Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-qdpjg Total loading time: 0 Render date: 2025-02-15T23:09:14.418Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 February 2025

Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AARP Foundation. (2003). Off the Hook: Reducing Participation in Telemarketing Fraud. Conducted for the United States Department of Justice, Office of Justice Programs. https://assets.aarp.org/rgcenter/consume/d17812_fraud.pdf.Google Scholar
Ackley, S. F., Zimmerman, S. C., Brenowitz, W. D., et al. (2021). Effect of reductions in amyloid levels on cognitive change in randomized trials: Instrumental variable meta-analysis. British Medical Journal (Clinical research ed.), 372, n156. https://doi.org/10.1136/bmj.n156.Google ScholarPubMed
Adams, J. N., Kim, S., Rizvi, B., et al. (2022). Entorhinal–hippocampal circuit integrity is related to mnemonic discrimination and amyloid-b pathology in older adults. Journal of Neuroscience, 42(46), 87428753. https://doi.org/10.1523/JNEUROSCI.1165-22.2022.CrossRefGoogle Scholar
Addis, D. R., Giovanello, K. S., Vu, M.-A., & Schacter, D. L. (2014). Age-related changes in prefrontal and hippocampal contributions to relational encoding. NeuroImage, 84, 1926.CrossRefGoogle ScholarPubMed
Addis, D. R., Leclerc, C. M., Muscatell, K. A., & Kensinger, E. A. (2010). There are age-related changes in neural connectivity during the encoding of positive, but not negative, information. Cortex, 46(4), 425433. https://doi.org/10.1016/j.cortex.2009.04.011.CrossRefGoogle Scholar
Addis, D. R., Roberts, R. P., & Schacter, D. L. (2011). Age-related neural changes in autobiographical remembering and imagining. Neuropsychologia, 49(13), 36563669. https://doi.org/10.1016/j.neuropsychologia.2011.09.021.CrossRefGoogle ScholarPubMed
Adenzato, M., Cavallo, M., & Enrici, I. (2010). Theory of mind ability in the behavioural variant of frontotemporal dementia: An analysis of the neural, cognitive, and social levels. Neuropsychologia, 48(1), 212.CrossRefGoogle ScholarPubMed
Aizenstein, H. J., Butters, M. A., Clark, K. A., et al. (2006). Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Neurobiology of Aging, 27(5), 741751.CrossRefGoogle ScholarPubMed
Aizenstein, H. J., Butters, M. A., Wu, M., et al. (2009). Altered functioning of the executive control circuit in late-life depression: Episodic and persistent phenomena. American Journal of Geriatric Psychiatry, 17(1), 3042.CrossRefGoogle ScholarPubMed
Albert, K., Hiscox, J., Boyd, B., Dumas, J., Taylor, W., & Newhouse, P. (2017). Estrogen enhances hippocampal gray-matter volume in young and older postmenopausal women: A prospective dose-response study. Neurobiology of Aging, 56, 16. https://doi.org/10.1016/j.neurobiolaging.2017.03.033.CrossRefGoogle Scholar
Albert, M. S., DeKosky, S. T., Dickson, D., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279.CrossRefGoogle ScholarPubMed
Allard, E. S., & Kensinger, E. A. (2014a). Age-related differences in functional connectivity during cognitive emotion regulation. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 69(6), 852860. https://doi.org/10.1093/geronb/gbu108.CrossRefGoogle ScholarPubMed
Allard, E. S., & Kensinger, E. A. (2014b). Age-related differences in neural recruitment during the use of cognitive reappraisal and selective attention as emotion regulation strategies. Frontiers in Psychology, 5, Article 296. https://doi.org/10.3389/fpsyg.2014.00296.CrossRefGoogle ScholarPubMed
Almela, M., Hidalgo, V., van der Meij, L., Pulopulos, M. M., Villada, C., & Salvador, A. (2014). A low cortisol response to acute stress is related to worse basal memory performance in older people. Frontiers in Aging Neuroscience, 6, Article 157. https://doi.org/10.3389/fnagi.2014.00157.CrossRefGoogle ScholarPubMed
