Published online by Cambridge University Press: 05 December 2011
Introduction
The currently standard philosophical conception of existence makes a connection between three things: certain ways of talking about existence and being in natural language; certain natural language idioms of quantification; and the formal representation of these in logical languages. Thus a claim like ‘Prime numbers exist’ is treated as equivalent to ‘There is at least one prime number’ and this is in turn equivalent to ‘Some thing is a prime number.’ The verb ‘exist’, the verb phrase ‘there is’, and the quantifier ‘some’ are treated as all playing similar roles, and these roles are made explicit in the standard common formalization of all three sentences by a single formula of first-order logic: ‘(∃x)[P(x) & N(x)]’, where ‘P(x)’ abbreviates ‘x is prime’ and ‘N(x)’ abbreviates ‘x is a number’. The logical quantifier ‘∃’ accordingly symbolizes in context the role played by the English words ‘exists’, ‘some’, and ‘there is.’
This view about how to represent or regiment these kinds of sentences will be familiar to philosophers; so familiar, in fact, that for many it will be taken as an established result. I think it should not be taken in this way, and my aim in this paper is to disentangle a number of different claims contained in this standard view, and to dispute some of them.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.