGoogle Scholar
Kayanuma, M., Taketsugu, T., & Ishii, K. 2006, “Ab initio surface hopping simulation on dissociative recombination of H3O+,” Chem. Phys. Lett. 418, pp. 511–518.CrossRefGoogle Scholar
Kella, D., Johnson, P. J., Pedersen, H. B., Vejby-Christensen, L., & Andersen, L. H. 1996, “Branching ratios for dissociative recombination of 15N14N+,” Phys. Rev. Lett. 77, pp. 2432–2435.CrossRefGoogle Scholar
Kella, D., Vejby-Christensen, L., Johnson, P. J., Pedersen, H. B., & Andersen, L. H. 1997, “The source of the green light emission determined from a heavy-ion storage ring experiment,” Science 276, pp. 1530–1533; Corrections and Clarifications, ibid. 277, p. 167.CrossRefGoogle Scholar
Keller, G. E., & Beyer, R. A. 1971, “Carbon dioxide and oxygen clustering to sodium ions,” J. Geophys. Res. 76, pp. 289–290.CrossRefGoogle Scholar
Kennelly, A. E. 1902, “On the elevation of electrically-conducting strata of the earth's atmosphere,” Elect. World Eng. 39, p. 473.Google Scholar
Kenty, C. 1928, “The recombination of argon ions and electrons,” Phys. Rev. 32, pp. 624–635.CrossRefGoogle Scholar
Kerner, E. H. 1953, “The dissociation of H2+ by electron impact,” Phys. Rev. 92, pp. 1441–1447.CrossRefGoogle Scholar
Ketvirtis, A. E., & Simons, J. 1999, “Dissociative recombination of H3O+,” J. Phys. Chem. A 103, pp. 6552–6563.CrossRefGoogle Scholar
Keyser, C. J., Froelich, H. R., Mitchell, J. B. A., & McGowan, J. W. 1979, “Beam-scanning system for determination of beam profiles and form factors in merged-beam experiments,” J. Phys. E 12, pp. 316–320.CrossRefGoogle Scholar
Kharchenko, V., Dalgarno, A., & Fox, J. L. 2005, “Thermospheric distribution of fast O (1D) atoms,” J. Geophys. Res. 110, pp. A12305-1–9.CrossRefGoogle Scholar
Khare, S. P. 2002, Introduction to the Theory of Collisions of Electrons with Atoms and Molecules, New York: Kluwer Academic/Plenum Publishers.Google Scholar
Kilgus, G., Habs, D., Schwalm, D., Wolf, A., Badnell, N. R., & Müller, A. 1992, “High-resolution measurement of dielectronic recombination of lithiumlike Cu26+,” Phys. Rev. A 46, pp. 5730–5740.CrossRefGoogle ScholarPubMed
King, I. R. 1957, “Ion recombination rates in methane-air flames,” J. Chem. Phys. 27, pp. 817–818.CrossRefGoogle Scholar
Kiyoshima, T., Sato, S., Pazyuk, E. A., Stolyarov, A. V., & Child, M. S. 2003, “Lifetime measurement and quantum-defect theory treatment of the k3Πu+state of hydrogen molecule,” J. Chem. Phys. 118, pp. 121–129.CrossRefGoogle Scholar
Klemperer, W. 1970, “Carrier of the interstellar 89.190 GHz line,” Nature 227, p. 1230.CrossRefGoogle Scholar
1995, “Some spectroscopic reminiscenses,” Annu. Rev. Phys. Chem. 46, pp. 1–26.CrossRef
2006, “Interstellar chemistry,” Proc. Natl. Acad. Sci. USA 103, pp. 12232–12234.CrossRef
Kley, D., Lawrence, G. M., & Stone, E. J. 1977, “The yield of N(2D) atoms in the dissociative recombination of NO+,” J. Chem. Phys. 66, pp. 4157–4165.CrossRefGoogle Scholar
Kokoouline, V., & Greene, C. H., 2003a, “Theory of dissociative recombination of D3h triatomic ions applied to H3+,” Phys. Rev. Lett. 90, pp. 133201-1–4.CrossRefGoogle Scholar
2003b, “Unified theoretical treatment of dissociative recombination of D3h triatomic ions: Applications to H3+ and D3+,” Phys. Rev. A 68, pp. 012703-1–23.CrossRef
2005a, “Theoretical study of the H3+ ion dissociative recombination process,” J. Phys.: Conf. Ser. 4, pp. 74–82.
2005b, “Theoretical study of C2v triatomic ions: Application to H2D+ and D2H+,” Phys. Rev. A 72, pp. 022712-1–12.CrossRef
Kokoouline, V., Greene, C. H., & Esry, B. D. 2001, “Mechanism for the destruction of H3+ ions by electron impact,” Nature 412, pp. 891–894.CrossRefGoogle Scholar
Korolov, I., Novotný, O., Plašil, R., et al. 2006, “Recombination of XeH+ and KrH+ with electrons in low temperature plasma,” Czech. J. Phys. 56 (Suppl. B), pp. B854–B864.CrossRefGoogle Scholar
Kraemer, W. P., & Diercksen, G. H. F. 1976, “Indentification of interstellar X-ogen as HCO+,” Astrophys. J. 205, pp. L97–L100.CrossRefGoogle Scholar
Kraemer, W. P., & Hazi, A. U. 1985, “Dissociative recombination of interstellar ions: electronic structure calculations for HCO+,” in Molecular Astrophysics, ed. Diercksen, H. F.et al., Dordrecht: Reidel, pp. 575–581.CrossRefGoogle Scholar
1989, “Dissociative recombination of HCO+: Complete Active Space (CAS) SCF electronic structure calculations,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 61–72.CrossRefGoogle Scholar
Krause, J. L., Orel, A. E., Lengsfield III, B. H., & Kulander, K. C., 1992, “Wave packed studies of the predissociation of H3,” in Time Dependent Quantum Molecular Dynamics: Experiments and Theory, eds. Broeckhove, J. & Lathouwers, L., New York: Plenum Press, pp. 131–142.CrossRefGoogle Scholar
Krauss, M., & Julienne, P. S. 1973, “Dissociative recombination of e + CH+ (X1Σ+),” Astrophys. J. Lett. pp. L139–L141.CrossRefGoogle Scholar
Kreckel, H., Krohn, S., Lammich, L., et al. 2002, “Vibrational and rotational cooling of H3+,” Phys. Rev. A 66, pp. 052509-1–11.CrossRefGoogle Scholar
Kreckel, H., Mikosch, J., Wester, R., et al. 2005a, “Towards state selective measurements of the H3+ dissociative recombination rate coefficient,” J. Phys.: Conf. Ser. 4, pp. 126–133.Google Scholar
Kreckel, H., Motsch, M., Mikosch, J., et al. 2005b, “High resolution dissociative recombination of cold H3+ and first evidence for nuclear spin effects,” Phys. Rev. Lett. 95, pp. 263201-1–4.CrossRefGoogle Scholar
Kreckel, H., Tennyson, J., Schwalm, D., Zajfman, D., & Wolf, A. 2004, “Rovibrational relaxation model,” New. J. Phys. 6, pp. 151-1–16.CrossRefGoogle Scholar
Kroes, G.-J., Hermert, M. C., Billing, G. D., & Neuhauser, D. 1997, “Photodissociation of CH2: Three-dimensional quantum dynamics of the dissociation through the coupled 2A′ and 3A′ states,” J. Chem. Phys. 107, pp. 5757–5770.CrossRefGoogle Scholar
Krohn, S., Amitay, Z., Baer, A., et al. 2000, “Electron-induced vibrational deexcitation of H2+,” Phys. Rev. A 62, pp. 032713-1–8.CrossRefGoogle Scholar
Krohn, S., Kreckel, H., Lammich, L., et al. 2003, “Electron induced vibrational deexcitation of the molecular ions H2+ and D2+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 127–138.CrossRefGoogle Scholar
Krohn, S., Lange, M., Grieser, M., et al. 2001, “Rate coefficients and final states for the dissociative recombination of LiH+,” Phys. Rev. Lett. 86, pp. 4005–4008.CrossRefGoogle ScholarPubMed
Kubach, C., Sidis, V., Fussen, D., & Zande, W. J. 1987, “Decay of the A2Σ+ and B2Π quasibound states of HeH,” Chem. Phys. 117, pp. 439–447.CrossRefGoogle Scholar
Kulander, K. C., & Guest, M. F. 1979, “Excited electronic states of H3 and their role in the dissociative recombination of H3+,” J. Phys. B 12, pp. L501–L504.CrossRefGoogle Scholar
Kulander, K. C., & Heller, E. J. 1978, “Time dependent formulation of polyatomic photofragmentation: Applications to H3+,” J. Chem. Phys. 69, pp. 2439–2449.CrossRefGoogle Scholar
Lammer, H., & Bauer, S. J. 1993, “Atmospheric mass loss from Titan by sputtering,” Planet. Space Sci. 41, pp. 657–663.CrossRefGoogle Scholar
Lammich, L., Altevogt, S., Buhr, H., et al. 2007, “Electron-impact dissociation and transient properties of a stored LiH2• beam,” Eur. Phys. J. D 41, pp. 103–111.CrossRefGoogle Scholar
Lammich, L., Kreckel, H., Krohn, S., et al. 2003a, “Breakup dynamics in the dissociative recombination of H3+ and its isotopomers,” Rad. Phys. Chem. 68, pp. 175–179.CrossRefGoogle Scholar
Lammich, L., Strasser, D., Kreckel, H., et al. 2003b, “Evidence for subthermal rotational populations in stored molecular ions through state-dependent dissociative recombination,” Phys. Rev. Lett. 91, pp. 143201-1–4.CrossRefGoogle Scholar
Lammich, L., Strasser, D., Kreckel, H., et al. 2005, “DR rate coefficient measurements using stored beams of H3+ and its isotopomers,” J. Phys.: Conf. Ser. 4, pp. 98–103.Google Scholar
Lampert, A., Wolf, A., Habs, D., et al. 1996, “High-resolution measurement of the dielectronic recombination of fluorinelike selenium ions,” Phys. Rev. A 53, pp. 1413–1423.CrossRefGoogle ScholarPubMed
Lange, M., Levin, J., Gwinner, G., et al. 1999, “Threshold effects and ion-pair production in the dissociative recombination of HD+,” Phys. Rev. Lett. 83, pp. 4979–4982.CrossRefGoogle Scholar
Laperle, C. M., Mann, J. E., Clements, T. G., & Continetti, R. E. 2004, “Three-body dissociation dynamics of the low-lying Rydberg states of H3 and D3,” Phys. Rev. Lett. 93, pp. 153202-1–4.CrossRefGoogle ScholarPubMed
2005, “Experimentally probing the three-body predissociation dynamics of the low-lying Rydberg states of H3 and D3,” J. Phys.: Conf. Ser. 4, pp. 111–117.
Larson, Å., & Orel, A. E. 1999, “Dissociative recombination of HeH+: Product distributions and ion-pair formation,” Phys. Rev. A 59, pp. 3601–3608.CrossRefGoogle Scholar
2001, “Ion-pair formation and product branching ratios in dissociative recombination of HD+,” Phys. Rev. A 64, pp. 062701-1–8.CrossRef
2005, “Wave packet study of the products formed in dissociative recombination of HeH+,” Phys. Rev. A 72, pp. 032701-1–13.
Larson, Å., Roos, J., & Orel, A. E. 2006, “Ion-pair formation in electron recombination with H3+,” Phil. Trans. R. Soc. A 364, pp. 2999–3005.CrossRefGoogle ScholarPubMed
Larson, Å., Djurić, N., Zong, W., et al. 2000, “Resonant ion-pair formation in electron collisions with HD+ and OH+,” Phys. Rev. A 62, pp. 042707-1–8.CrossRefGoogle Scholar
Larson, Å., Padellec, A., Semaniak, J., et al. 1998, “Branching fractions in dissociative recombination of CH2+,” Astrophys. J. 505, pp. 459–465.CrossRefGoogle Scholar
Larson, Å., Tonzani, S., Santra, R., & Greene, C. H. 2005, “Dissociative recombination of HCO+,” J. Phys: Conf. Ser. 4, pp. 148–154.Google Scholar
Larsson, M. 1995a, “Atomic and molecular physics with ion storage rings,” Rep. Prog. Phys. 58, pp. 1267–1319.CrossRefGoogle Scholar
1995b, “Dissociative recombination in ion storage rings,” Int. J. Mass Spectrom. Ion Proc. 149/150, pp. 403–414.CrossRef
1997, “Dissociative recombination with ion storage rings,” Annu. Rev. Phys. Chem. 48, pp. 151–179.CrossRef
2000a, “Dissociative electron–ion recombination studies using ion synchrotrons,” in Photoionization and Photodetachment, Part II, ed. Ng, C.-Y., Advanced Series in Physical Chemistry Vol. 10B, Singapore: World Scientific, pp. 693–747.CrossRefGoogle Scholar
2000b, “Experimental studies of the dissociative recombination of H3+,” Phil. Trans. R. Soc. Lond. A 358, pp. 2433–2444.CrossRef
2001, “Merged-beam studies of electron–molecular ion interactions in ion storage rings,” Adv. Gas Phase Ion Chem. 4, pp. 179–211.CrossRef
2003, “Ion storage rings,” in Encyclopedia of Mass Spectrometry, Volume 1: Theory and Ion Chemistry, ed. Armentrout, P., Amsterdam: Elsevier, pp. 195–199.Google Scholar
2005, “Molecular ion recombination in merged beams; experimental results on small systems and future perspectives,” J. Phys.: Conf. Ser. 4, pp. 50–57.
