Published online by Cambridge University Press: 05 December 2015
Multi-tier, heterogeneous networks (HetNets) using small cells (e.g., pico and femto cells) are an important part of operators’ strategy to add low-cost network capacity through aggressive reuse of the cellular spectrum. In the near term, a number of operators have also relied on un-licensed WiFi networks as a readily available means to offload traffic demand. However, the use of WiFi is expected to remain an integral part of operators’ long-term strategy to address future capacity needs, as licensed spectrum continues to be scarce and expensive. Efficient integration of cellular HetNets with alternate radio access technologies (RATs), such as WiFi, is therefore essential for next-generation networks.
This chapter describes several WiFi-based multi-RAT HetNet deployments and architectures, and evaluates the associated performance benefits. In particular, we consider deployments featuring integrated multi-RAT small cells with co-located WiFi and LTE interfaces, where tighter coordination across the two radio links becomes feasible. Integrated multi-RAT small cells are an emerging industry trend toward leveraging common infrastructure and lowering deployment costs when the footprints of WiFi and cellular networks overlap. Several techniques for cross-RAT coordination and radio resource management are reviewed and system performance results showing significant capacity and quality service gains are presented.
Introduction
Multi-tier HetNets based on small cells (e.g. pico cells, femto cells, relay cells, WiFi APs, etc.) are considered to be a fundamental technology for cellular operators to address capacity and coverage demands of future 5G networks. Typical HetNet deployment architectures comprise an overlay of a macro cell network with additional tiers of densely deployed cells with smaller footprints, such as picos, femtos, relay nodes, WiFi access points, etc. Figure 2.1 illustrates the various deployment options in a multi-radio HetNet.
HetNets allow for greater flexibility in adapting the network infrastructure according to the capacity, coverage, and cost needs of a given deployment. As shown, the macro base station tier may be used for providing wide area coverage and seamless mobility, across large geographic areas, while smaller inexpensive low-powered small cells may be deployed, as needed, to improve coverage by moving infrastructure closer to the clients (such as for indoor deployments), as well as to add capacity in areas with higher traffic demand. Conceptually, mobile clients with direct client-to-client communication may also be considered as one of the tiers within this hierarchical deployment, wherein the clients can cooperate with other clients to locally improve access in an inexpensive manner.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.