Alzheimer’s Association (2023). 2023 Alzheimer’s disease facts and figures. www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf.Google Scholar
Alzheimer’s Disease International (2024). Dementia statistics. www.alzint.org/about/dementia-facts-figures/dementia-statistics/.Google Scholar
Anderson, J. A. E., Grundy, J. G., Grady, C. L., Craik, F. I. M., & Bialystok, E. (2021). Bilingualism contributes to reserve and working memory efficiency: Evidence from structural and functional neuroimaging. Neuropsychologia, 163, 108071. https://doi.org/10.1016/j.neuropsychologia.2021.108071.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924935.CrossRefGoogle ScholarPubMed
Angel, L., Bastin, C., Genon, S., et al. (2013). Differential effects of aging on the neural correlates of recollection and familiarity. Cortex, 49(6), 15851597.CrossRefGoogle ScholarPubMed
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97101.CrossRefGoogle ScholarPubMed
Antoine, N., Bahri, M. A., Bastin, C., et al. (2019). Anosognosia and default mode subnetwork dysfunction in Alzheimer’s disease. Human Brain Mapping, 40(18), 53305340. https://doi.org/10.1002/hbm.24775.CrossRefGoogle ScholarPubMed
Arias, E., Tejada-Vera, B., Kochanek, K. D., & Ahmad, F. B. (2022, August). Provisional life expectancy estimates for 2021. Vital Statistics Rapid Release; no 23. Hyattsville, MD: National Center for Health Statistics. https://dx.doi.org/10.15620/cdc:118999.CrossRefGoogle Scholar
Association for Frontotemporal Degeneration. (2017). Disease overview. www.theaftd.org/what-is-ftd/disease-overview/.Google Scholar
Au, J., Smith-Peirce, R. N., Carbone, E., et al. (2022). Effects of multisession prefrontal transcranial direct current stimulation on long-term memory and working memory in older adults. Journal of Cognitive Neuroscience, 34(6), 10151037. https://doi.org/10.1162/jocn_a_01839.CrossRefGoogle ScholarPubMed
Backman, L., Karlsson, S., Fischer, H., et al. (2011). Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiology of Aging, 32(10), 18491856. https://doi.org/10.1016/j.neurobiolaging.2009.10.018.CrossRefGoogle ScholarPubMed
Backman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670677. https://doi.org/10.1016/j.neubiorev.2009.12.008.CrossRefGoogle ScholarPubMed
Backman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791807. https://doi.org/10.1016/j.neubiorev.2006.06.005.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Science, 4(11), 417423.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829839.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. A. (Ed.), Recent Advances in Learning and Motivation (vol. VIII, pp. 4789). New York: Academic Press. http://dx.doi.org/10.1016/s0079-7421(08)60452-1.Google Scholar
Bailey, P. E., & Leon, T. (2019). A systematic review and meta-analysis of age-related differences in trust. Psychology and Aging, 34(5), 674685. https://doi.org/10.1037/pag0000368.CrossRefGoogle ScholarPubMed
Bailey, P. E., Ruffman, T., & Rendell, P. G. (2013). Age-related differences in social economic decision making: The ultimatum game. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 68(3), 356363. https://doi.org/10.1093/geronb/gbs073.CrossRefGoogle ScholarPubMed
Ball, K., Berch, D. B., Helmers, K. F., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 288(18), 22712281. https://doi.org/10.1001/jama.288.18.2271.CrossRefGoogle ScholarPubMed
Balota, D. A., Tse, C. S., Hutchison, K. A., Spieler, D. H., Duchek, J. M., & Morris, J. C. (2010). Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in Stroop color naming. Psychology and Aging, 25(1), 208218.CrossRefGoogle Scholar
Baltes, P. B. (1993). The aging mind: Potential and limits. Gerontologist, 33(5), 580594.CrossRefGoogle ScholarPubMed