2006, “Hyzone,” Phil. Trans. R. Soc. A 364, pp. 3147–3148.CrossRef
Larsson, M., & Thomas, R. 2001, “Three-body reaction dynamics in electron–ion dissociative recombination,” Phys. Chem. Chem. Phys. 3, pp. 4471–4480.CrossRefGoogle Scholar
Larsson, M., Mitchell, J. B. A., & Schneider, I. F. (eds.) 2000, Dissociative Recombination: Theory, Experiment and Applications IV, Singapore: World Scientific.CrossRefGoogle Scholar
Larsson, M., Carlson, M., Danared, H., Broström, L., Mannervik, S., & Sundström, G. 1994, “Vibrational cooling of D2+ in an ion storage ring as revealed by dissociative recombination measurements,” J. Phys. B 27, pp. 1397–1406.CrossRefGoogle Scholar
Larsson, M., Danared, H., Larson, Å., et al. 1997, “Isotope and electric field effects in dissociative recombination of D3+,” Phys. Rev. Lett. 79, pp. 395–398.CrossRefGoogle Scholar
Larsson, M., Danared, H., Mowat, J. R., et al. 1993a, “Direct high-energy neutral-channel dissociative recombination of cold H3+ in an ion storage ring,” Phys. Rev. Lett. 70, pp. 430–433.CrossRefGoogle Scholar
Larsson, M., Djuric, N., Dunn, G. H., et al. 2003, “Studies of dissociative recombination in CRYRING,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 87–94.CrossRefGoogle Scholar
Larsson, M., Ehlerding, A., Geppert, W. D., et al. 2005, “Rate constants and branching ratios for the dissociative recombination of C3D7+ and C4D9+,” J. Chem. Phys. 122, pp. 156101-1–3.CrossRefGoogle Scholar
Larsson, M., Lepp, S., Dalgarno, A., et al. 1996, “Dissociative recombination of H2D+ and the cosmic abundance of deuterium,” Astron. Astrophys. 309, pp. L1–L3.Google Scholar
Larsson, M., Sundström, G., Carlson, M., et al. 1993b, “Phase-space cooled molecular ions in CRYRING,” in The Physics of Electronic and Atomic Collisions: XVIII International Conference (XVIII ICPEAC Aarhus, Denmark), eds. Andersen, T., Fastrup, B., Folkmann, F., Knudsen, H., & Andersen, N., AIP Conf. Proceedings Vol. 295, New York: American Institute of Physics, pp. 803–810.Google Scholar
Laubé, S., Lehfaoui, L., Rowe, B. R., & Mitchell, J. B. A. 1998a, “The dissociative recombination of CO+,” J. Phys. B 31, pp. 4181–4189.CrossRefGoogle Scholar
Laubé, S., Padellec, A., Sidko, O., Rebrion-Rowe, C., Mitchell, J. B. A., & Rowe, B. R. 1998b, “New FALP−MS measurements of H3+, D3+ and HCO+ dissociative recombination,” J. Phys. B 31, pp. 2111–2128.CrossRefGoogle Scholar
Bourlot, J., Forêts, Pineau des G., Roueff, E., & Schilke, P. 1993, “Bistability in dark cloud chemistry,” Astrophys. J. Lett. 416, pp. L87–L90.CrossRefGoogle Scholar
Lee, C. M. 1977, “Multichannel dissociative recombination theory,” Phys. Rev. A 16, pp. 109–122.CrossRefGoogle Scholar
Lee, M.-T., Iga, I., Brescansin, L. M., Machado, L. E., & Machado, F. B. C. 2002, “Theoretical study on electron–free-radical scattering: An application to CF,” Phys. Rev. A 66, pp. 012720-1–7.CrossRefGoogle Scholar
Lefebvre-Brion, H., & Field, R. W . 1986, Perturbations in the Spectra of Diatomic Molecules, Orlando: Academic Press Inc.Google Scholar
Leforestier, C., Bisseling, R. H., Cerjan, C., et al. 1991, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comp. Phys. 94, pp. 59–80.CrossRefGoogle Scholar
Lehfaoui, L., Rebrion-Rowe, C., Laubé, S., Mitchell, J. B. A., & Rowe, B. R. 1997, “The dissociative recombination of hydrocarbon ions. I. Light alkanes,” J. Chem. Phys. 106, pp. 5406–5412.CrossRefGoogle Scholar
Lengsfield, B. H. III, & Yarkony, D. R. 1992, “Nonadiabatic interactions between potential energy surfaces: theory and applications,” Adv. Chem. Phys. 82, pt. 2, pp. 1–71.Google Scholar
Lennon, J. J., & Sexton, M. C. 1959, “Recombination in xenon and krypton afterglow,” J. Electr. Control 7, pp. 123–133.CrossRefGoogle Scholar
Leo, W. R. 1987, Techniques for Nuclear and Particle Physics Experiments, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Le Padellec, A. 2003, “Studies of electron collisions with CN+, CN− and HCN+/HNC+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 109–125.CrossRefGoogle Scholar
Padellec, A., Sheehan, C., & Mitchell, J. B. A. 1998, “The dissociative recombination of CN+,” J. Phys. B 31, pp. 1725–1728.CrossRefGoogle Scholar
Padellec, A., Andersson, K., Hanstorp, D., et al. 2001a, “Electron scattering on CN−,” Phys. Scr. 64, pp. 467–473.CrossRefGoogle Scholar
Padellec, A., Djurić, N., Al-Khalili, A., et al. 2001b, “Resonant ion-pair formation in the recombination of NO+ with electrons: Cross-section determination,” Phys. Rev. A 64, pp. 012702-1–7.CrossRefGoogle Scholar
Padellec, , A., Larsson, M., Danared, H., et al. 1998, “A storage ring study of dissociative excitation and recombination of D3+,” Phys. Scr. 57, pp. 215–221.CrossRefGoogle Scholar
Padellec, A., Laubé, S., Sidko, O., et al. 1997b, “The dissociative recombination of KrH+ and XeH+,” J. Phys. B 30, pp. 963–967.CrossRefGoogle Scholar
Padellec, A., Mitchell, J. B. A., Al-Khalili, A., et al. 1999, “Storage ring measurements of the dissociative recombination and excitation of the cyanogen CN+ (X1Σ+ and a3Π, v = 0),” J. Chem. Phys. 110, pp. 890–901.CrossRefGoogle Scholar
Padellec, A., Rabilloud, F., Pegg, D., et al. 2001c, “Electron-impact detachment and dissociation of C4+ ions,” J. Chem. Phys. 115, pp. 10671–10677.CrossRefGoogle Scholar
Padellec, A., Sheehan, C., Talbi, D., & Mitchell, J. B. A. 1997a, “A merged-beam study of the dissociative recombination of HCO+,” J. Phys. B 30, pp. 319–327.CrossRefGoogle Scholar
Le Petit, F., & Roueff, E. 2003, “Dissociative recombination and deuterium fractionation in interstellar clouds,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 373–383.CrossRefGoogle Scholar
Lepp, S. 1993, “Chaos in interstellar clouds,” Nature 366, pp. 633–634.CrossRefGoogle Scholar
Lepp, S., & Dalgarno, A. 1988, “Heating of interstellar gas by large molecules or small grains,” Astrophys. J. 335, pp. 769–773.CrossRefGoogle Scholar
Lepp, S., & Shull, J. M. 1984, “Molecules in the early universe,” Astrophys. J. 280, pp. 465–469.CrossRefGoogle Scholar
Teuft, Y. H., Millar, T. J., & Markwick, A. J. 2000, “The UMIST database for astrochemistry 1999,” Astron. Astrophys. Suppl. Ser. 146, pp. 157–168.Google Scholar
Leu, M. T., Biondi, M. A., & Johnsen, R. 1973a, “Measurements of the recombination of electrons with H3O+.(H2O)n-series ions,” Phys. Rev. A 7, pp. 292–298.CrossRefGoogle Scholar
1973b, “Measurements of recombination of electrons with H3+ and H5+,” Phys. Rev. A 8, pp. 413–419.CrossRef
1973c, “Measurements of recombination of electrons with HCO+ ions,” Phys. Rev. A 8, pp. 420–422.CrossRef
Leung, K. T. 1998, “Recent developments in electron momentum density measurements of polyatomic molecular (e,2e) spectroscopy,” in Novel Aspects of Electron-Molecule Collisions, ed. Becker, K. H., Singapore: World Scientific, pp. 199–240.CrossRefGoogle Scholar
Light, J. C. 1967, “Statistical theory of bimolecular exchange reactions,” Discussions Faraday Soc. 44, pp. 14–29.CrossRefGoogle Scholar
Lindsay, C. M., & McCall, B. J. 2001, “Comprehensive evaluation and compilation of H3+ spectroscopy,” J. Mol. Spectrosc. 210, pp. 60–83.CrossRefGoogle Scholar
Linsky, J. L. 2003, “Atomic deuterium/hydrogen in the galaxy,” Space Sci. Rev. 106, pp. 49–60.CrossRefGoogle Scholar
Lis, D. C., Blake, G. A., & Herbst, E. (eds.) 2006, Astrochemistry: Recent Successes and Current Challenges, IAU Symp. 231, Cambridge: Cambridge University Press.Google Scholar
Little, D. P., Speir, J. P., Senko, M. W., O'Connor, P. B., & McLafferty, F. W. 1994, “Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing,” Anal. Chem. 66, pp. 2809–2815.CrossRefGoogle ScholarPubMed
Liu, D.-J., Ho, W.-C., & Oka, T. 1987, “Rotational spectroscopy of molecular ions using diode lasers,” J. Chem. Phys. 87, pp. 2442–2446.CrossRefGoogle Scholar
Liu, X., Hwang, D. W., Yang, X. F., Harich, S., Lin, J. J., & Yang, X. 1999, “Photodissociation of hydrogen sulfide at 157.6 nm: Observation of SH bimodal rotational distribution,” J. Chem. Phys. 111, pp. 3940–3945.CrossRefGoogle Scholar
Lodge, O. 1902, “Mr. Marconi's results in day and night wireless telegraphy,” Nature 66, p. 222.CrossRefGoogle Scholar
Loeb, L. B. 1939, Fundamental Processes of Electrical Discharge in Gases, New York: John Wiley and Sons, Inc.Google Scholar
1955, Basic Processes of Gaseous Electronics, Berkeley: University of California Press.
Löfgren, P., Andler, G., Bagge, L., et al. 2006, “Design of the double electrostatic storage ring DESIREE,” in Proceedings of EPAC 2006, Edinburgh, Scotland, Edinburgh: European Physical Society Accelerator Group, pp. 252–254.Google Scholar
Lykke, K. R., Murray, K. K., Neumark, D. M., & Lineberger, W. C. 1988, “High-resolution studies of autodetachment in negative ions,” Phil. Trans. R. Soc. Lond. A 324, pp. 179–196.CrossRefGoogle Scholar
Macdonald, J., Biondi, M. A., & Johnsen, R. 1984, “Recombination of electrons with H3+ and H5+,” Planet. Space Sci. 32, pp. 651–654.CrossRefGoogle Scholar
Macko, P., Bánó, G., Hlavenka, P., et al. 2004a, “Afterglow studies of H3+(v = 0) recombination using time resolved cw-diode laser cavity ring-down spectroscopy,” Int. J. Mass Spectrom. 233, pp. 299–304.CrossRefGoogle Scholar
Macko, P., Bánó, G., Hlavenka, P., et al. 2004b, “Decay of H3+ dominated low-temperature plasma,” Act. Phys. Slov. 54, pp. 263–271.Google Scholar
Mahdavi, M. R., Hasted, J. B., & Nakshbandi, M. M. 1971, “Electron–ion recombination measurements in the flowing afterglow,” J. Phys. B 4, pp. 1726–1737.CrossRefGoogle Scholar
Mannervik, S., Lidberg, J., Norlin, L.-O., et al. 1999, “Lifetime measurement of the metastable 4d 2D3/2 level in Sr+ by optical pumping of a stored ion beam,” Phys. Rev. Lett. 83, pp. 698–701.CrossRefGoogle Scholar
Marconi, M. G. 1910, “Nobel lecture,” in Les Prix Nobel en 1909, ed. Santesson, M. C. G., Stockholm: Nordstedt, P. A. & Söner, , pp. 1–24.Google Scholar
Margenau, H. 1946, “Conduction and dispersion of ionized gases at high frequencies,” Phys. Rev. 69, pp. 508–513.CrossRefGoogle Scholar
Märk, T. D. 1984, “Ionization of molecules by electron impact,” in Electron–Molecule Interactions and Their Applications Vol. 1, ed Christophorou, L. G., Orlando: Academic Press, pp. 251–335.Google Scholar
1992, “Ionization by electron impact,” Plasma Phys. Contr. Fusion 34, pp. 2083–2090.CrossRef
Märk, T. D., & Dunn, G. H. 1985, Electron Impact Ionization, Vienna, Springer Verlag.CrossRefGoogle Scholar
Martin, D. W., McDaniel, E. W., & Meeks, , M. L. 1961, “On the possible occurrence of H3+ in interstellar space,” Astrophys. J. 134, pp. 1012–1013.CrossRefGoogle Scholar
Massey, H. S. W. 1937, “Dissociation, recombination and attachment processes in the upper atmosphere – I,” Proc. Roy. Soc. A 163, pp. 542–553.CrossRefGoogle Scholar
1950, Negative Ions, second edn, Cambridge: Cambridge University Press.
1976, Negative Ions, third edn, Cambridge: Cambridge University Press.
Matheson, M. S., & Dorfman, L. M. 1969, Pulse Radiolysis, Cambridge, MA: MIT Press.Google Scholar
Mathur, D. 2004, “Structure and dynamics of molecules in high charge states,” Phys. Rep. 391, pp. 1–118.CrossRefGoogle Scholar
Mathur, D., Khan, S. U., & Hasted, J. B. 1978, “Dissociative recombination in low energy e-H2+ and e-H3+ collisions, J. Phys. B 11, pp. 3615–3619.CrossRefGoogle Scholar
Maul, C., & Gericke, K.-H. 1997, “Photo induced three body decay,” Int. Rev. Phys. Chem. 16, pp. 1–79.CrossRefGoogle Scholar
McCall, B. J. 2001, “Spectroscopy of H3+ in laboratory and astrophysical plasmas,” Ph. D. Thesis, University of Chicago.Google Scholar
2006, “Dissociative recombination of cold H3+ and its interstellar implications,” Phil. Trans. R. Soc. A 364, pp. 2953–2963.CrossRef
McCall, B. J., & Oka, T. 2003, “Enigma of H3+ in diffuse interstellar clouds,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 365–371.CrossRefGoogle Scholar
McCall, B. J., Geballe, T. R., Hinkle, K. H., & Oka, T. 1998, “Detection of H3+ in the diffuse interstellar medium toward Cygnus OB2 no. 12,” Science 279, pp. 1910–1913.CrossRefGoogle ScholarPubMed
McCall, B. J., Hinkle, K. H., Geballe, T. R., et al. 2002, “Observations of H3+ in the diffuse interstellar medium,” Astrophys. J. 567, pp. 391–406.CrossRefGoogle Scholar
McCall, B. J., Huneycutt, A. J., Saykally, R. J., et al. 2003, “An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the H3+−e− recombination rate,” Nature 422, pp. 500–502.CrossRefGoogle ScholarPubMed
McCall, B. J., Huneycutt, A. J., Saykally, R. J., et al. 2004, “Dissociative recombination of rotationally cold H3+,” Phys. Rev. A 70, pp. 052716-1–13.CrossRefGoogle Scholar
McCall, B. J., Huneycutt, A. J., Saykally, R. J., et al. 2005, “Storage ring measurements of the dissociative recombination of rotationally cold H3+,” J. Phys.: Conf. Ser. 4, pp. 92–97.Google Scholar
McCurdy, C. W., & Turner, J. L. 1983, “Wave packet formulation of the boomerang model for resonant electron-molecule scattering,” J. Chem. Phys. 78, pp. 6773–6779.CrossRefGoogle Scholar
McDaniel, E. W. 1989, Atomic Collisions: Electron and Photon Projectiles, New York: Wiley.Google Scholar
McDaniel, E. W., & Manskey, E. J. 1994, “Guide to bibliographies, books, reviews and compendia on data on atomic collisions,” Adv. At. Mol. Opt. Phys. 33, pp. 384–463.Google Scholar
McDaniel, E. W., Mitchell, J. B. A., & Rudd, M. E. 1993, Atomic Collisions: Heavy Particle Projectiles, New York: Wiley.Google Scholar
McGowan, J. W., & Mitchell, J. B. A. 1984, “Electron–molecular postive-ion recombination,” in Electron–Molecule Interactions and Their Applications Vol. 2, ed Christophorou, L. G., New York: Academic Press, pp. 65–88.Google Scholar
McGowan, J. W., Caudano, R., & Keyser, J. 1976, “Detailed study of recombination: the importance of the Rydberg state in electron–H2+ recombination,” Phys. Rev. Lett. 36, pp. 1447–1450.CrossRefGoogle Scholar
McGowan, J. W., Mul, P., Angelo, D' V. S., Mitchell, J. B. A., DeFrance, P., & Froelich, H. R. 1979, “Energy dependence of dissociative recombination below 0.08 eV measured with (electron–ion) merged-beam technique,” Phys. Rev. Lett. 42, pp. 373–375.CrossRefGoogle Scholar
McLain, J. L., Poterya, V., Molek, C. D., & Adams, N. G. 2006, “Determination of neutral product distributions for dissociative electron–ion recombination of hydrocarbon ions using a novel flowing afterglow mass spectrometric technique,” Abstract PHYS 303, 231st American Chemical Society National Meeting, Atlanta, Georgia, March 26–30, 2006. Available through URL: www.acs.orgGoogle Scholar
McLain, J. L., Poterya, V., Molek, C. D., Babcock, L. M., & Adams, N. G. 2004, “Flowing afterglow studies of the temperature dependencies for dissociative recombination of O2+, CH5+, C2H5+, and C6H7+,” J. Phys. Chem. A 108, pp. 6704–6708.CrossRefGoogle Scholar
McLain, J. L., Poterya, V., Molek, C. D., Jackson, D. M., Babcock, L. M., & Adams, N. G. 2005, “C3H3+ isomers: temperature dependencies of production in the H3+ reaction with allene and loss by dissociative recombination with electrons,” J. Phys. Chem. A 109, pp. 5119–5123.CrossRefGoogle ScholarPubMed
McLennan, J. C., & Shrum, G. M. 1925, “On the origin of the auororal green line 5577 Å, and other spectra associated with the aurora borealis,” Proc. Roy. Soc. A 108, pp. 501–512.CrossRefGoogle Scholar
McNab, I. R. 1995, “The spectroscopy of H3+,” Adv. Chem. Phys. 89, pp. 1–87.Google Scholar
Mehr, F. J., & Biondi, M. A. 1968, “Electron-temperature dependence of electron-ion recombination in argon,” Phys. Rev. 176, pp. 322–326.Google Scholar
1969, “Electron temperature dependence of recombination of O2+ and N2+ ions with electrons,” Phys. Rev. 181, pp. 264–271.CrossRef
Mentzoni, M. H. 1963, “Effective electron recombination in heated nitrogen,” J. Geophys. Res. 68, pp. 4181–4186.CrossRefGoogle Scholar
1965, “Electron removal during the early oxygen afterglow,” J. Appl. Phys. 36, pp. 57–61.CrossRef
Meulenbroeks, R. F. G., Beek, A. J., Helvoort, A. J. G., Sanden, M. C. M., & Schram, D. C. 1994, “Argon–hydrogen plasma jet investigated by active and passive spectroscopic means,” Phys. Rev. E 49, pp. 4397–4406.CrossRefGoogle ScholarPubMed
Michels, H. H. 1974, “Theoretical study of dissociative-recombination kinetics,” USNTIS AD Rep. No 781195/3GA, AFWL-TR-73–288, pp. 1–127.
1975, “Calculation of energetics of selected atmospheric systems,” Air Force Cambridge Research Laboratory Report, AFCRL-TR-75–0509, pp. 1–43.
1980, “Theoretical research investigation upon reaction rates to the nitric oxide positive ion,” AFGL-TR-80–0072, no. AD-104303, pp. 1–60.
1981, “Electronic structure of excited states of selected atmospheric molecules,” The Excited State in Chemical Physics, Part 2, Advances in Chemical Physics Vol. 45, ed. McGowan, J. W., New York: Wiley, pp. 225–340.Google Scholar
1984, “Dissociative recombination of e + H3+. An analysis of reaction product channels,” in International Symposium on the Production and Neutralization of Negative Ions and Beams, AIP Conf. Proceedings, Vol. 111, New York: American Institute of Physics, pp. 118–124.
