Published online by Cambridge University Press: 05 August 2012
Our large-scale classical view of Nature assumes we can know the current state of things that can be used as an initial condition together with the laws of motion to predict future states (Chapter 2). Newton, Gauss, and others invented procedures for finding the orbits of planets given a few observations of their actual positions in the sky. Since Schrödinger’s equation is a law of motion for the wave function, we might attempt similar applications in quantum theory. But how can we know the current wave function of a system? All we can know empirically of Nature, in the quantum view, is whether a detector clicks. This limitation leads to major differences in strategy for using quantum vs. classical mechanics. Keep in mind that the future of one individual atom out of the trillions of trillions in human-sized matter is rarely significant even when the concept of “individual atom” makes sense. By contrast, predicting the future path of a particular near-Earth asteroid may be urgently important. Quantum mechanics is useful despite its ambiguities because we require very different information in the macroscopic and microscopic regimes.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.