Baltes, P. B. (1997). On the incomplete architecture of human ontogeny: Selection, optimization, and compensation as foundation of developmental theory. American Psychologist, 52(4), 366380.CrossRefGoogle ScholarPubMed
Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging: the mode of selective optimization with compensation. In Baltes, P. B. & Baltes, M. M. (Eds.), Successful Aging: Perspectives from the Behavioral Sciences (pp. 134). New York: Cambridge University Press.CrossRefGoogle Scholar
Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12(1), 1221.CrossRefGoogle Scholar
Barber, S. J. (2017). An examination of age-based stereotype threat about cognitive decline. Perspectives on Psychological Science, 12(1), 6290. https://doi.org/10.1177/1745691616656345.CrossRefGoogle ScholarPubMed
Baron, S. G., Gobbini, M. I., Engell, A. D., & Todorov, A. (2011). Amygdala and dorsomedial prefrontal cortex responses to appearance-based and behavior-based person impressions. Social Cognitive and Affective Neuroscience, 6(5), 572581. https://doi.org/10.1093/scan/nsq086.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 38(7), 813822. https://doi.org/10.1111/j.1469-7610.1997.tb01599.x.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 241251. https://doi.org/10.1017/s0021963001006643.CrossRefGoogle ScholarPubMed
Barter, J. D., & Foster, T. C. (2018). Aging in the brain: New roles of epigenetics in cognitive decline. The Neuroscientist, 24(5), 516525. https://doi.org/10.1177/1073858418780971.CrossRefGoogle ScholarPubMed
Beadle, J. N., Sheehan, A. H., Dahlben, B., & Gutchess, A. H. (2015). Aging, empathy, and prosociality. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 70(2), 213222. https://doi.org/10.1093/geronb/gbt091.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 715.CrossRefGoogle ScholarPubMed
Beckes, L., Coan, J. A., & Hasselmo, K. (2013). Familiarity promotes the blurring of self and other in the neural representation of threat. Social Cognitive and Affective Neuroscience, 8(6), 670677. https://doi.org/10.1093/scan/nss046.CrossRefGoogle ScholarPubMed
Belleville, S., Mellah, S., Boller, B., & Ouellet, É. (2023). Activation changes induced by cognitive training are consistent with improved cognitive reserve in older adults with subjective cognitive decline. Neurobiology of Aging, 121, 107118. https://doi.org/10.1016/j.neurobiolaging.2022.10.010.CrossRefGoogle ScholarPubMed
Benedict, C., Brooks, S. J., Kullberg, J., et al. (2013). Association between physical activity and brain health in older adults. Neurobiology of Aging, 34(1), 8390.CrossRefGoogle Scholar
Bennett, D. A., Wilson, R. S., Schneider, J. A., et al. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60(12), 19091915.CrossRefGoogle ScholarPubMed
Bennett, I. J., & Rypma, B. (2013). Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults. Neuroscience and Biobehavioral Reviews, 37(7), 12011210. https://doi.org/10.1016/j.neubiorev.2013.04.008.CrossRefGoogle ScholarPubMed
Bergerbest, D., Gabrieli, J., Whitfield-Gabrieli, S., et al. (2009). Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. NeuroImage, 45(1), 237246.CrossRefGoogle ScholarPubMed
Berry, A. S., Shah, V. D., Baker, S. L., et al. (2016). Aging affects dopaminergic neural mechanisms of cognitive flexibility. Journal of Neuroscience, 36(50), 1255912569. https://doi.org/10.1523/jneurosci.0626-16.2016.CrossRefGoogle ScholarPubMed
Bialystok, E. (2021). Bilingualism: Pathway to cognitive reserve. Trends in Cognitive Sciences, 25(5), 355-364. https://doi.org/10.1016/j.tics.2021.02.003CrossRefGoogle ScholarPubMed