1989, “Potential energy curves for dissociative recombination of HeH+,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A. & Guberman, S. L., Singapore: World Scientific, pp. 97–108.CrossRefGoogle Scholar
Michels, H. H., & Hobbs, R. H. 1984, “Low-temperature dissociative recombination of e + H3+,” Astrophys. J. Lett. 286, pp. L27–L29.CrossRefGoogle Scholar
Miescher, E. 1966, “Absorption spectrum of NO molecule. Part VII. Extension of Rydberg series of ns, np, nd, and nf … complexes,” J. Mol. Spectrosc. 20, pp. 130–140.CrossRefGoogle Scholar
Mikhailov, I. A., Kokoouline, V., Larson, Å., Tonzani, S., & Greene, C. H. 2006, “Renner–Teller effects in HCO+ dissociative recombination,” Phys. Rev. A 74, pp. 032707-1–9.CrossRef
Miku, O., 1978, “Electron temperature dependence of the dissociative recombination coefficient in krypton,” J. Phys. D: Appl. Phys. 11, pp. L39–L42.CrossRefGoogle Scholar
Millar, T. J. 1983, “Dense cloud chemistry – II. The HCS+/CS ratio,” Mon. Not. R. Astron. Soc. 202, pp. 683–689.CrossRefGoogle Scholar
2003, “Deuterium fractionation in interstellar clouds,” Space Sci. Rev. 106, pp. 73–86.CrossRef
2006, “What we know and what we need to know,” in Astrochemistry: Recent Successes and Current Challenges, IAU Symp. 231, Cambridge: Cambridge University Press, pp. 77–86.
Millar, T. J., Adams, N. G., Smith, D., & Clary, D. C. 1985, “The HCS+/CS abundance ratio in interstellar clouds,” Mon. Not. R. Astron. Soc. 216, pp. 1025–1031.CrossRefGoogle Scholar
Millar, T. J., DeFrees, D. J., McLean, A. D., & Herbst, E. 1988, “The sensitivity of gas-phase models of dense interstellar clouds to changes in dissociative recombination branching ratios,” Astron. Astrophys. 194, pp. 250–256.Google ScholarPubMed
Miller, S., Tennyson, J., Lepp, S., & Dalgarno, A. 1992, “Identification of features due to H3+ in the infrared spectrum of supernova SN1987A,” Nature 355, pp. 420–421.CrossRefGoogle Scholar
Minaev, B. & Larsson, M. 2002, “MCSCF linear response study of the three-body dissociative recombination CH2+ + e → C + 2H,” Chem. Phys. 280, pp. 15–30.CrossRefGoogle Scholar
Minh, Y. C. & Dishoeck, E. F. (eds.) 2000, Astrochemistry: From Molecular Clouds to Planetary Systems, IAU Symp. 197, San Francisco: ASP.Google Scholar
Mitchell, J. B. A. 1986, “Dissociative recombination of molecular ions,” in Atomic Processes in Electron–Ion and Ion–Ion Collisions, ed. Brouillard, F., New York: Plenum Press, pp. 185–222.Google Scholar
1990a, “The dissociative recombination of molecular ions,” Phys. Rep. 186, pp. 215–248.CrossRef
1990b, “Dissociative recombination in ion–electron collisions: new directions,” in Physics of Ion Impact Phenomena, ed. Mathur, D., Berlin: Springer Verlag, pp. 275–286.Google Scholar
1994, “New results for the dissociative recombination of H3+,” Bull. Am. Phys. Soc. Ser. 2 39, p. 1456.
1995, “Electron–molecular ion collisions,” in Atomic and Molecular Processes in Fusion Edge Plasmas, ed. Janev, R. K., New York: Plenum, pp. 225–262.CrossRefGoogle Scholar
1996, “Dissociative recombination and excitation in ITER divertor plasmas,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 21–28.CrossRefGoogle Scholar
Mitchell, J. B. A., & Guberman, S. L. (eds.) 1989, Dissociative Recombination: Theory, Experiment, and Applications, Singapore: World Scientific.CrossRefGoogle Scholar
Mitchell, J. B. A., & Hus, H. 1985, “The dissociative recombination and excitation of CO+,” J. Phys. B 18, pp. 547–555.CrossRefGoogle Scholar
Mitchell, J. B. A., & McGowan, J. W. 1978, “The dissociative recombination of CH+X1Σ+ (v = 0),” Astrophys. J. Lett. 222, pp. L77–L79.CrossRefGoogle Scholar
1983, “Experimental studies of electron–ion recombination,” in Physics of Ion–Ion and Electron–Ion Collisions, eds. Brouillard, F. & McGowan, J. W., New York: Plenum Press, pp. 279–324.CrossRefGoogle Scholar
Mitchell, J. B. A., & Rebrion-Rowe, C. 1997, “The recombination of electrons with complex molecular ions,” Int. Rev. Phys. Chem. 16, pp. 201–213.CrossRefGoogle Scholar
Mitchell, J. B. A., & Rowe, B. R. 2000, “Electron–molecule collisions: New experiments, new ideas,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 240–250.CrossRefGoogle Scholar
Mitchell, J. B. A., & Yousif, F. B. 1989a, “Merged beam studies of dissociative recombination – recent results,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A. & Guberman, S. L., Singapore: World Scientific, pp. 109–123.CrossRefGoogle Scholar
1989b, “Molecular ion recombination: branching ratio measurements,” in Microwave and Particle Beam Sources and Directed Energy Concepts, SPIE Vol. 1061, ed. Brandt, H. E., Bellingham, WA: Optical Society of America, pp. 536–541.Google Scholar
Mitchell, J. B. A., Lipson, R. H., & Sarpal, B. K. 2003, “Dissociative recombination of Xe2+ and XeH+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 59–66.CrossRefGoogle Scholar
Mitchell, J. B. A., Forand, J. L., Ng, C. T., et al. 1983, “Measurement of the branching ratio for the dissociative recombination of H3+ + e,” Phys. Rev. Lett. 51, pp. 885–888.CrossRefGoogle Scholar
Mitchell, J. B. A., Ng, C. T., Forand, L., Janssen, R., & McGowan, J. W. 1984, “Total cross sections for the dissociative recombination of H3+, HD2+ and D3+,” J. Phys. B 17, pp. L909–L913.CrossRefGoogle Scholar
Mitchell, J. B. A., Novotny, O., Angelova, G., et al. 2005a, “Dissociative recombination of rare gas hydride ions: II. ArH+,” J. Phys. B 38, pp. L175–L181.CrossRefGoogle Scholar
Mitchell, J. B. A., Novotny, O., LeGarrec, J. L., et al. 2005b, “Dissociative recombination of rare gas hydride ions: I. NeH+,” J. Phys. B 38, pp. 693–703.CrossRefGoogle Scholar
Mitchell, J. B. A., Rebrion-Rowe, C., Garrec, J. L., et al. 2003, “Branching ratios for the dissociative recombination of hydrocarbon ions. I. The cases of C4H9+ and C4H5+e,” Int. J. Mass Spectrom. 227, pp. 273–279.CrossRefGoogle Scholar
Mitchell, J. B. A., Van der Donk, P., Yousif, F. B., & Morgan T. J. 1993, “Recent merged beams investigations of hydrogen molecular ion recombination,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 87–97.CrossRefGoogle Scholar
Moiseyev, N., & Corcoran, C. 1979, “Autoionizing states of H2 and H2+ using the complex-scaling method,” Phys. Rev. A 20, pp. 814–817.CrossRefGoogle Scholar
Molek, C. D., Poterya, V., McLain, J. L., & Adams, N. G. 2006, “A novel technique for quantitative identification of neutral product distributions from dissociative electron-ion recombination,” Abstract PHYS 78, 231st American Chemical Society National Meeting, Atlanta, Georgia, March 26–30, 2006. Available through URL: www.acs.orgGoogle Scholar
M⊘ller, S. 1991, “ASTRID,” in Conference Record of the 1991 IEEE Particle Accelerator Conference (San Francisco), ed. Berkner, K., IEEE, New York, pp. 2811–2813.Google Scholar
M⊘ller, S. P. 1997, “ELISA, an electrostatic storage ring for atomic physics,” Nucl. Instr. Meth. Phys. Res. A 394, pp. 281–286.CrossRefGoogle Scholar
Momozaki, Y., & El-Genk, M. S. 2002, “Dissociative recombination rate coefficient for low temperature equilibrium cesium plasma,” J. Appl. Phys. 92, pp. 690–697.CrossRefGoogle Scholar
Montaigne, H., Geppert, W. D., Semaniak, J., et al. 2005, “Dissociative recombination of the thioformyl (HCS+) and carbonyl sulfide (OCS+) cations,” Astrophys. J. 631, pp. 653–659.CrossRefGoogle Scholar
Mordaunt, D. H., Ashfold, M. N. R., & Dixon, R. N. 1994, “Dissociation dynamics of H2O(D2O) following photoexcitation at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 100, pp. 7360–7375.CrossRefGoogle Scholar
Morgan, L. A., Tennyson, J., & Gillan, C. J. 1998, “The UK molecular R-matrix codes,” Comp. Phys. Comm. 114, pp. 120–128.CrossRefGoogle Scholar
Mostefaoui, T., Laube, S., Gautier, G., Rebrion- Rowe, C., Rowe, B. R., & Mitchell, J. B. A. 1999, “The dissociative recombination of NO+: the influence of vibrational excitation state,” J. Phys. B 32, pp. 5247–5256.CrossRefGoogle Scholar
Motapon, O., Fifirig, M., Florescu, A., et al. 2006, “Reactive collisions between electrons and NO+ ions: rate coefficient computations and relevance for the air plasma kinetics,” Plasma Sources Sci. Technol. 15, pp. 23–32.CrossRefGoogle Scholar
Mowat, J. R., Danared, H., Sundström, G., et al. 1995, “High-resolution, low-energy dissociative recombination spectrum of 3HeH+,” Phys. Rev. Lett. 74, pp. 50–53.CrossRefGoogle Scholar
Mul, P. M., & McGowan, J. W. 1979a, “Merged electron–ion beam experiments III. Temperature dependence of dissociative recombination for atmospheric ions NO+, O2+ and N2+,” J. Phys. B 12, pp. 1591–1601.CrossRefGoogle Scholar
1979b, “Dissociative recombination of N2H+ and N2D+,” Astrophys. J. 227, pp. L157–L159.CrossRef
1980, “Dissociative recombination of C2+, C2H+, C2H2+ and C2H3+,” Astrophys. J. 237, pp. 749–751.CrossRef
Mul, P. M., McGowan, J. W., Defrance, P., & Mitchell, J. B. A. 1983, “Merged electron–ion beam experiments: V. Dissociative recombination of OH+, H2O+, H3O+ and D3O+,” J. Phys. B 16, pp. 3099–3107.CrossRefGoogle Scholar
Mul, P. M., Mitchell, J. B. A., D'Angelo, V. S ., et al. 1981, “Merged electron–ion beam experiments IV. Dissociative recombination for the methane group CH+, …, CH5+,” J. Phys. B 14, pp. 1353–1361.CrossRefGoogle Scholar
Müller, U., & Cosby, P. C. 1996, Product state distributions in the dissociation of H3 (n = 2,3) Rydberg states,” J. Chem. Phys. 105, pp. 3532–3550.CrossRefGoogle Scholar
1999, “Three-body decay of the 3s2A1′ (N = 1, K = 0) and 3d2E′ (N = 1, G = 0, R = 1) Rydberg states of the triatomic hydrogen molecule H3,” Phys. Rev. A 59, pp. 3632–3642.CrossRef
Müller, U., Eckert, Th ., Braun, M., & Helm, H. 1999, “Fragment correlation in three-body breakup of triatomic hydrogen,” Phys. Rev. Lett. 83, pp. 2718–2721.CrossRefGoogle Scholar
Mullikan, R. S. 1964, “Rare-gas and hydrogen molecule electronic states, noncrossing rule, and recombination of electrons with rare-gas and hydrogen ions,” Phys. Rev. 136, pp. A962–A965.CrossRefGoogle Scholar
Nagaoka, A., Watanabe, N., & Kouchi, A. 2006, “Efficient formation of deuterated methanol by H-D substitution on interstellar grain surfaces,” in Astrochemistry – From Laboratory Studies to Astronomical Observations, eds. Kaiser, R. I., Bernath, P., Osamura, Y., Petrie, S., & Mebel, A. M., AIP Conf. Proceedings Vol. 855, New York: American Institute of Physics, pp. 69–75.Google Scholar
Någård, M. B., Pettersson, J. B. C., Derkatch, A. M., et al. 2002, “Dissociative recombination of D+ (D2O)2 water cluster ions with free electrons,” J. Chem. Phys. 117, pp. 5264–5270.CrossRefGoogle Scholar
Nakamura, H. 1984, “Electronic transitions in atomic and molecular dynamic processes,” J. Phys. Chem. 88, pp. 4812–4823.CrossRefGoogle Scholar
1991, “What are the basic mechanisms of electronic transitions in molecular dynamic processes?,” Int. Rev. Phys. Chem. 10, pp. 123–188.CrossRef
Nakamura, H., Takagi, H., & Nakashima, K. 1989, “Theoretical study of dissociative recombination of electrons with H2+ and CH+,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 73–83.CrossRefGoogle Scholar
Nakashima, K., Takagi, H., & Nakamura, H. 1987, “Dissociative recombination of H2+, HD+, and H2+ by collisions with slow electrons,” J. Chem. Phys. 86, pp. 726–737.CrossRefGoogle Scholar
Nakashima, K., Nakamura, H., Achiba, Y., & Kimura, K. 1989, “Autoionization mechanism of the NO molecule: Calculation of quantum defect and theoretical analysis of multiphoton ionization experiment,” J. Chem. Phys. 91, pp. 1603–1610.CrossRefGoogle Scholar
Neale, L., Miller, S., & Tennyson, J. 1996, “Spectroscopic properties of the H3+ molecule: A new calculated line list,” Astrophys. J. 464, pp. 516–520.CrossRefGoogle Scholar
Neau, A., Al-Khalili, A., Rosén, S., et al. 2000, “Dissociative recombination of D3O+ and H3O+: Absolute cross sections and branching ratios,” J. Chem. Phys. 113, pp. 1762–1770.CrossRefGoogle Scholar
Neau, A., Derkatch, A., Hellberg, F., et al. 2002, “Resonant ion pair formation of HD+: Absolute cross sections for the H− + D+ channel,” Phys. Rev. A 65, pp. 044701-1–3.CrossRefGoogle Scholar
Neumark, D. M. 2005, “Probing transition state with negative ion photodetachment: experiment and theory,” Phys. Chem. Chem. Phys. 7, pp. 433–442.CrossRef
Ng, C.-Y. (ed.) 2000a, Photoionization and Photodetachment, Part I, Advanced Series in Physical Chemistry Vol. 10A, Singapore: World Scientific.CrossRefGoogle Scholar
(ed.) 2000b, Photoionization and Photodetachment, Part II, Advanced Series in Physical Chemistry Vol. 10B, Singapore: World Scientific.
2003, “Absolute total state-selected cross sections for ion-molecule reactions of importance in planetary ionospheres. Reactions of O+ (4S, 2D, 2P),” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 401–414.CrossRefGoogle Scholar
Ngassam, V., & Orel, A. E., 2006, “Dissociative recombination of Ne2+ molecular ions,” Phys. Rev. A 73, pp. 032720-1–10.CrossRefGoogle Scholar
2007, “Resonances in low-energy electron scattering from HCNH+,” Phys. Rev. A 75, pp. 062702-1–8.CrossRef
Ngassam, V., Orel, A. E., & Suzor-Weiner, A. 2005, “Ab initio study of the dissociative recombination of HCNH+,” J. Phys.: Conf. Ser. 4, pp. 224–228.Google Scholar
Ngassam, V., Florescu, A., Pichl, L., Schneider, I. F., Motapon, O., & Suzor-Weiner, A. 2003, “The short-range reaction matrix in MQDT treatment of dissociative recombination and related processes,” Eur. Phys. D 26, pp. 165–171.CrossRefGoogle Scholar
Ngassam, V., Motapon, O., Florescu, A., Pichl, L., Schneider, I. F., & Suzor-Weiner, A. 2003, “Vibrational relaxation and dissociative recombination of H2+ induced by slow electrons,” Phys. Rev. A 68, pp. 032704-1–8.CrossRefGoogle Scholar
Nicolet, M. 1954, “Origin of the oxygen green line in the airglow,” Phys. Rev. 93, p. 633.CrossRefGoogle Scholar
Nielsen, S. B., Lappiere, A, Andersen, J. U., Pedersen, U. V., Tomita, S., & Andersen, L. H. 2001, “Absorption spectrum of the green fluorescent protein chromophore anion in vacuo,” Phys. Rev. Lett. 87, pp. 228102-1–4.CrossRefGoogle ScholarPubMed
Nielsen, S. E., & Berry, R. S. 1971, “Dynamic coupling phenomena in molecular excited states. III. Associative ionization and dissociative recombination in H2,” Phys. Rev. A 4, pp. 865–885.CrossRefGoogle Scholar
Noren, C., Yousif, F. B., & Mitchell, J. B. A. 1989, “Dissociative recombination and excitation of N2+,” J. Chem. Soc. Faraday Trans. 2 85, pp. 1697–1703.CrossRefGoogle Scholar
Novotný, O., Mitchell, J. B. A., LeGarrec, J. L., et al. 2005a, “The dissociative recombination of fluorocarbon ions: II. CF+,” J. Phys. B 38, pp. 1471–1482.CrossRefGoogle Scholar
Novotný, O., Plašil, R., Pysanenko, A., Korolov, I., & Glosík, J. 2006, “The recombination of D3+ and D5+ with electrons in deuterium containing plasma,” J. Phys. B 39, pp. 2561–2569.CrossRefGoogle Scholar
Novotný, O., Sivaraman, B., Rebrion-Rowe, C., Travers, D., Mitchell, J. B. A., & Rowe, B. R. 2005b, “Measurement of the recombination of photoproduced PAH ions,” J. Phys.: Conf. Ser. 4, pp. 211–215.Google Scholar
Novotný, O., Sivaraman, B., Rebrion-Rowe, C., et al. 2005c, “Recombination of polycyclic aromatic hydrocarbon photoions with electrons in a flowing afterglow plasma,” J. Chem. Phys. 123, pp. 104303-1–6.CrossRefGoogle Scholar
Oddene, S., Sheldon, J. W., Hardy, K. A., & Peterson, J. R. 1997, “Dissociative recombination of the A2Πg and X2Σg states of N2+ in a glow discharge,” Phys. Rev. A 56, pp. 4737–4741.CrossRefGoogle Scholar
Ogram, G. L., Chang, J.-S., & Hobson, R. M. 1980, “Dissociative recombination of H3O+ and D3O+ at elevated electron and gas temperatures,” Phys. Rev. A 21, pp. 982–989.CrossRefGoogle Scholar
Öjekull, J., Andersson, P. U., Någård, M. B., et al. 2004Dissociative recombination of NH4+ and ND4+ ions: Storage ring experiments and ab intio molecular dynamics,” J. Chem. Phys. 120, pp. 7391–7399.CrossRefGoogle Scholar
Öjekull, J., Andersson, P. U., Någård, M. B., et al. 2006, “Dissociative recombination of ammonia clusters studied by storage ring experiments,” J. Chem. Phys. 125, pp. 194306-1–9.CrossRefGoogle ScholarPubMed
Oka, T. 1980, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, pp. 531–534.CrossRefGoogle Scholar
1983, “The H3+ ion,” in Molecular Ions: Spectroscopy, Structure and Chemistry, eds. Miller, T. A. & Bondybey, V. E., Amsterdam: North Holland, pp. 73–90.Google Scholar
1992, “The infrared spectrum of H3+ in laboratory and space plasmas,” Rev. Mod. Phys. 64, pp. 1141–1149.CrossRef
2000, “H3+ in the diffuse interstellar medium: The enigma related to dissociative recombination,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 13–24.CrossRefGoogle Scholar
2003a, “Help!!! Theory for H3+ recombination badly needed,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 209–220.CrossRefGoogle Scholar
2003b, “Microwave and infrared spectroscopy of molecular ions,” in The Encyclopedia of Mass Spectrometry, eds. Gross, M. L., & Caprioli, R., Vol. 1, Theory and Ion Chemistry, ed. Armentrout, P. B., Amsterdam: Elsevier, pp. 217–226.Google Scholar
(ed.) 2006a, “Physics, chemistry and astronomy of H3+,” Phil. Trans. R. Soc. A 364, pp. 2845–3151.
