Published online by Cambridge University Press: 05 June 2012
Principles
The storage requirements of samples of data depend on their number of possible values, called alphabet size. Real-valued data theoretically require an unlimited number of bits per sample to store with perfect precision, because their alphabet size is infinite. However, there is some level of noise in every practical measurement of continuous quantities, which means that only some digits in the measured value have actual physical sense. Therefore, they are stored with imperfect, but usually adequate precision using 32 or 64 bits. Only integer-valued data samples can be stored with perfect precision when they have a finite alphabet, as is the case for image data. Therefore, we limit our considerations here to integer data.
Natural representation of integers in a dataset requires a number of bits per sample no less than the base 2 logarithm of the number of possible integer values. For example, the usual monochrome image has integer values from 0 to 255, so we use 8 bits to store every sample. Suppose, however, that we can find a group of samples whose values do not exceed 15. Then every sample in that group needs at most 4 bits to specify its value, which is a saving of at least 4 bits per sample. We of course need location information for the samples in the group. If the location information in bits is less than four times the number of such samples, then we have achieved compression.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.