Boduroğlu, A., Yoon, C., Luo, T., & Park, D. C. (2006). Age-related stereotypes: A comparison of American and Chinese cultures. Gerontology, 52(5), 324333. https://doi.org/10.1159/000094614.CrossRefGoogle ScholarPubMed
Boggio, P. S., Ferrucci, R., Mameli, F., et al. (2012). Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimulation, 5(3), 223230. https://doi.org/10.1016/j.brs.2011.06.006.CrossRefGoogle ScholarPubMed
Bollinger, J., Rubens, M. T., Masangkay, E., Kalkstein, J., & Gazzaley, A. (2011). An expectation-based memory deficit in aging. Neuropsychologia, 49(6), 14661475.CrossRefGoogle ScholarPubMed
Bolton, C. J., Khan, O. A., Moore, E. E., et al. (2023). Baseline grey matter volumes and white matter hyperintensities predict decline in functional activities in older adults over a 5-year follow-up period. NeuroImage. Clinical, 38, 103393. https://doi.org/10.1016/j.nicl.2023.103393.CrossRefGoogle Scholar
Bookheimer, S., & Burggren, A. (2009). APOE-4 genotype and neurophysiological vulnerability to Alzheimer’s and cognitive aging. Annual Review of Clinical Psychology, 5, 343362. https://doi.org/10.1146/annurev.clinpsy.032408.153625.CrossRefGoogle ScholarPubMed
Bookheimer, S. Y., Salat, D. H., Terpstra, M., et al. (2019). The lifespan Human Connectome Project in aging: An overview. NeuroImage, 185, 335348. https://doi.org/10.1016/j.neuroimage.2018.10.009.CrossRefGoogle ScholarPubMed
Bowman, C. R., Chamberlain, J. D., & Dennis, N. A. (2019). Sensory representations supporting memory specificity: Age effects on behavioral and neural discriminability. Journal of Neuroscience, 39(12), 22652275. https://doi.org/10.1523/JNEUROSCI.2022-18.2019.CrossRefGoogle ScholarPubMed
Boshyan, J., Zebrowitz, L. A., Franklin, R. G., McCormick, C. M., & Carre, J. M. (2014). Age similarities in recognizing threat from faces and diagnostic cues. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 69(5), 710718. https://doi.org/10.1093/geronb/gbt054.CrossRefGoogle ScholarPubMed
Bowen, H. J., Kark, S. M., & Kensinger, E. A. (2017). NEVER forget: negative emotional valence enhances recapitulation. Psychonomic Bulletin and Review. https://doi.org/10.3758/s13423-017-1313-9.CrossRefGoogle Scholar
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239259.CrossRefGoogle ScholarPubMed
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology and Experimental Neurology, 70(11), 960969. https://doi.org/10.1097/NEN.0b013e318232a379.CrossRefGoogle ScholarPubMed
Brandt, M., De Oliveira Silva, F., Simões Neto, J. P., et al. (2024). Facial expression recognition of emotional situations in mild and moderate Alzheimer’s disease. Journal of Geriatric Psychiatry and Neurology, 37(1), 7383. https://doi.org/10.1177/08919887231175432.CrossRefGoogle ScholarPubMed
Brassen, S., Gamer, M., Peters, J., Gluth, S., & Buchel, C. (2012). Don’t look back in anger! Responsiveness to missed chances in successful and nonsuccessful aging. Science, 336(6081), 612614. https://doi.org/10.1126/science.1217516.CrossRefGoogle Scholar
Braver, T. S., Krug, M. K., Chiew, K. S., et al. (2014). Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective, and Behavioral Neuroscience, 14(2), 443472. https://doi.org/10.3758/s13415-014-0300-0.CrossRefGoogle ScholarPubMed
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 73517356. https://doi.org/10.1073/pnas.0808187106.CrossRefGoogle ScholarPubMed
Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Bäckman, L. (2011). Neural correlates of training-related working-memory gains in old age. NeuroImage, 58(4), 11101120.CrossRefGoogle ScholarPubMed
Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195208.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Buckner, R. L., Sepulcre, J., Talukdar, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 18601873. https://doi.org/10.1523/jneurosci.5062-08.2009.CrossRefGoogle ScholarPubMed