2006b, “Correction and addendum to Oka 2000: introductory remarks,” Phil. Trans. R. Soc. A 364, pp. 3149–3151.CrossRef
2006c, “Interstellar H3+,” Proc. Natl. Acad. Sci. USA 103, pp. 12235–12242.CrossRef
Okada, T., & Sugawara, M. 1993, “Microwave determination of the coefficient of dissociative recombination of Ar2+ in Ar afterglow,” J. Phys. D: Appl. Phys. 26, pp. 1680–1686.CrossRefGoogle Scholar
O'Malley, T. F. 1966, “Theory of dissociative attachment,” Phys. Rev. 150, pp. 14–29.CrossRefGoogle Scholar
1971, “Diabatic states of molecules – quasistationary electronic states,” Adv. At. Mol. Phys. 7, pp. 223–249.CrossRef
1981, “Rydberg levels and structure in dissociative recombination cross sections,” J. Phys. B 14, pp. 1229–1238.CrossRef
O'Malley, T. F., & Geltman, S. 1965, “Compound-atom states for two-electron systems,” Phys. Rev. 137, pp. A1344–A1352.CrossRefGoogle Scholar
O'Malley, T. F., & Taylor, H. S. 1968, “Angular dependence of scattering products in electron–molecule resonant excitation and in dissociative attachment,” Phys. Rev. 176, pp. 207–221.CrossRefGoogle Scholar
O'Malley, T. F., Cunningham, A. J., & Hobson, R. M. 1972, “Dissociative recombination at elevated temperatures II. Comparison between theory and experiment in neon and argon afterglows,” J. Phys. B 5, pp. 2126–2133.CrossRefGoogle Scholar
O'Neil, R. R., Lee, E. T. P., & Huppi, E. R. 1979, “Auroral O (1S) productions and loss processes: Ground-based measurements of the artificial auroral experiment Precede,” J. Geophys. Res. 84, pp. 823–833.CrossRefGoogle Scholar
Oran, E. S., Julienne, P. S., & Strobel, D. F. 1975, “The aeronomy of odd nitrogen in the thermosphere,” J. Geophys. Res. 80, pp. 3068–3076.CrossRefGoogle Scholar
Orel, A. E. 2000a, “Time dependent wave packet study of the direct low-energy dissociative recombination of HD+,” Phys. Rev. A 62, pp. 020701-1–4.CrossRefGoogle Scholar
2000b, “Wave packet studies of dissociative recombination and dissociative excitation of molecular ions,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 91–100.CrossRefGoogle Scholar
2005, “Wave packet studies of dissociative recombination,” J. Phys.: Conf. Ser. 4, pp. 142–147.
Orel, A. E., and Kulander, K. C. 1983, “Coherence effects in charge transfer collisions,” J. Chem. Phys. 79, pp. 1326–1333.CrossRefGoogle Scholar
1988, “Wave packet studies of molecular photofragmentation via strongly coupled electronic surfaces,” Chem. Phys. Lett. 146, pp. 428–433.CrossRef
1993, “Resonant dissociative recombination of H3+,” Phys. Rev. Lett. 71, pp. 4315–4318.CrossRef
Orel, A. E., & Kulander, K. C. 1996, “Resonance-enhanced dissociation of a molecular ion below its electronic excitation level,” Phys. Rev. A 54, pp. 4992–4996.CrossRefGoogle Scholar
Orel, A. E., Kulander, K. C., & Lengsfield, B. H. 1994, “Triple intersections of H3 resonance states,” J. Chem. Phys. 100, pp. 1756–1758.CrossRefGoogle Scholar
Orel, A. E., Kulander, K. C., & Rescigno, T. N. 1995, “Effects of open inelastic channels in the resonant dissociative recombination of HeH+, Phys. Rev. Lett. 74, pp. 4807–4810.CrossRefGoogle ScholarPubMed
Orel, A. E., Rescigno, T. N., & Lengsfield, B. H. 1991, “Dissociative excitation of HeH+ by electron impact,” Phys. Rev. A 44, pp. 4328–4335.CrossRefGoogle ScholarPubMed
Orel, A. E., Schneider, I. F., & Suzor-Weiner, A. 2000, “Dissociative recombination of H3+: progress in theory,” Phil. Trans. R. Soc. Lond. A 358, pp. 2445–2456.CrossRefGoogle Scholar
Orlov, D. A., Sprenger, F., Lestinsky, M., Weigel, U., Terekhov, Schwalm, D., & Wolf, A. 2005, “Photocathodes as electron sources for high resolution merged beam experiments,” J. Phys.: Conf. Ser. 4, pp. 290–295.Google Scholar
Orsini, N., Torr, N. G., Brinton, H. C., et al. 1977, “Determination of the N2+ recombination rate coefficient in the ionosphere,” Geophys. Res. Lett. 4, pp. 431–433.CrossRefGoogle Scholar
Oskam, H. J. 1969, “Recombination of rare gas ions with electrons,” in Case Studies in Atomic Collision Physics I, eds. McDaniel, E. W. and McDowell, M. R. C., Amsterdam: North-Holland Publishing Company, pp. 465–523.Google Scholar
Oskam, H. J., & Mittelstadt, V. R. 1963, “Recombination coefficient of molecular rare-gas ions,” Phys. Rev. 132, pp. 1445–1454.CrossRefGoogle Scholar
Österdahl, F. 2006, “Ionization of molecules at the CRYRING facility,” Licentiate Thesis, the Royal Institute of Technology, Stockholm (TRITA-FYS-2006:42).
Österdahl, F., Rosén, S., Bednarska, V., Petrignani, A., Hellberg, F., Larsson, M., & Zande, W. J. 2005, “Position and time-sensitive coincident detection of fragments from the dissociative recombination of O2+ using a single hexanode delay-line detector,” J. Phys.: Conf. Ser. 4, pp. 286–289.Google Scholar
Paal, A., Simonsson, A., Källberg, A., Dietrich, J., & Mohos, I. 2003, “Current measurements of low-intensity beams at CRYRING,” in Proceedings 6th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (DIPAC 2003), Mainz, Germany, pp. 240–241.Google Scholar
Parkhomchuk, V. V., & Skrinsky, A. N. 1991, “Electron cooling: physics and prospective applications,” Rep. Prog. Phys. 54, pp. 919–947.CrossRefGoogle Scholar
Peart, B., & Dolder, K. T. 1971, “Collisions between electrons and H2+ I. Measurements of cross sections for proton production,” J. Phys. B 4, pp. 1496–1505.CrossRefGoogle Scholar
1972a, “Collisions between electrons and H2+ ions II. Measurements of cross sections for dissociative excitation,” J. Phys. B 5, pp. 860–865.CrossRef
1972b, “Collisions between electrons and H2+ ions III. Measurements of proton production cross sections at low energies,” J. Phys. B 5, pp. 1554–1558.CrossRef
1973a, “Measurements of cross sections for the dissociative recombination of D2+ ions,” J. Phys. B 6, pp. L359–L361.CrossRef
1973b, “Collisions between electrons and H2+ ions IV. Measurements of cross-sections for dissociative ionization,” J. Phys. B 6, pp. 2409–2414.CrossRef
1974a, “Collisions between electrons and H2+ ions V. Measurements of cross section for dissociative recombination,” J. Phys. B 7, pp. 236–243.CrossRef
1974b, “The production of de-excited H3+ ions and measurements of the energies of two electronically-excited states,” J. Phys. B 7, pp. 1567–1573.CrossRef
1974c, “Measurement of the dissociative recombination of H3+ ions,” J. Phys. B 7, pp. 1948–1952.CrossRef
1975, “Collisions between electrons and H2+ ions VI. Measurements of cross-sections for simultaneous production of H+ and H−,” J. Phys. B 8, pp. 1570–1574.CrossRef
Peart, B., Foster, R. A., & Dolder, K. T. 1979, “Measured cross sections for the formation of H− by collisions between H3+ ions and electrons,” J. Phys. B 12, pp. 3441–3443.CrossRefGoogle Scholar
Pechukas, P., & Light, J. C. 1965, “On detailed balancing and statistical theories of chemical kinetics,” J. Chem. Phys. 42, pp. 3281–3291.CrossRefGoogle Scholar
Pedersen, H. B., Bilodeau, R., Jensen, M. J., Makassiouk, I. V., Safvan, C. P., & Andersen, L. H. 2001, “Electron collisions with the diatomic fluorine anion,” Phys. Rev. A 63, pp. 032718-1–7.CrossRefGoogle Scholar
Pedersen, H. B., Buhr, H., Altevogt, S., et al. 2005, “Dissociative recombination and low-energy inelastic electron collisions of the helium dimmer ion,” Phys. Rev. A 72, pp. 012712-1–28.CrossRefGoogle Scholar
Pedersen, H. B., Djurić, N., Jensen, M. J., et al. 1998, “Doubly charged negative ions of B2 and C2,” Phys. Rev. Lett. 81, pp. 5302–5305.CrossRefGoogle Scholar
Pedersen, H. B., Djurić, N., Jensen, M. J., et al. 1999, “Electron collisions with diatomic anions,” Phys. Rev. A 60, pp. 2882–2899.CrossRefGoogle Scholar
Peek, J. M. 1967, “Theory of dissociation of H2+ by fast electrons,” Phys. Rev. 154, pp. 52–56.CrossRefGoogle Scholar
1974, “Theory of electron–H2+ collisions,” Phys. Rev. A 10, pp. 539–549.CrossRef
Pegg, D. J. 2004, “Structure and dynamics of negative ions,” Rep. Prog. Phys. 67, pp. 857–905.CrossRefGoogle Scholar
Penetrante, B. M., & Bardsley, J. N. 1986, “Electron heating in microwave-afterglow plasmas,” Phys. Rev. A 34, pp. 3253–3261.CrossRefGoogle ScholarPubMed
Persson, K.-B., & Brown, S. C. 1955, Electron loss process in hydrogen afterglow,” Phys. Rev. 100, pp. 729–733.CrossRefGoogle Scholar
Peterson, J. R., Devynck, P., Hertzler, C ., & Graham, W. G. 1992, “Predissociation of H3n = 2 Rydberg states: product branching and isotope effectes,” J. Chem. Phys. 96, pp. 8128–8135.CrossRefGoogle Scholar
Peterson, J. R., Padellec, A., Danared, H., et al. 1998, “Dissociative recombination and excitation of N2+: cross sections and product branching ratos,” J. Chem. Phys. 108, pp. 1978–1988.CrossRefGoogle Scholar
Petrie, S. 2001, “Hydrogen isocyanide, HNC: A key species in the chemistry of Titan's atmosphere?,” Icarus 151, pp. 196–203.CrossRefGoogle Scholar
Petrie, S., & Bohme, D. K. 2003, “Mass spectrometric approaches to interstellar chemistry,” Top. Curr. Chem. 225, pp. 37–75.CrossRefGoogle Scholar
Petrignani, A., Andersson, P. U., Pettersson, J. B. C., et al. 2005a, “Dissociative recombination of the weakly bound NO-dimer cation: cross sections and three-body dynamics,” J. Chem. Phys. 123, pp. 194306-1–11.CrossRefGoogle Scholar
Petrignani, A., Hellberg, F., Thomas, R. D., Larsson, M., Cosby, P. C., & Zande, W. J. 2005b, “Electron-energy dependent product state distributions in the dissociative recombination of O2+,” J. Chem. Phys. 122, pp. 234311-1–8.CrossRefGoogle Scholar
Petrignani, A., Zande, W. J., Cosby, P. C., Hellberg, F., Thomas, R. D., & Larsson, M. 2005c, “Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of O2+,” J. Chem. Phys. 122, pp. 014302-1–11.CrossRefGoogle Scholar
Peverall, R., Rosén, S., Larsson, M., et al. 2000, “The ionospheric oxygen green airglow: Electron temperature dependence and aeronomical implications,” Geophys. Res. Lett. 27, pp. 481–484.CrossRefGoogle Scholar
Peverall, R., Rosén, S., Peterson, J. R., et al. 2001, “Dissociative recombination of excitation of O2+: cross sections, product yields and implications for studies of ionospheric airglows,” J. Chem. Phys. 114, pp. 6679–6689.CrossRefGoogle Scholar
Phaneuf, R. A., Crandall, D. H., & Dunn, G. H. 1975, “Production of D∗(n = 4) from electron–D2+ dissociative recombination,” Phys. Rev. A 11, pp. 528–535.CrossRefGoogle Scholar
Phaneuf, R. A., Havener, C. C., Dunn, G. H., & Müller, A. 1999, “Merged-beams experiments in atomic and molecular physics,” Rep. Prog. Phys. 62, pp. 1143–1180.CrossRefGoogle Scholar
Phelps, A. V., & Brown, S. C. 1952, “Positive ions in the afterglow of a low pressure helium discharge,” Phys. Rev. 86, pp. 102–105.CrossRefGoogle Scholar
Philbrick, J., Mehr, F. J., & Biondi, M. A. 1969, “Electron temperature dependence of recombination of Ne+2 ions with electrons,” Phys. Rev. 181, pp. 271–274.CrossRefGoogle Scholar
Pichl, L., Nakamura, H., & Horacek, J. 2000, “Analytical treatment of singular equations in dissociative recombination,” Comp. Phys. Comm. 124, pp. 1–18.CrossRefGoogle Scholar
Forêts, Pineau des G., & Roueff, E. 1993, “H3+ recombination and bistability in the interstellar medium,” Phil. Trans. R. Soc. Lond. A 358, pp. 2549–2559.CrossRefGoogle Scholar
Plane, J. M. C. 2003, “Atmospheric chemistry of meteoric metals,” Chem. Rev. 103, pp. 4963–4984.CrossRefGoogle ScholarPubMed
Plašil, R., Glosík, J., Poterya, V., et al. 2002, “Advanced stationary afterglow method for experimental study of recombination of processes of H3+ and D3+ ions with electrons,” Int. J. Mass Spectr. 218, pp. 105–130.CrossRefGoogle Scholar
Plašil, R., Glosík, J., Poterya, V., Kudrna, P., Vicher, M., & Pysanenko, A. 2003, “Recombination of H3+ and D3+ with electrons,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 249–263.CrossRefGoogle Scholar
Plašil, P., Hlavenka, P., Macko, P., Bánó, G., Pysanenko, A., & Glosík, J. 2005, “The recombination of spectroscopically identified H3+ (v = 0) ions with electrons,” J. Phys.: Conf. Ser. 4, pp. 118–125.Google Scholar
Platzman, R. L. 1962a, “Superexcited states of molecules and the primary action of ionizing radiation,” Vortex 23, pp. 372–385.Google Scholar
1962b, “Superexcited states of molecules,” Radiat. Res. 17, pp. 419–425.CrossRef
Plumb, I. C., Smith, D., & Adams, N. G. 1972, “Formation and loss of O2+ and O4+ ions in krypton–oxygen afterglow plasmas,” J. Phys. B 5, pp. 1762–1772.CrossRefGoogle Scholar
Popović, D. B., Djurić, N., Holmberg, K., Neau, A., & Dunn, G. H. 2001, “Absolute cross sections for H+ formation from electron-impact dissociation of C2H+ and C2H2+,” Phys. Rev. A 64, pp. 052709-1–5.CrossRefGoogle Scholar
Porter, R. N. 1982, “H3 and H3+: Correlations of theory and experiment,” Ber. Bunsenges. Phys. Chem. 86, pp. 407–413.CrossRefGoogle Scholar
Poterya, V., Glosík, J., Plašil, R., Tichý, M., Kudrna, P., & Pysanenko, A. 2002, “Recombination of D3+ ions in the afterglow of a He-Ar-D2 plasma,” Phys. Rev. Lett. 88, pp. 044802-1–4.CrossRefGoogle ScholarPubMed
Poterya, V., McLain, J. L., Adams, N. G., & Babcock, L. M. 2005, “Mechanisms of electron–ion recombination of N2H+/N2D+ and HCO+/DCO+ ions: Temperature dependence and isotopic effect,” J. Phys. Chem. A 109, pp. 7181–7186.CrossRefGoogle ScholarPubMed
Prasad, S. S., & Capone, L. A. 1971, “The Jovian ionosphere: Composition and temperatures,” Icarus 15, pp. 45–55.CrossRefGoogle Scholar
Pysanenko, A., Plašil, R., & Glosík, J. 2004, “The temperature dependence of electron–ion recombination in hydrogen plasma,” Czech. J. Phys. 54 (Suppl. C), pp. C1042–C1049.CrossRefGoogle Scholar
Quéffelec, J. L., Rowe, B. R., Morlais, M., Gomet, J. C., & Vallée, F. 1985, “The dissociative recombination of N2+ (v = 0,1) as a source of metastable atoms in planetary atmospheres,” Planet. Space Sci. 33, pp. 263–270.CrossRefGoogle Scholar
Quéffelec, J. L., Rowe, B. R., Vallée, F., Gomet, J. C., & Morlais, M. 1989, “The yield of metastable atoms through dissociative recombination of O2+ ions with electrons,” J. Chem. Phys. 91, pp. 5335–5342.CrossRefGoogle Scholar
