BACKGROUND AND CLASSICAL CRYPTOSYSTEMS
It might seem strange that a chapter on cryptography appears in a book dealing with the theory of computation, automata, and formal languages. However, in the last two chapters of this book we want to discuss some recent trends. Undoubtedly, cryptography now constitutes such a major field that it cannot be omitted, especially because its interconnections with some other areas discussed in this book are rather obvious. Basically, cryptography can be viewed as a part of formal language theory, although it must be admitted that the notions and results of traditional language theory have so far found only few applications in cryptography. Complexity theory, on the other hand, is quite essential in cryptography. For instance, a cryptosystem can be viewed as safe if the problem of cryptanalysis—that is, the problem of “breaking the code”—is intractable. In particular, the complexity of certain number-theoretic problems has turned out to be a very crucial issue in modern cryptography. And more generally, the seminal idea of modern cryptography, public key cryptosystems, would not have been possible without an understanding of the complexity of problems. On the other hand, cryptography has contributed many fruitful notions and ideas to the development of complexity theory.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.