Buckner, R. L., Snyder, A. Z., Shannon, B. J., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25(34), 77097717. https://doi.org/10.1523/jneurosci.2177-05.2005.CrossRefGoogle ScholarPubMed
Bucur, M., & Papagno, C. (2023). Deep brain stimulation in Parkinson disease: A meta-analysis of the long-term neuropsychological outcomes. Neuropsychology Review, 33, 307346. https://doi.org/10.1007/s11065-022-09540-9CrossRefGoogle ScholarPubMed
Budson, A. E., & O’Connor, M. K. (2021). Six Steps to Managing Alzheimer’s Disease and Dementia: A Guide for Families. New York: Oxford University Press.CrossRefGoogle Scholar
Bugg, J. M. (2014). Evidence for the sparing of reactive cognitive control with age. Psychology and aging, 29(1), 115127. https://doi.org/10.1037/a0035270.CrossRefGoogle ScholarPubMed
Burke, S. & Barnes, C. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience, 7, 3040. https://doi.org/10.1038/nrn1809.CrossRefGoogle ScholarPubMed
Busche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nature Neuroscience, 23, 11831193. https://doi.org/10.1038/s41593-020-0687-6.CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85100.CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 13941402. https://doi.org/10.1006/nimg.2002.1280.CrossRefGoogle ScholarPubMed
Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging: Deterioration and compensation. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of Frontal Lobe Function (2nd ed., pp. 628652). New York: Oxford University Press.Google Scholar
Cabeza, R., Grady, C. L., Nyberg, L., et al. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17(1), 391400.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Bechara, A., Tranel, D., & Hawkley, L. C. (2011). Could an aging brain contribute to subjective well-being? The value added by a social neuroscience perspective. In Todorov, A., Fiske, S. T., & Prentice, D. A. (Eds.), Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind (pp. 249262). Oxford Series in Social Cognition and Social Neuroscience. New York: Oxford University Press.CrossRefGoogle Scholar
Cacioppo, J. T., Hawkley, L. C., Kalil, A., Hughes, M. E., Waite, L., & Thisted, R. A. (2008). Happiness and the invisible threads of social connection: The Chicago Health, Aging, and Social Relations Study. In Eid, M. & Larsen, R. J. (Eds.), The Science of Subjective Well-Being (pp. 195219). New York: Guilford Press.Google Scholar
Cacioppo, J. T., Hawkley, L. C., & Thisted, R. A. (2010). Perceived social isolation makes me sad: 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychology and Aging, 25(2), 453463.CrossRefGoogle Scholar
Camos, V., Johnson, M., Loaiza, V., Portrat, S., Souza, A., & Vergauwe, E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424(1), 1932. https://doi.org/10.1111/nyas.13616.CrossRefGoogle ScholarPubMed
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223.CrossRefGoogle ScholarPubMed
Campbell, K. L., Grigg, O., Saverino, C., Churchill, N., & Grady, C. L. (2013). Age differences in the intrinsic functional connectivity of default network subsystems. Frontiers in Aging Neuroscience, 5(73). https://doi.org/10.3389/fnagi.2013.00073.CrossRefGoogle ScholarPubMed
Canipe, L. G., III, Sioda, M., & Cheatham, C. L. (2021). Diversity of the gut-microbiome related to cognitive behavioral outcomes in healthy older adults. Archives of Gerontology and Geriatrics, 96, 104464. https://doi.org/10.1016/j.archger.2021.104464.CrossRefGoogle ScholarPubMed
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefrontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462473. https://doi.org/10.1016/j.cortex.2009.11.009.CrossRefGoogle ScholarPubMed