Rabadán, I., & Tennyson, J. 1996, “R-matrix calculation of the bound and continuum states of e−−NO+ system,” J. Phys. B 29, pp. 3747–3761.CrossRefGoogle Scholar
1997, “Ab initio potential energy curves of Rydberg, valence and continuum states of NO,” J. Phys. B 30, pp. 1975–1988; ibid. 1998, Corrigendum, 31, pp. 4485–4487.CrossRef
Dastidar, Rai K., & Dastidar, Rai T. K. 1979, “Dissociative recombination of H2+, HD+ and D2+ molecular ions,” J. Phys. Soc. Japan 46, pp. 1288–1294.CrossRefGoogle Scholar
Ramos, G. B., Schlamkowitz, M., Sheldon, J., Hardy, K. A., & Peterson, J. R. 1995a, “Observation of dissociative recombination of Ne2+ and Ar2+ directly to the ground state of the product atoms,” Phys. Rev. A 51, pp. 2945–2950.CrossRefGoogle Scholar
1995b, “Dissociative recombination studies of Ar2+ by time-of-flight spectroscopy,” Phys. Rev. A 52, pp. 4556–4566.CrossRef
Rebrion-Rowe, C., Garrec, J. L., Hassouna, M., Travers, D., & Rowe, B. R. 2003, “Experimental evaluation of the recombination rate of cations formed from fluoranthene,” Int. J. Mass Spectrom. 223–224, pp. 237–251.CrossRefGoogle Scholar
Rebrion-Rowe, C., Lehfoui, L.Rowe, B., & Mitchell, J. B.A 1998, “The dissociative recombination of hydrocarbon ions. II. Alkene and alkyne derived species,” J. Chem. Phys. 108, pp. 7185–7189.CrossRefGoogle Scholar
Rebrion-Rowe, C., Mostefaoui, T., Laubé, S., Lehfaoui, L., & Mitchell, J. B. A. 2000b, “The recombination of hydrocarbon ions with electrons,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 36–39.CrossRefGoogle Scholar
Rebrion-Rowe, C., Mostefaoui, T., Laubé, S., & Mitchell, J. B. A. 2000a, “The dissociative recombination of hydrocarbon ions. III. Methyl-substituted benzene ring compounds,” J. Chem. Phys. 113, pp. 3039–3045.CrossRefGoogle Scholar
Redfield, A., & Holt, R. B. 1951Electron removal in argon afterglows,” Phys. Rev. 82, pp. 874–876.CrossRefGoogle Scholar
Rees, M. H. 1984, “Excitation of atomic oxygen (1S) and emission of 5577 Å,” Planet. Space Sci. 32, pp. 373–378.CrossRefGoogle Scholar
Rescigno, T. N., & McCurdy, C. W. 1998, “Improvements to the ‘standard’ complex Kohn variational method: Towards the development of an ‘R-matrix theory without a box’,” in Novel Aspects of Electron–Molecule Collisions, ed. Becker, K. H., Singapore: World Scientific, pp. 325–346.CrossRefGoogle Scholar
Rescigno, T. N., Lengsfield, B. H., & McCurdy, C. W. 1995, “The incorperation of modern electronic structure methods in electron–molecule collision problems: variational calculations using the Complex Kohn method,” in Modern Electronic Structure Theory, Vol. 1, ed. Yarkony, D. R., Singapore: World Scientific, pp. 501–588.Google Scholar
Rescigno, T. N., McCurdy, C. W., Orel, A. E., & Lengsfield, B. H. 1995, “The Complex Kohn variational method,” in Computational Methods for Electron–Molecule Collisions, eds. Huo, W. M., & Gianturco, F. A., New York: Plenum Press, pp. 1–44.CrossRefGoogle Scholar
Roberge, W., & Dalgarno, A. 1982, “The formation and destruction of HeH+ in astrophysical plasmas,” Astrophys. J. 255, pp. 489–496.CrossRefGoogle Scholar
Rogelstad, M. L., Yousif, F. B., Morgan, T. J., & Mitchell, J. B. A. 1997, “Stimulated radiative recombination of H+ and He+,” J. Phys. B 30, pp. 3913–3931.CrossRefGoogle Scholar
Rogers, W. A., & Biondi, M. A. 1964, “Studies of the mechanism of electron–ion recombination. II,” Phys. Rev. 134, pp. A1215–A1225.CrossRefGoogle Scholar
Rosati, R. E., Johnsen, R., & Golde, M. F. 2003, “Absolute yields of CO(a′ 3Σ+, d3Δi, e3Σ−) + O from dissociative recombination of CO2+ ions with electrons,” J. Chem. Phys. 119, pp. 11630–11635.CrossRefGoogle Scholar
2004, “Yield of electronically excited N2 molecules from the dissociative recombination of N2H+ with −,” J. Chem. Phys. 120, pp. 8025–8030.CrossRef
Rosati, R. E., Pappas, D., Johnsen, R., & Golde, M. F. 2007, “Yield of electronically excited CN molecules from the dissociative recombination of HNC+ with electrons,” J. Chem. Phys. 126, pp. 154303-1–8.
Rosén, S., Derkatch, A., Semaniak, J., et al. 2000, “Recombination of simple molecular ions studied in storage rings: dissociative recombination of H2O+,” Faraday Discuss. 115, pp. 295–302.CrossRefGoogle Scholar
Rosén, S., Peverall, R., Larsson, M., et al. 1998a, “Absolute cross sections and final state distributions for dissociative recombination and excitation of CO+ (v=0) using an ion storage ring,” Phys. Rev. A 57, pp. 4462–4471.CrossRefGoogle Scholar
Rosén, S., Peverall, R., Horst, J., et al. 1998b, “A position- and time-sensitive particle detector with subnanosecond time resolution,” Hyperfine Interact. 115, pp. 201–208.CrossRefGoogle Scholar
Ross, S., & Jungen, Ch . 1987, “Quantum-defect theory of double-minimum states in H2,” Phys. Rev. Lett. 59, pp. 1297–1300.CrossRefGoogle ScholarPubMed
Roth, M., Maul, C., & Gericke, K.-H. 2004, “Photodissociation dynamics of Cl2O: Interpretation of electronic transitions,” J. Phys. Chem. A 108, pp. 7954–7964.CrossRefGoogle Scholar
Roueff, E. 2005, “Microphysics and astrophysical observations: the molecular perspective,” J. Phys.: Conf. Ser. 4, pp. 1–9.Google Scholar
Roueff, E., & Gerin, M. 2003, “Deuterium molecules of the interstellar medium,” Space Sci. Rev. 106, pp. 61–72.CrossRefGoogle Scholar
Roueff, E., & Pineau des Forêts, G. 1993, “Dissociative recombination in interstellar clouds,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 249–261.CrossRefGoogle Scholar
Roueff, E., Le Bourlot, J., & Pineau des Forêts, G. 1996, “Impact of dissociative recombination reactions on dark interstellar cloud models,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 11–20.CrossRefGoogle Scholar
Rowe, B. R., & Rebrion-Rowe, C. 1996, “Measurements of reaction rate constants of aromatic hydrocarbons with electrons,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 184–194.CrossRefGoogle Scholar
Rowe, B. R., Gomet, J. C., Canosa, C., & Mitchell, J. B. A. 1992, “A further study of HCO+ recombination,” J. Chem. Phys. 96, pp. 1105–1110.CrossRefGoogle Scholar
Rowe, B. R., Mitchell, J. B. A., & Canosa, A. (eds.) 1993, Dissociative Recombination: Theory, Experiment, and Applications, NATO ASI Series B: Physics, Vol. 313, New York: Plenum Press.CrossRefGoogle Scholar
Rowe, B. R., Vallée, F., Quéffelec, J. L., Gomet, J. C., & Morlais, M. 1988, “The yield of oxygen and hydrogen atoms through dissociative recombination of H2O+ with electrons,” J. Chem. Phys. 88, pp. 845–850.CrossRefGoogle Scholar
Royal, J., & Orel, A. E. 2005, “Dissociative recombination of He+2,” Phys. Rev. A 72, pp. 022719-1–8.CrossRefGoogle Scholar
2006, “Dissociative recombination of Ar2+,” Phys. Rev. A 73, pp. 042706-1–12.CrossRef
Rundel, R. D. 1972, “Proton production in collisions between electrons and H2+ ions,” J. Phys. B 5, pp. L77–L78.CrossRefGoogle Scholar
Safvan, C. P., Jensen, M. J., Pedersen, H. B., & Andersen, L. H. 1999, “Dissociative recombination of the CO2+ dication,” Phys. Rev. A 60, pp. R3361–R3364.CrossRefGoogle Scholar
Saito, M., Haruyama, Y., Tanabe, T., et al. 2000, “Vibrational cooling of H2+ and D2+ in a storage ring studied by means of two-dimensional fragment imaging,” Phys. Rev. A 61, pp. 062707-1–7.CrossRefGoogle Scholar
Saltpeter, E. E. 1950, “Dissociative cross sections for fast hydrogen molecule ion,” Proc. Phys. Soc. A 63, pp. 1295–1297.CrossRefGoogle Scholar
Sarpal, B. K., & Tennyson, J. 1993, “Calculated vibrational excitation rates for electron–H2+ collisions,” Mon. Not. R. Astron. Soc. 263, pp. 909–912.CrossRefGoogle Scholar
Sarpal, B. K., Tennyson, J., & Morgan, L. 1994, “Dissociative recombination without a curve crossing: study of HeH+,” J. Phys. B 27, pp. 5943–5953.CrossRefGoogle Scholar
Sato, H. 2001, “Photodissociation of simple molecules in the gas phase,” Chem. Rev. 101, pp. 2687–2725.CrossRefGoogle ScholarPubMed
2004, “Photodissociation in the gas phase,” Ann. Rep. Prog. Chem. Sec. C 100, pp. 73–98.CrossRef
Sauer, M. C. Jr., & Mulac, W. A. 1971, “Ion–electron and ion–ion recombination coefficients in gases studied by pulse radiolysis,” J. Chem. Phys. 55, pp. 1982–1983.CrossRefGoogle Scholar
1972, “Studies of light emission in the pulse radiolysis of gases: Electron–ion recombination in gases,” J. Chem. Phys. 56, pp. 4995–5004.CrossRef
1974, “Light emission resulting from ion-recombination in the pulse-radiolysis of argon containing naphthalene or anthracene,” Int. J. Rad. Phys. Chem. 6, pp. 55–65.CrossRef
Sawicka, A., Skursi, P., Hudgins, R. R., & Simons, J. 2003, “Model calculations relevant to disulfide bond cleavage via electron capture influenced by positively charged groups,” J. Phys. Chem. B 107, pp. 13505–13511.CrossRefGoogle Scholar
Sayers, J., & Kerr, L. W. 1957, “Ionic reactions in gases,” in Proceedings of the Third International Conference on Ionization Phenomena in Gases, Venice: Italian Society of Physics, pp. 908–911.Google Scholar
Schennach, S., Müller, A., Uwira, O., et al. 1994, “Dielectronic recombination of lithium-like Ar15+,” Z. Phys. D 30, pp. 291–306.CrossRefGoogle Scholar
Schilke, P., Wamsley, C. M., Forêts, Pineau des G., Roueff, E., Flower, D. R., & Guilloteau, S. 1992, “A study of HCN, HNC, and their isotopomers in OMC-1 I. Abundances and chemistry,” Astron. Astrophys. 256, 595–612.Google Scholar
Schinke, R. 1993, Photodissociation Dynamics, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schneider, B. I., & Hay, P. J. 1976, “Elastic scattering of electrons for F2: An R-matrix calculation,” Phys. Rev. A 13, pp. 2049–2056.CrossRefGoogle Scholar
Schneider, I. F., & Orel, A. E. 1999, “Accurate nonadiabatic couplings for H3: Application to predissociation,” J. Chem. Phys. 111, pp. 5873–5881.CrossRefGoogle Scholar
Schneider, I. F., Dulieu, O., & Giusti-Suzor, A. 1991, “The role of Rydberg states in the H2+ dissociative recombination with slow electrons,” J. Phys. B 24, pp. L289–L297.CrossRefGoogle Scholar
1992, “Resonances in the dissociative recombination of H2+ with slow electrons,” Phys. Rev. Lett. 68, p. 2251.CrossRef
Schneider, I. F., Orel, A. E., & Suzor-Weiner, A. 2000, “Channel mixing effects in the dissociative recombination of H3+ with slow electrons,” Phys. Rev. Lett. 85, pp. 3785–3788.CrossRefGoogle ScholarPubMed
Schneider, I. F., Larsson, M., Orel, A. E., & Suzor-Weiner, A. 2000a, “Dissociative recombination of H3+ and predissociation of H3,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 131–141.CrossRefGoogle Scholar
Schneider, I. F., Rabadan, I., Carata, L., Andersen, L. H., Suzor-Weiner, A., & Tennyson, J. 2000b, “Dissociative recombination of NO+: calculations and comparison with experiment,” J. Phys. B 33, pp. 4849–4861.CrossRefGoogle Scholar
Schneider, I. F., Strömholm, C., Carata, L., Urbain, L., Larsson, M., & Suzor-Weiner, A . 1997, “Rotational effects in HD+ dissociative recombination: theoretical study of resonant mechanisms and comparison with ion storage ring experiments,” J. Phys. B 30, pp. 2687–2705.CrossRefGoogle Scholar
Schopman, J., Fournier, P. G., & Los, J. 1973, “The dissociation of 10 keV HeH+ molecular ions. IV. Rotational predissociation of the X1Σ+ state,” Physica 63, pp. 518–526.CrossRefGoogle Scholar
Schramm, A., Weber, J. M., Kreil, J., Klar, D., Ruf, M.-W., & Hotop, H. 1998, “Laser photoelectron attachment to molecules skimmed in a supersonic beam: diagnostics of weak electric fields and attachment cross sections down to 20 μeV,” Phys. Rev. Lett. 81, pp. 778–781.CrossRefGoogle Scholar
Schulz, G. J. 1973, “Resonances in electron impact on diatomic molecules,” Rev. Mod. Phys. 45, pp. 423–486.CrossRefGoogle Scholar
Schulz, G. J., & Asundi, R. K. 1967, “50Isotope effect in the dissociative attachment in H2 at low energy,” Phys. Rev. 158, pp. 25–29.CrossRefGoogle Scholar
Schulz, P. A., Gregory, D. C., Meyer, F. W., & Phaneuf, R. A. 1986, “Electron-impact dissociation of H3O+,” J. Chem. Phys. 85, pp. 3386–3394.CrossRefGoogle Scholar
Seiersen, K., Al-Khalili, A., Heber, O., et al. 2003c, “Dissociative recombination of the cation and dication of CO2,” Phys. Rev. A 68, pp. 022708-1–6.CrossRefGoogle Scholar
Seiersen, K., Bak, J., Bluhme, H., Jensen, M. J., Nielsen, S. B., & Andersen, L. H. 2003b, “Electron-impact detachment of O-3, NO-3 and SO-2 ions,” Phys. Chem. Chem. Phys. 5, pp. 4814–4820.CrossRefGoogle Scholar
Seiersen, K., Heber, O., Jensen, M. J., Safvan, C. P., & Andersen, L. H. 2003a, “Dissociative recombination of dications,” J. Chem. Phys. 119, pp. 839–843.CrossRefGoogle Scholar
Semaniak, J., Larson, Å., Padellec, A., et al. 1998, “Dissociative recombination of CH5+: absolute cross sections and branching fractions,” Astrophys. J., 498, pp. 886–895.CrossRefGoogle Scholar
Semaniak, J., Minaev, B. F., Derkatch, A. M., et al. 2001, “Dissociative recombination of HCNH+: absolute cross-sections and branching ratios,” Astrophys. J. Suppl. Ser. 135, pp. 275–283.CrossRefGoogle Scholar
Semaniak, J., Rosén, S., Sundström, G., et al. 1996, “Product-state distributions in the dissociative recombination of 3HeD+ and 4HeH+,” Phys. Rev. A 54, pp. R4617–R4620.CrossRefGoogle ScholarPubMed
Sen, A., McGowan, J. W., & Mitchell, J. B. A. 1987, “Production of low-vibrational-state H2+ ions for collision studies,” J. Phys. B 20, pp. 1509–1515.CrossRefGoogle Scholar
Seong, J., & Sun, H. 1996, “Dissociative recombination rates of O2+ ions with low energy electrons,” Bull. Korean Chem. Soc. 17, pp. 1065–1073.Google Scholar
Sexton, M. C., & Craggs, J. D. 1958, “Recombination in the afterglows of argon and helium using microwave techniques,” Int. J. Electr. 4, pp. 493–502.Google Scholar
Sham, T.-K. (ed.) 2002, Chemical Applications of Synchrotron Radiation, Part I: Dynamics and VUV Spectroscopy, Advanced Series in Physical Chemistry Vol. 12A, Singapore: World Scientific.CrossRefGoogle Scholar
Shauer, S. N., Williams, P., & Compton, R. N. 1990, “Production of small doubly charged negative carbon cluster ions by sputtering,” Phys. Rev. Lett. 65, pp. 625–628.CrossRefGoogle Scholar
Sheehan, C. H. 2000, Ph. D. thesis, University of Western Ontario.
Sheehan, C. H., & St.-Maurice, J.-P. 2004a, “Dissociative recombination of the methane family ions: rate coefficients and implications,” Adv. Space Res. 33, pp. 216–220.CrossRefGoogle Scholar
2004b, “Dissociative recombination of N2+, O2+, and NO+: rate coefficients for ground state and vibrationally excited ions,” J. Geophys. Res. 109, pp. A03302-1–21.
Sheehan, C., Lennard, W. J., & Mitchell, J. B. A. 2000, “Measurement of the efficiency of a silicon surface barrier detector for medium energy ions using a Rutherford backscattering experiment,” Meas. Sci. Technol. 11, pp. L5–L7.CrossRefGoogle Scholar
Sheehan, C., Padellec, A., Lennard, W. N., Talbi, D., & Mitchell, J. B. A. 1999, “Merged beam measurement of the dissociative recombination of HCN+ and HNC+,” J. Phys. B 32, pp. 3347–3360.CrossRefGoogle Scholar
Shiba, Y., Hirano, T., Nagashima, U., & Ishii, K. 1998, “Potential energy surfaces and branching ratio of the dissociative recombination reaction HCNH+ + e−: an ab initio molecular orbital study,” J. Chem. Phys. 108, pp. 698–705.CrossRefGoogle Scholar
Shiu, Y.-J., & Biondi, M. A. 1977, “Dissociative recombination in krypton: dependence of the total rate coefficient and excited-state production on electron temperature,” Phys. Rev. A 16, pp. 1817–1820.CrossRefGoogle Scholar
1978, “Dissociative recombination in argon: dependence of the total rate coefficient and excited-state production on electron temperature,” Phys. Rev. A 17, pp. 868–872.CrossRef
Shiu, Y.-J., Biondi, M. A., & Sipler, D. P. 1977, “Dissociative recombination in xenon: variation of the total rate coefficient and excited-state production with electron temperature,” Phys. Rev. A 15, pp. 494–498.CrossRefGoogle Scholar
Shy, J.-T., Farley, J. W., Lamb, W. E. Jr., & Wing, W. H. 1980, “Observation of the infrared spectrum of the triatomic molecular deuterium molecular ion D3+,” Phys. Rev. Lett. 45, pp. 535–537.CrossRefGoogle Scholar
Sidis, V. 1971, “Simple expression for the off-diagonal elements of the d/dR operator between exact electronic states of diatomic molecules,” J. Chem. Phys. 55, pp. 5838–5839.CrossRefGoogle Scholar
Simonsson, A. 1991, Beam Dynamics and Injection in CRYRING, Ph. D. thesis, Royal Institute of Technology, Stockholm.Google Scholar
Singh, P. D. (ed.) 1992, Astrochemistry of Cosmic Phenomena, IAU Symp. 150, Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Skrzypkowski, M. P., & Johnsen, R. 1997, “Electron-temperature dependence of the recombination of NH4+ (NH3) ions with electrons,” Chem. Phys. Lett. 274, pp. 473–477.CrossRefGoogle Scholar
Skrzypkowski, M. P., Gougousi, T., Johnsen, R., & Golde, M. F. 1998, “Measurement of the absolute yield of CO (a3Π) + O products in the dissociative recombination of CO2+ with electrons,” J. Chem. Phys. 108, pp. 8400–8407.CrossRefGoogle Scholar
Slanger, T. G., & Black, G. 1982, “Photodissociative channels at 1216 Å for H2O, NH3, and CH4,” J. Chem. Phys. 77, pp. 2432–2437.CrossRefGoogle Scholar
Smirnov, B. M. 1977, “Cluster ions in gases,” Sov. Phys. Usp. 20, pp. 119–133.CrossRefGoogle Scholar
Smith, D. 1992, “The ion chemistry of interstellar clouds,” Chem. Rev. 92., pp. 1473–1485CrossRefGoogle Scholar
Smith, D., & Adams, N. G. 1979, “Recent advances in flow tubes: Measurement of ion-molecule rate coefficients and product distributions,” in Gas Phase Ion Chemistry, Vol. 1, ed. Bowers, M. T., New York: Academic Press, pp. 1–44.Google Scholar
1983, “Studies of ion–ion recombination using flowing afterglow plasmas,” in Physics of Ion–Ion and Electron–Ion Collisions, eds. Brouillard, F., & McGowan, J. W., New York: Plenum Press, pp. 501–531.CrossRefGoogle Scholar
1984, “Dissociative recombination coefficients for H3+, HCO+, N2H+, and CH5+ at low temperature: interstellar implications,” Astrophys. J. 284, pp. L13–L16.CrossRef
1987, “Ionic reactions in thermal plasmas,” J. Chem. Soc. Faraday Trans. II 83, pp. 149–157.CrossRef
Smith, D., & Goodall, C. V. 1968, “The dissociative recombination coefficient of O2+ ions with electrons in the 180°–630° K,” Planet. Space Sci. 16, pp. 1177–1188.CrossRefGoogle Scholar
Smith, D., & Španěl, P. 1993a, “Dissociative recombination of H3+ and some other interstellar ions: a controversy resolved,” Int. J. Mass Spectrom. Ion Proc. 129, pp. 163–182.CrossRefGoogle Scholar
1993b, “Dissociative recombination of H3+. Experiment and theory reconciled,” Chem. Phys. Lett. 211, pp. 454–460.CrossRef
1994, “Studies of electron attachment at thermal energies using the flowing afterglow-Langmuir probe technique,” Adv. At. Mol. Opt. Phys. 32, pp. 307–343.CrossRef
Smith, D., Adams, N. G., & Ferguson, E. E. 1990, “Interstellar ion chemistry: laboratory studies,” in Molecular astrophysics, ed. Hartquist, T. W., Cambridge: Cambridge University Press, pp. 181–210.CrossRefGoogle Scholar
Smith, D., Adams, N. G., Dean, A. G., & Church, M. J. 1975, “The application of Langmuir probes to the study of flowing afterglow plasma,” J. Phys. D 8, pp. 141–152.CrossRefGoogle Scholar
Smith, D., Goodall, C. V., Adams, N. G., & Dean, A. G. 1970, “Ion- and electron-density decay rates in afterglow plasmas of argon and argon–oxygen mixtures,” J. Phys. B 3, pp. 34–43.CrossRefGoogle Scholar
Snyder, L. E., Hollis, J. M., Ulich, B. L., Lovas, F. J., & Buhl, D. 1975, “On the identification of interstellar X-ogen,” Bull. Am. Astron. Soc. 7, p. 497.Google Scholar
Solomon, P. M. 1973, “Interstellar molecules,” Physics Today 32(3), pp. 32–40.CrossRefGoogle Scholar
Solomon, P. M., & Klemperer, W. 1972, “The formation of diatomic molecules in interstellar space,” Astrophys. J. 178, pp. 389–421.CrossRefGoogle Scholar
Sonnenfroh, D. M., Caledonia, G. E., & Lurie, J. 1993, “Emission from OH(A) produced in the dissociative recombination of H2O+,” J. Chem. Phys. 98, pp. 2872–2881.CrossRefGoogle Scholar
Španěl, P., & Smith, D. 1995, “Recent studies of electron attachment and electron–ion recombination at thermal energies,” Plasma Sources Sci. Technol. 4, pp. 302–306.CrossRefGoogle Scholar
Španěl, P., Dittrichová, L., & Smith, D. 1993, “FALP studies of dissociative recombination coefficients for O2+ and N2+ within the electron temperature range 300–2000 K,” Int. J. Mass Spectrom. Ion Proc. 129, pp. 183–191.CrossRefGoogle Scholar
Stamatovic, A., & Schultz, G. J. 1968, “Trochoidal electron monochromator,” Rev. Sci. Instr. 39, pp. 1752–1753.CrossRefGoogle Scholar
1970, “Characteristics of the trochoidal electron monochromator,” Rev. Sci. Instr. 41, pp. 423–427.CrossRef
Stancil, P. C., Lepp, A., & Dalgarno, A. 1996, “The lithium chemistry in the early universe,” Astrophys. J. 458, pp. 401–406.CrossRefGoogle Scholar
Stearns, J. W., Berkner, K. H., Pyle, R. V., Briegleb, B. P., & Warren, M. L. 1971, “Dissociation cross sections for 0.5- to 1-MeV HeH+ ions in H2, He, N2, and Ne gases,” Phys. Rev. A 4, pp. 1960–1964.CrossRefGoogle Scholar
Stein, R. P., Scheibe, M., Syverson, M. W., Shaw, T. M., & Gunton, R. C. 1964, “Recombination coefficient of electrons with NO+ ions in shock-heated air,” Phys. Fluids 7, pp. 1641–1650.CrossRefGoogle Scholar
Stephens, J. A., & Greene, C. H. 1995, “Rydberg state dynamics of rotating, vibrating H3 and the Jahn–Teller effect,” J. Chem. Phys. 102, pp. 1579–1591.CrossRefGoogle Scholar
Sternberg, A., Dalgarno, A., & Lepp, S. 1987, “Cosmic-ray-induced photodestruction of interstellar molecules in dense clouds,” Astrophys. J. 320, pp. 676–682.CrossRefGoogle Scholar
Stibbe, D. T., & Tennyson, J. 1996, “Time-delay matrix analysis of resonance in electron scattering: e−–H2 and H2+,J. Phys. B 29, pp. 4267–4283.CrossRefGoogle Scholar
Stolyarov, A. V., Pupyshev, V. I., & Child, M. S. 1997, “Analytical approximations for adiabatic and non-adiabatic matrix elements of homonuclear diatomic Rydberg states: applications to the singlet p-complex of the hydrogen molecule,” J. Phys. B 30, pp. 3077–3093.CrossRefGoogle Scholar
Strasser, D., Lammich, L., Kreckel, H., et al. 2002a, “Breakup dynamics and the isotope effect in H3+ and D3+ dissociative recombination,” Phys. Rev. A 66, pp. 032719-1–13.CrossRefGoogle Scholar
Strasser, D., Lammich, L., Kreckel., H., et al. 2004, “Breakup dynamics and isotope effects in D2H+ and H2D+ dissociative recombination,” Phys. Rev. A 69, pp. 064702-1–4.CrossRefGoogle Scholar
Strasser, D., Lammich, L., Krohn, S., et al. 2001, “Two- and three-body kinematical correlation in the dissociative recombination of H3+,” Phys. Rev. Lett. 86, pp. 779–782.CrossRefGoogle Scholar
Strasser, D., Levin, J., Pedersen, H. B., et al. 2002b, “Branching ratios in the dissociative recombination of polyatomic ions: the H3+ case,” Phys. Rev. A 65, pp. 010702-1–4.CrossRefGoogle Scholar
Strasser, D., Levin, J., Pedersen, H. B., et al. 2003, “A model for calculating branching ratios in H3+ dissociative recombination,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 235–242.CrossRefGoogle Scholar
Strasser, D., Urbain, X., Pedersen, H. B., et al. 2000, “An innovative approach to multiparticle three-dimensional imaging,” Rev. Sci. Instr. 71, pp. 3092–3098.CrossRefGoogle Scholar
Strauss, C. E. M., & Houston, P. L. 1990, “Correlations without coincidence measurements: deciding between stepwise and concerted mechanisms for ABC → A + B + C,” J. Phys. Chem. 94, pp. 8751–8762.CrossRefGoogle Scholar
Strömholm, C., Danared, H., Larson, Å., et al. 1997, “Imaging spectroscopy of recombination fragments of OH+,” J. Phys. B 30, pp. 4919–4933.CrossRefGoogle Scholar
Strömholm, C., Schneider, I. F., Sundström, G., et al. 1995, “Absolute cross sections for dissociative recombination of HD+: comparison of experiment and theory,” Phys. Rev. A 52, pp. R4320–R4323.CrossRefGoogle ScholarPubMed
Strömholm, C., Semaniak, J., Rosén, S., et al. 1996, “Dissociative recombination and dissociative excitation of 4HeH+: absolute cross sections and mechanisms,” Phys. Rev. A 54, pp. 3086–3094.CrossRefGoogle ScholarPubMed
Suits, A. G., & Continetti, R. E. 2001, Imaging in Chemical Dynamics, Washington, DC: American Chemical Society.Google Scholar
Sun, H., & Nakamura, H. 1990, “Theoretical study of the dissociative recombination of NO+ with slow electrons,” J. Chem. Phys. 93, pp. 6491–6501.CrossRef
Sundström, G., Datz, S., Mowat, J. R., et al. 1994a, “Direct dissociative recombination of ground state HeH+,” Phys. Rev. A 50, pp. R2806–R2809.CrossRefGoogle Scholar
Sundström, G., Mowat, J. R., Danared, H., et al. 1994b, “Destruction rate of H3+ by low energy electrons measured in a storage-ring experiment,” Science 263, pp. 785–787.CrossRefGoogle Scholar
Surko, C. M., Gribakin, G. F., & Buckman, S. J. 2005, “Low-energy positron interactions with atoms and molecules,” J. Phys. B 38, pp. R57–R126.CrossRefGoogle Scholar
Suzor-Weiner, A., & Schneider, I. F. 2001, “Mystery of an interstellar ion,” Nature 412, pp. 871–872.CrossRefGoogle ScholarPubMed
Svendsen, A., Ghazaly, El M. O. A., & Andersen, L. H. 2005a, “Molecular size effects in NCO and NCS dianion resonances,” J. Chem. Phys. 123, pp. 114311-1–5.CrossRefGoogle Scholar
Svendsen, A., Bluhme, H., Ghazaly, El M. O. A., Seiersen, K., Br⊘nsted Nielsen, S., & Andersen, L. H. 2005b, “Tuning the continuum ground state energy of NO2•2 by water molecules,” Phys. Rev. Lett. 94, pp. 223401-1–4.CrossRefGoogle Scholar
Svendsen, A., Bluhme, H., Seiersen, K., & Andersen, L. H. 2004, “Electron scattering on OH− (H2O)n clusters (n = 0–4),” J. Chem. Phys. 121, 4642–4649.CrossRef
Syrstad, E. A., & Turuček, F. 2005, “Toward a general mechanism of electron capture dissociation,” J. Am. Chem. Soc. 16, pp. 208–224.Google Scholar
Tachikawa, H. 1999, “Reaction mechanism of the astrochemical electron capture reaction HCN+ + e− → HNC + H: a direct ab initio dynamics study,” Phys. Chem. Chem. Phys. 1, pp. 4925–4930.CrossRefGoogle Scholar
2000, “Full dimensional ab-initio dynamics calculations of electron capture processes by the H3O+ ion,” Phys. Chem. Chem. Phys. 2, pp. 4327–4333.CrossRef
Takagi, H. 1993, “Rotational effects in the dissociative recombination process of H2+ + e,” J. Phys. B 26, pp. 4815–4832.CrossRefGoogle Scholar
1996, “Theoretical study of dissociative processes in HD+/H2+–e collisions with the energy up to 10 eV,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 174–183.CrossRefGoogle Scholar
2004, “Theoretical study of dissociative recombination of HeH+,” Phys. Rev. A 70, pp. 022709-1–10.CrossRef
Takagi, H., & Nakamura, H. 1980, “Elastic scattering of electrons from H2+: phaseshifts, quantum defects and two-electron excited states,” J. Phys. B 13, pp. 2619–2632.CrossRefGoogle Scholar
Takagi, T., Kosugi, N., & Dourneuf, M. 1991, “Dissociative recombination of CH+,” J. Phys. B 24, pp. 711–732.CrossRefGoogle Scholar
Takahashi, H., Clemesha, B. R., Batista, P. P., Sahai, Y., Abdu, M. A., & Muralikrishna, P. 1990, “Equatorial F-region OI 6300 Å and OI 5577 Å emission profiles observed by rocket-borne airglow photometers,” Planet. Space Sci. 38, pp. 547–554.CrossRefGoogle Scholar
Taketsugu, T., Tajima, A., Ishii, K., & Hirano, T. 2004, “Ab initio direct trajectory simulation with nonadiabatic transitions of the dissociative recombination reaction HCNH+ + e− → HNC/HCN + H,” Astrophys. J. 608, pp. 323–329.CrossRefGoogle Scholar
Talbi, D. 2003, “Dissociative recombination of c-C3H3+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. S. L. Guberman, New York: Kluwer/Plenum Publishers, pp. 203–208.Google Scholar
Talbi, D., & Ellinger, Y. 1993, “A theoretical study of the HCO+ and HCS+ electronic dissociative recombination,” in Dissociative Recombination: Theory, Experiment, and Applications, eds. Rowe, B. R., Mitchell, J. B. A., & Canosa, A., NATO ASI Series B: Physics Vol. 313, New York: Plenum Press, pp. 59–66.CrossRefGoogle Scholar
1998, “Potential energy surfaces for the electronic dissociative recombination of HCNH+: astrophysical implications on the HCN/HNC abundance ratio,” Chem. Phys. Lett. 288, pp. 155–164.CrossRef
Talbi, D., Padellec, A., & Mitchell, J. B. A. 2000, “Quantum chemical calculations for the dissociative recombination of HCN+ and HNC+,” J. Phys. B 33, pp. 3631–3646.CrossRefGoogle Scholar
Talbi, D., Pauzat, F., & Ellinger, Y. 1988, “Potential energy surfaces for dissociative recombination reactions of HCO+ and HCS+,” Chem. Phys. 126, pp. 291–300.CrossRefGoogle Scholar
Talbi, D., Hickman, A. P., Pauzat, F., Ellinger, Y., & Berthier, G. 1989, “A tentative interpretation for the difference in the abundance ratios HCO+/CO and HCS+/CS in interstellar space,” Astrophys. J. 339, pp. 231–238.CrossRefGoogle Scholar
Tanabe, T., Chida, K., Noda, K., & Watanabe, I. 2002, “An electrostatic storage ring for atomic and molecular science,” Nucl. Instr. Meth. Phys. Res. A 482, pp. 595–605.CrossRefGoogle Scholar
Tanabe, T., Chida, K., Watanabe, T., et al. 2000, “Dissociative recombination at the TARN II storage ring,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 170–179.CrossRefGoogle Scholar
Tanabe, T., Katayama, I., Inoue, N., et al. 1993, “Dissociative recombination of HeH+ at large center-of-mass energies,” Phys. Rev. Lett. 70, pp. 422–425.CrossRefGoogle ScholarPubMed
Tanabe, T., Katayama, I., Inoue, N., et al. 1994, “Origin of the low-energy component and isotope effect on dissociative recombination of HeH+ and HeD+,” Phys. Rev. A 49, pp. R1531–R1534.CrossRefGoogle Scholar
Tanabe, T., Katayama, I., Kamegaya, H., et al. 1995, “Dissociative recombination of HD+ with an ultracold electron beam in a cooler ring,” Phys. Rev. Lett. 75, pp. 1066–1069.CrossRefGoogle Scholar
Tanabe, T., Katayama, I., Kamegaya, H., et al. 1996, “Dissociative recombination of light molecular ions in the storage ring TARN II,” in Dissociative Recombination: Theory, Experiment and Applications III, eds. Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B., Singapore: World Scientific, pp. 84–93.CrossRefGoogle Scholar
Tanabe, T., Katayama, I., Ono, S., et al. 1998, “Dissociative recombination of HeH+ isotopes with an ultra-cold electron beam from a superconducting electron cooler in a storage ring,” J. Phys. B 31, pp. L297–L303.CrossRefGoogle Scholar
Tanabe, T., Noda, K., Honma, T., et al. 1991, “Electron cooling experiments at INS,” Nucl. Instr. Methods Phys. Res. A, 307, pp. 7–25.CrossRefGoogle Scholar
Tanabe, T., Noda, K., Saito, M., Lee, S., Ito, Y., & Takagi, H. 2003, “Resonant neutral-particle emission in collisions of electrons and peptide ions in a storage ring,” Phys. Rev. Lett. 90, pp. 193201-1–4.CrossRefGoogle Scholar
Tanabe, T., Noda, K., Saito, M., Starikov, E. B., & Tateno, M. 2004, “Regular threshold-energy increase with charge for neutral-particle emission in collisions of electrons and oligonucleotide anions,” Phys. Rev. Lett. 93, pp. 043201-1–4.CrossRefGoogle ScholarPubMed
Tanabe, T., Noda, K., Saito, M., Takagi, H., Starikov, E. B., & Tateno, M. 2005, “Neutral-particle emission in collisions of electrons with biomolecular ions in an electrostatic storage ring,” J. Phys.: Conf. Ser. 4, pp. 239–244.Google Scholar
Tanabe, T., Takagi, H., Katayama, I., et al. 1999, “Evidence of superelastic electron collisions from H2+ studied by dissociative recombination using an ultracold electron beam from a storage ring,” Phys. Rev. Lett. 83, pp. 2163–2166.CrossRefGoogle Scholar
Tanaka, H., & Sueko, O. 2001, “Mechanisms of electron transport in electrical discharges and electron collision cross sections,” Adv. At. Mol. Opt. Phys. 44, pp. 1–32.CrossRefGoogle Scholar
Tanaka, K. 2003, “The origin of macromolecule ionization by laser irradiation,” in Le Prix Nobel, The Nobel Prizes 2002, ed. Frängsmyr, T., Stockholm: Nordstedts, EditaTryckeri, AB, pp. 197–217.Google Scholar
Tashiro, M., & Kato, S. 2002a, “Predissociation of H3 2s Rydberg state: quantum dynamics study,” Chem. Phys. Lett. 354, pp. 14–19.CrossRefGoogle Scholar
2002b, “Quantum dynamics study on predissociation of H3 Rydberg states: Importance of indirect mechanism,” J. Chem. Phys. 117, pp. 2053–2062.CrossRef
2003, “Quantum dynamical study of H3+,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 243–248.CrossRefGoogle Scholar
Teloy, E., & Gerlich, D. 1974, “Intergral cross sections for ion–molecule reactions. I. The guided beam technique,” Chem. Phys. 4, pp. 417–427.CrossRefGoogle Scholar
Tennyson, J. 1995, “Spectroscopy of H3+: planets, chaos and the Universe,” Rep. Prog. Phys. 58, pp. 421–476.CrossRefGoogle Scholar
Tennyson, J., & Miller, S. 1994, “H3+: from first principles to Jupiter,” Cont. Phys. 35, pp. 105–116.CrossRefGoogle Scholar
2000, “Spectroscopy of H3+ and its impact on astrophysics,” Spectrochim. Acta A 57, pp. 661–667.
Tennyson, J., & Sutcliffe, B. T. 1982, “The ab initio calculation of the vibrational–rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H2Ne as examples,” J. Chem. Phys. 77, pp. 4061–4072.CrossRefGoogle Scholar
Tennyson, J., Kostini, M. A., Mussa, H. Y., Polyansky, O. L., & Prosmiti, R. 2000, “H3+ near dissociation: theoretical progress,” Phil. Trans. R. Soc. Lond. A 358, pp. 2419–2432.CrossRefGoogle Scholar
Thaddeus, P., Guélin, M., & Linke, R. A. 1981, “Three new ‘nonterrestrial’ molecules,” Astrophys. J. Lett. 246, pp. L41–L45.CrossRefGoogle Scholar
Thomas, R. 2004, “Branching between different decay channels in the dissociative recombination of poly-atomic molecules,” Phys. Scripta T110, pp. 188–192.CrossRefGoogle Scholar
Thomas, R., Ehlerding, A., Hellberg, F., et al. 2003, “Hot water from cold: dissociative recombination of D5O2+,” in 23rd International Conference on Photonic, Electronic and Atomic Collisions (XXIII ICPEAC, Stockholm, Sweden), Abstracts of Contributed Papers, Vol. II, eds. Anton, J.et al., Stockholm: Universitetsservice US AB, p. Mo109.Google Scholar
Thomas, R., Rosén, S., Hellberg, F., et al. 2002, “Investigating the three-body fragmentation dynamics of water via dissociative recombination and theoretical modeling calculations,” Phys. Rev. A 66, pp. 032715-1–16.CrossRefGoogle Scholar
Thomas, R. D., Ehlerding, A., Geppert, W., et al. 2005a, “The effect of bonding on the fragmentation of small systems,” J. Phys.: Conf. Ser. 4, pp. 187–190.Google Scholar
Thomas, R. D., Hellberg, F., Neau, A., et al. 2005b, “Three-body fragmentation dynamics of amidogen and methylene radicals via dissociative recombination,” Phys. Rev. A 71, pp. 032711-1–16.CrossRef
Thomson, J. J. 1911, “Rays of positive electricity,” Phil. Mag. 21, pp. 225–249.CrossRefGoogle Scholar
1912, “Further experiments on positive rays,” Phil. Mag. 24, pp. 209–253.CrossRef
1913, Rays of Positive Electricity and Their Application to Chemical Analyses, first edn, London: Longman, Green and Co.
1921, Rays of Positive Electricity and Their Application to Chemical Analyses, second edn, London: Longman, Green and Co.
1934, “Heavy hydrogen,” Nature 133, pp. 280–281.CrossRef
1937, Recollections and Reflections, New York: The Macmillan Company.
Thomson, J. J., & Rutherford, E. 1896, “On the passage of electricity through gases exposed to Röntgen rays,” Phil. Mag. 42, pp. 392–407.CrossRefGoogle Scholar
Tolliver, D. E., Kyrala, G. A., & Wing, W. H. 1979, “Observation of the infrared spectrum of the helium-hydride molecular ion 4HeH+,” Phys. Rev. Lett. 43, pp. 1719–1722.CrossRefGoogle Scholar
Tomashevsky, M., Herbst, E., & Kraemer, W. P. 1998, “Classical and quantum-mechanical calculations of the HCO+ + e → CO(v) + H,” Astrophys. J. 498, pp. 728–734.CrossRefGoogle Scholar
Tomita, S., Andersen, J. U., Gottrup, C., Hvelplund, P., & Pedersen, U. V. 2001, “Dissociation energy for C2 loss from fullerene cations in a storage ring,” Phys. Rev. Lett. 87, pp. 073401-1–4.CrossRefGoogle Scholar
Torr, D. G., & Orsini, N. 1978, “The effect of N2+ recombination on the aeronomic determination of the charge exchange coefficient of O+ (2D) with N2,” Geophys. Res. Lett. 5, pp. 657–659.CrossRefGoogle Scholar
Torr, M. R., & Torr, D. G. 1979, “Recombination of NO+ in the mid-latitude trough and the polar ionization hole,” J. Geophys. Res. 84 (A8), pp. 4316–4329.CrossRefGoogle Scholar
Torr, M. R., St.-Maurice, J. P., & Torr, D. G. 1977, “The rate coefficient for the O+ + N2 reaction in the ionosphere,” J. Geophys. Res. 82, pp. 4829–4833.Google Scholar
Trafton, L.Lester, D. F., & Thompson, K. L. 1989, “Unidentified emission lines in Jupiter's northern and southern 2 micron aurorae,” Astrophys. J. 343, pp. L73–L76.CrossRefGoogle Scholar
Trajmar, S., & McConkey, J. W. 1994, “Benchmark measurements of cross sections for electronic collisions: analysis of scattered electrons,” Adv. At. Mol. Opt. Phys. 33, pp. 63–96.CrossRefGoogle Scholar
Trajmar, S., Register, D. F., & Chutjian, A. 1983, “Electron scattering by molecules II. Experimental data and methods,” Phys. Rep. 97, pp. 219–356.CrossRefGoogle Scholar
Tsuji, M., Nakamura, M., Nishimura, Y., & Obase, H. 1995, “Nascent rovibrational distribution of CO(A1Π) produced in the recombination of CO2+ with electrons,” J. Chem. Phys. 103, pp. 1413–1421.CrossRefGoogle Scholar
1998, “Nascent rovibrational distributions of CO(d3Δi, e3Σ−, a' 3Σ+) produced in the dissociative recombination of CO2+ with electrons,” J. Chem. Phys. 108, pp. 8031–8038.CrossRef
Turner, B. E. 1989, “Dissociative electronic recombination in astrophysics and astrochemistry,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A. & Guberman, S. L., Singapore: World Scientific, pp. 329–340.CrossRefGoogle Scholar
Turuček, F., Polášek, M., Frank, A. J., & Sadílek, M. 2000, “Transient hydrogen atom adducts to disulfides. Formation and energetics,” J. Am. Chem. Soc. 122, pp. 2361–2370.CrossRefGoogle Scholar
Uggerud, E. 2004, “Electron capture dissociation of the disulfide bond–a quantum chemical model study,” Int. J. Mass Spectrom. 234, pp. 45–50.CrossRefGoogle Scholar
Ullrich, J., Moshammer, R., Dorn, A., Dörner, R., Schmidt, L. P. H., & Schmidt-Böcking, H. 2003, “Recoil-ion and electron momentum spectroscopy: reaction-microscopes,” Rep. Prog. Phys. 66, pp. 1463–1545.CrossRefGoogle Scholar
Unser, K. 1981, “A toroidal DC beam current transformer with high resolution,” IEEE Trans. Nucl. Sci. 28, pp. 2344–2346.CrossRefGoogle Scholar
Urbain, X., Djuric, N., Safvan, C. P., et al., 2005, “Storage ring study of dissociative recombination of He+2,” J. Phys. B 38, pp. 43–50.CrossRefGoogle Scholar
Urbain, X., Safva, C. P., Jensen, M. J., & Andersen, L. H. 2000. “Storage ring studies of the dissociative recombination of He+2,” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. M. Larsson, J. B. A. Mitchell, & I. F. Schneider, Singapore: World Scientific, pp. 261–262.
Vâlcu, B., Schneider, I. F., Raoult, M., Strömholm, C., Larsson, M., & Suzor-Weiner, A ., 1998, “Rotational effects in low energy dissociative recombination of diatomic ions,” Eur. Phys. J. D 1, pp. 71–78.Google Scholar
Vallée, F., Rowe, B. R., Gomet, J. C., Quéffelec, J. L., & Morlais, M. 1986, “Observation of the fourth positive system of CO in dissociative recombination of vibrationally excited CO2+,” Chem. Phys. Lett. 124, pp. 317–320.CrossRefGoogle Scholar
Donk, P., Yousif, F. B., & Mitchell, J. B. A. 1991, “Dissociative recombination and excitation of D3+,” Phys. Rev. A 43, pp. 5971–5974.CrossRefGoogle ScholarPubMed
Donk, P., Yousif, F. B., Mitchell, J. B. A., & Hickman, A. P. 1991, “Dissociative recombination of H2+,” Phys. Rev. Lett. 67, pp. 42–45.CrossRef
Van der Zande, W. J. 2000, “Dissociative recombination of diatomics: do we understand product state branching?” in Dissociative Recombination: Theory, Experiment and Applications IV, eds. Larsson, M., Mitchell, J. B. A., & Schneider, I. F., Singapore: World Scientific, pp. 251–260.CrossRefGoogle Scholar
Zande, W. J., Semaniak, J., Zengin, V., et al. 1996, “Dissociative recombination: product information and very large cross sections of vibrationally excited H2+,” Phys. Rev. A 54, pp. 5010–5018.CrossRefGoogle ScholarPubMed
Van Dishoeck, E. F. 1990, “Diffuse cloud chemistry,” in Molecular Astrophysics, ed. Hartquist, T. W., Cambridge: Cambridge University Press, pp. 55–83.CrossRefGoogle Scholar
(ed.) 1997, Molecules in Astrophysics: Probes and Processes, IAU Symp. 178, Dordrecht: Kluwer Academic Publishers.
Dishoeck, E. F., & Black, J. H. 1986, “Comprehensive models of diffuse interstellar clouds: Physical conditions and molecular abundances,” Astrophys. J. Suppl. Ser. 62, pp. 109–145.CrossRefGoogle Scholar
Hemert, M. C., & Peyerimhoff, S. D. 1991, “Resonances and bound rovibrational levels in the interacting X, A, C, and D states of HeH, HeD, 3HeH, and 3HeD,” J. Chem. Phys. 94, pp. 4369–4383.CrossRefGoogle Scholar
Vanroose, W., McCurdy, C. W., & Rescigno, T. N. 2002, “Interpretation of low-energy electron-CO2 scattering,” Phys. Rev. A. 66, pp. 032720-1–10.CrossRefGoogle Scholar
Vardya, M. S., & Tarafdar, S. P. (eds.) 1987, Astrochemistry, IAU Symp. 120, Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
Vejby-Christensen, L., Andersen, L. H., Heber, O., et al. 1997, “Complete branching ratios for the dissociative recombination of H2O+, H3O+, and CH3+,” Astrophys. J. 483, pp. 531–540.Google Scholar
Vejby-Christensen, L., Kella, D., Pedersen, H. B., & Andersen, L. H. 1998, “Dissociative recombination of NO+,” Phys. Rev. A 57, pp. 3627–3634.CrossRefGoogle Scholar
Viggiano, A. A., Ehlerding, A., Arnold, S. T., & Larsson, M. 2005a, “Dissociative recombination of hydrocarbon ions,” J. Phys.: Conf. Ser. 4, pp. 191–197.Google Scholar
Viggiano, A. A., Ehlerding, A., Hellberg, F., et al. 2005b, “Rate constants and branching ratios for the dissociative recombination of CO2+,” J. Chem. Phys. 122, pp. 226101-1–3.CrossRefGoogle Scholar
Vikor, L., Al-Khalili, A., Danared, H., et al. 1999, “Branching fractions in the dissociative recombination of NH4+ and NH2+ molecular ions,” Astron. Astrophys. 344, pp. 1027–1033.Google Scholar
Vinci, A., & Tennyson, J. 2004, “Continuum states of CO+,” J. Phys. B37, pp. 2011–2031.
Vogler, M., & Dunn, G. H. 1975, “Dissociative recombination of electrons and D2+ to yield D(2p),” Phys. Rev. A 11, pp. 1983–1987.CrossRefGoogle Scholar
Vogt, E. & Wannier, G. H. 1954, “Scattering of ions by polarization forces,” Phys. Rev. 95, pp. 1190–1198.
Busch, F., & Dunn, G. H. 1972, “Photodissociation of H2+ and D+2: experiment,” Phys. Rev. A 5, pp. 1726–1743.CrossRefGoogle Scholar
Vuitton, V., Yelle, R. V., & Anicich, V. G. 2006, “The nitrogen chemistry of Titan's upper atmosphere revealed,” Astrophys. J. Lett. 647, pp. L175–L178.CrossRefGoogle Scholar
Wahlgren, U., Liu, B., Pearson, P. K., & Schaefer, H. F. 1973, “Theoretical support for the assignment of X-ogen to the oxomethylium molecular ion,” Nature Phys. Sci. 246, pp. 4–6.CrossRefGoogle Scholar
Waite, J. H. Jr., Niemann, H., Yelle, R. V., et al. 2005, “Ion neutral mass spectrometer results from the first flyby of Titan,” Science 308, pp. 982–985.CrossRefGoogle ScholarPubMed
Wallis, M. K. 1978, “Exospheric density and escape fluxes of atomic isotopes from Venus and Mars,” Planet. Space Sci. 26, pp. 949–953.CrossRefGoogle Scholar
Walls, F. L., & Dunn, G. H. 1974, “Measurement of total cross sections for electron recombination with NO+ and O+2 using ion storage techniques,” J. Geophys. Res. 79, pp. 1911–1915.CrossRefGoogle Scholar
Wang, X.-B., Yang, X., Nicholas, J. B., & Wang, L.-S. 2001, “Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters,” Science 294, pp. 1322–1325.CrossRefGoogle ScholarPubMed
Warke, C. S. 1966, “Nonradiative dissociative electron capture by molecular ions,” Phys. Rev. 144, pp. 120–126.CrossRefGoogle Scholar
Watson, W. D. 1973, “Rate of formation of interstellar molecules by ion-molecule reactions,” Astrophys. J. 183, pp. L17–L20.CrossRefGoogle Scholar
1974, “Ion–molecule reactions, molecule formation, and hydrogen-isotope exchange in dense interstellar clouds,” Astrophys. J. 188, pp. 35–42.CrossRef
Wauchop, T. S., & Broida, H. P. 1972, “Lifetime and quenching of CO (a3Π) produced by recombination of CO2 ions in a helium afterglow,” J. Chem. Phys. 56, pp. 330–332.CrossRefGoogle Scholar
Wayne, R. P. 2000, Chemistry of Atmospheres, third edn, Oxford: Oxford University Press.Google Scholar
Weiner, J., Masnou-Seeuws, F., & Giusti-Suzor, A. 1989, “Associative ionization: experiment, potentials and dynamics,” Adv. At. Mol. Opt. Phys. 26, pp. 210–296.
Weller, C. S., & Biondi, M. A. 1967, “Measurements of dissociative recombination of CO2+ with electrons,” Phys. Rev. Lett. 19, pp. 59–61.CrossRefGoogle Scholar
1968, “Recombination, attachment, and ambipolar diffusion of electrons in photo-ionized NO afterglows,” Phys. Rev. 172, pp. 198–206.CrossRef
Wendt, G. L., & Landauer, R. S. 1920, “Triatomic hydrogen,” J. Am. Chem. Soc. 42, pp. 930–946.
Wenthold, P. G., & Lineberger, W. C. 1999, “Negative ion photoelectron spectroscopy studies of organic reactive intermediates,” Acc. Chem. Res. 32, pp. 597–604.CrossRefGoogle Scholar
Wheeler, M. D., Orr-Ewing, A. J., & Ashfold, M. N. R. 1997, “Predissociation dynamics of the A2Σ+ state of SH and SD,” J. Chem. Phys. 107, pp. 7591–7600.CrossRefGoogle Scholar
Whitaker, M., Biondi, M. A., & Johnsen, R. 1981a, “Electron-temperature dependence of dissociative recombination of electrons with CO+·(CO)n series ions,” Phys. Rev. A 23, pp. 1481–1485.CrossRefGoogle Scholar
1981b, “Electron-temperature dependence of dissociative recombination of electrons with N+2· N2 ions,” Phys. Rev. A 24, pp. 743–745.CrossRef
Wigner, E. P. 1948, “On the behavior of cross sections near thresholds,” Phys. Rev. 73, pp. 1002–1009.CrossRefGoogle Scholar
Wilkins, R. L. 1966, “Monte Carlo calculations of cross sections of electron–positive-molecular-ion dissociative recombination,” J. Chem. Phys. 44, pp. 1884–1888.CrossRefGoogle Scholar
Williams, T. L., Adams, N. G., Babcock, L. M., Herd, C. R., & Geoghegan, M. 1996, “Production and loss of the water-related species H3O+, H2O and OH in dense interstellar clouds,” Mon. Not. R. Astron. Soc. 282, pp. 413–420.CrossRefGoogle Scholar
Wilson, H. A. 1931, “Electrical conductivity of flames,” Rev. Mod. Phys. 3, pp. 156–189.CrossRefGoogle Scholar
Wilson, L. N., & Evans, E. W. 1967, “Electron recombination in hydrogen–oxygen reactions behind shock waves,” J. Chem. Phys. 46, pp. 859–863.CrossRefGoogle Scholar
Winstead, C., & McKoy, V. 1996, “Highly parallel computational techniques for electron-molecule collisions,” Adv. At. Mol. Opt. Phys. 36, pp. 183–219.CrossRefGoogle Scholar
2000, “Electron-molecule collisions in low-temperature plasmas: the role of theory,” Adv. At. Mol. Opt. Phys. 43, pp. 111–145.CrossRef
Witase, O., Dutuit, O., Jilensten, J., et al. 2002, “Prediction of a CO2+2 layer in the atmopshere of Mars,” Geophys. Res. Lett. 29, pp. 104-1–4.Google Scholar
Witase, O., Dutuit, O., Jilensten, J., et al. 2003, “Correction to ‘Prediction of a CO2+2 layer in the atmosphere of Mars’,” Geophys. Res. Lett. 30, p. 12-1.Google Scholar
Wolf, A., Lammich, L., & Schmelcher, (eds) 2005, “Sixth International conference on Dissociative Recombination: Theory, Experiments and Applications (DR2004),” J. Phys.: Conf. Ser. 4, pp. 1–299.Google Scholar
Wolf, A., Kreckel, H., Lammich, L., et al. 2006, “Effects of molecular rotation in low-energy electron collisions of H3+,” Phil. Trans. R. Soc. A 364, pp. 2981–2997.CrossRefGoogle ScholarPubMed
Wolf, A., Lammich, L., Strasser, D., et al. 2004, “Storage ring experiments with cold molecular ions: the H3+ puzzle,” Phys. Scripta T110, pp. 193–199.CrossRefGoogle Scholar
Woods, R. C., Dixon, T. A., Saykally, R. J., & Szanto, P. G. 1975, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, pp. 1269–1271.CrossRefGoogle Scholar
Wooten, A., Boulanger, F., Bogey, M., et al. 1986, “A search for interstellar H3O+,” Astron. Astrophys. 166, pp. L15–L18.Google Scholar
Yamasaki, K., Okada, S., Koshi, M., & Matsui, H. 1991, “Selective product channels in the reaction NH(a1Δ) and NH(X3Σ−) with NO,” J. Chem. Phys. 95, pp. 5087–5096.CrossRefGoogle Scholar
Yee, J.-H., & Killeen, T. L. 1986, “Thermospheric production of O (1S) by dissociative recombination of vibrationally excited O2+,” Planet. Space Sci. 34, pp. 1101–1107.CrossRefGoogle Scholar
Yee, J.-H., Abeu, V. J., & Colwell, W. B. 1989, “Aeronomical determination of the quantum yields of O (1S) and O (1D) from dissociative recombination of O2+,” in Dissociative Recombination: Theory, Experiment and Applications, eds. Mitchell, J. B. A., & Guberman, S. L., Singapore: World Scientific, pp. 286–302.CrossRefGoogle Scholar
Young, R. A., & St. John, G. 1966, “Recombination coefficient of NO+ with e,” Phys. Rev. 152, pp. 25–28.CrossRefGoogle Scholar
Yousif, F. B., & Mitchell, J. B. A. 1988, “The dissociative recombination of HeH+,” Bull. Am. Phys. Soc. Ser. 2 33, p. 1010.Google Scholar
1989, “Recombination and excitation of HeH+,” Phys. Rev. A 40, pp. 4318–4321.CrossRef
1995, “Electron-impact dissociative excitation of H2+: low energy studies,” Z. Physik D 34, pp. 195–197.CrossRef
Yousif, F. B., Rogelstadt, M., & Mitchell, J. B. A. 1995, “Rydberg state formation in H3+ formation,” in Atomic and Molecular Physics: 4th US/Mexico Symposium, eds. Alvarez, I., Cisneros, C., & Morgan, T. J., Singapore: World Scientific, pp. 343–351.CrossRefGoogle Scholar
Yousif, F. B., Donk, P., & Mitchell, J. B. A. 1993, “Ion-pair formation in the dissociative recombination of H3+,” J. Phys. B 26, pp. 4249–4255.CrossRefGoogle Scholar
Yousif, F. B., Mitchell, J. B. A., Rogelstadt, M., Padellec, A., Canosa, A., & Chibisov, M. I. 1994, “Dissociative recombination of HeH+: A reexamination,” Phys. Rev. A 49, pp. 4610–4615.CrossRefGoogle ScholarPubMed
Yousif, F. B., Donk, P. J. T., Orakzai, M., & Mitchell, J. B. A. 1991, “Dissociative excitation and recombination of H3+,” Phys. Rev. A 44, pp. 5653–5658.CrossRefGoogle ScholarPubMed
Zajfman, D., Heber, O., & Strasser, D. 2003, “Time resolved cameras,” in Imaging in Molecular Dynamics, ed. Whitaker, B., Cambridge: Cambridge University Press, pp. 122–137.CrossRefGoogle Scholar
Zajfman, D., Schwalm, D., & Wolf, A. 2003, “Molecular physics in storage rings: From laboratory to space,” Hyperfine Interact. 146/147, pp. 265–268.CrossRefGoogle Scholar
Zajfman, D., Amitay, Z., Broude, C., et al. 1995, “Measurement of branching ratios for the dissociative recombination of cold HD+ using fragment imaging,” Phys. Rev. Lett. 75, pp. 814–817.CrossRefGoogle ScholarPubMed
Zajfman, D., Amitay, Z., Lange, M., et al. 1997, “Curve crossing and branching ratios in the dissociative recombination of HD+,” Phys. Rev. Lett. 79, pp. 1829–1832.CrossRefGoogle Scholar
Zajfman, D., Graber, T., Kanter, E. P., et al. 1991, “Measurement of the distribution of bond angles in H2O+,” J. Chem. Phys. 94, pp. 2543–2547.CrossRefGoogle Scholar
Zajfman, D., Mitchell, J. B. A., Schwalm, D., & Rowe, B. R. (eds.) 1996, Dissociative Recombination: Theory, Experiment, and Applications III, Singapore: World Scientific.CrossRefGoogle Scholar
Zajfman, D., Strasser, D., Lammich, L., et al. 2003, “Breakup dynamics in H3+ and D3+ dissociative recombination,” in Dissociative Recombination of Molecular Ions with Electrons, ed. Guberman, S. L., New York: Kluwer/Plenum Publishers, pp. 265–274.CrossRefGoogle Scholar
Zajfman, D., Wolf, A., Schwalm, D., et al. 2005, “Physics with colder molecular ions: The Heidelberg cryogenic storage ring CSR,” J. Phys.: Conf. Ser. 4, pp. 296–299.Google Scholar
Zhang, J. Z. H., & Miller, W. H. 1987, “New method for quantum reactive scattering, with applications to the 3-D H+H2 reaction,” Chem. Phys. Lett. 140, pp. 329–337.CrossRefGoogle Scholar
Zhaunerchyk, V., Ehlerding, A., Geppert, W. D., et al. 2004, “Dissociative recombination study of Na+ (D2O) in a storage ring,” J. Chem. Phys. 121, pp. 10483–10488.CrossRefGoogle Scholar
Zhaunerchyk, V., Geppert, W. D., Larsson, M., et al. 2007, “Three-body breakup in dissociative recombination of the covalent triatomic molecular ion O3+,” Phys. Rev. Lett. 98, pp. 223201-1–4.
Zhaunerchyk, V., Hellberg, F., Ehlerding, A., et al. 2005, “Dissociative recombination study of PD2+ at CRYRING: absolute cross-section, chemical branching ratios and three-body fragmentation dynamics,” Mol. Phys. 103, pp. 2735–2745.CrossRefGoogle Scholar
Zhdanov, V. P. 1980, “Dissociative recombination of e–H2+collisions,” J. Phys. B 13, pp. L311–L313.CrossRefGoogle Scholar
Zhdanov, V. P., & Chibisov, M. I. 1978, “Dissociative recombination of electrons with molecular hydrogen (+1) and molecular deuterium (+1) ions with the formation of highly excited atoms,” Zh. Eksp. Teor. Fiz. 74, pp. 75–85.Google Scholar
Zipf, E. C. 1970, “The dissociative recombination of O2+ ions into specifically identified final atomic states,” Bull. Amer. Phys. Soc. 15, p. 418.Google Scholar
1978, “N (2P) and N (2D) atoms: their production by e-impact dissociation of N2 and destruction by associative ionization,” Eos Trans AGU 59, p. 336.
1979, “The OI (1S) state: Its quenching by O2 and formation by the dissociative recombination of vibrationally excited O2+ ions,” Geophys. Res. Lett. 6, pp. 881–884.CrossRef
1980a, “The dissociative recombination of vibrationally excited N2+ ions,” Geophys. Res. Lett. 7, pp. 645–648.CrossRef
1980b, “A laboratory study of the dissociative recombination of vibrationally excited O2+ ions,” J. Geophys. Res. A 85, pp. 4232–4236.CrossRef
1984, “Dissociation of molecules by electron impact,” in Electron-Molecule Interactions and Their Applications, Vol. 1, ed. Christophorou, L. G., New York: Academic Press, pp. 335–401.Google Scholar
1988, “The excitation of the O (1S) state by dissociative recombination of O2+ ions: electron temperature dependence,” Planet. Space Sci. 36, pp. 621–628.
Ziurys, L. M., & Turner, B. E. 1986, “HCNH+: A new interstellar molecular ion,” Astrophys. J. Lett. 302, pp. L31–L36 (1986).CrossRefGoogle ScholarPubMed
Zong, W., Dunn, G. H., Djurić, N., et al. 1999, “Resonant ion pair formation in electron collisions with ground state molecular ions,” Phys. Rev. Lett. 83, pp. 951–954.CrossRefGoogle Scholar
Zubarev, R. A. 2003, “Reactions of polypeptide ions with electrons in the gas phase,” Mass Spectrom. Rev. 22, pp. 57–77.CrossRefGoogle ScholarPubMed
Zubarev, R. A., Kelleher, N. L., & McLafferty, F. W. 1998, “Electron capture dissociation of multiply charged protein cations. A nonergodic process,” J. Am. Chem. Soc. 120, pp. 3265–3266.CrossRefGoogle Scholar
Zubarev, R. A., Haselman, K. F., Budnik, B., Kjeldsen, F., & Jensen, F. 2002, “Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas,” Eur. J. Mass Spectrom. 8, pp. 337–349.CrossRefGoogle Scholar
Zubarev, R. A., Kruger, N. A., Fridriksson, E. K., et al. 1999, “Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity,” J. Am. Chem. Soc. 121, pp. 2857–2862.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mats Larsson, Stockholms Universitet, Ann E. Orel, University of California, Davis
  • Book: Dissociative Recombination of Molecular Ions
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535406.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mats Larsson, Stockholms Universitet, Ann E. Orel, University of California, Davis
  • Book: Dissociative Recombination of Molecular Ions
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535406.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mats Larsson, Stockholms Universitet, Ann E. Orel, University of California, Davis
  • Book: Dissociative Recombination of Molecular Ions
  • Online publication: 03 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535406.012
Available formats
×