Carmichael, O., Schwarz, C., Drucker, D., et al. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 13701378. https://doi.org/10.1001/archneurol.2010.284.CrossRefGoogle Scholar
Carp, J., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in the neural representation of working memory revealed by multi-voxel pattern analysis. Frontiers in Human Neuroscience, 4, 217.CrossRefGoogle ScholarPubMed
Carp, J., Park, J., Hebrank, A., Park, D. C., & Polk, T. A. (2011). Age-related neural dedifferentiation in the motor system. PLoS One, 6(12), e29411. https://doi.org/10.1371/journal.pone.0029411.CrossRefGoogle ScholarPubMed
Carp, J., Park, J., Polk, T. A., & Park, D. C. (2011). Age differences in neural distinctiveness revealed by multi-voxel pattern analysis. NeuroImage, 56(2), 736743.CrossRefGoogle ScholarPubMed
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously – a theory of socioemotional selectivity. American Psychologist, 54(3), 165181.CrossRefGoogle ScholarPubMed
Cassady, K., Gagnon, H., Lalwani, P., et al. (2019). Sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance. Neuroimage, 186, 234244.CrossRefGoogle ScholarPubMed
Cassidy, B. S., & Gutchess, A. H. (2012a). Social relevance enhances memory for impressions in older adults. Memory, 20(4), 332345.CrossRefGoogle ScholarPubMed
Cassidy, B. S. & Gutchess, A. H. (2012b). Structural variation within the amygdala and ventromedial prefrontal cortex predicts memory for impressions in older adults. Frontiers in Psychology, 3, Article 319. https://doi.org/10.3389/fpsyg.2012.00319.CrossRefGoogle ScholarPubMed
Cassidy, B. S. & Gutchess, A. H. (2015). Influences of appearance-behavior congruity on memory and social judgments. Memory, 23, 10391055.CrossRefGoogle Scholar
Cassidy, B. S., Hughes, C., & Krendl, A. C. (2021a). Age differences in neural activity related to mentalizing during person perception. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 28(1), 143160. https://doi.org/10.1080/13825585.2020.1718060.CrossRefGoogle ScholarPubMed
Cassidy, B. S., Hughes, C., & Krendl, A. C. (2021b). A stronger relationship between reward responsivity and trustworthiness evaluations emerges in healthy aging. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 28(5), 669686. https://doi.org/10.1080/13825585.2020.1809630.CrossRefGoogle ScholarPubMed
Cassidy, B. S., Leshikar, E. D., Shih, J. Y., Aizenman, A., & Gutchess, A. H. (2013). Valence-based age differences in medial prefrontal activity during impression formation. Social Neuroscience, 8(5), 462473. https://doi.org/10.1080/17470919.2013.832373.CrossRefGoogle ScholarPubMed
Cassidy, B. S., Shih, J. Y., & Gutchess, A. H. (2012). Age-related changes to the neural correlates of social evaluation. Social Neuroscience, 7(6), 552564. https://doi.org/10.1080/17470919.2012.674057.CrossRefGoogle Scholar
Castelli, I., Baglio, F., Blasi, V., et al. (2010). Effects of aging on mindreading ability through the eyes: an fMRI study. Neuropsychologia, 48(9), 25862594.CrossRefGoogle ScholarPubMed
Castle, E., Eisenberger, N. I., Seeman, T. E., et al. (2012). Neural and behavioral bases of age differences in perceptions of trust. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 2084820852. https://doi.org/10.1073/pnas.1218518109.CrossRefGoogle ScholarPubMed
Cespón, J., Chupina, I., & Carreiras, M. (2023). Cognitive reserve counteracts typical neural activity changes related to ageing. Neuropsychologia, 188, 108625. https://doi.org/10.1016/j.neuropsychologia.2023.108625.CrossRefGoogle ScholarPubMed
Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403416.CrossRefGoogle ScholarPubMed
Chamberlain, J. D., Bowman, C. R., & Dennis, N. A. (2022). Age-related differences in encoding-retrieval similarity and their relationship to false memory. Neurobiology of Aging, 113, 1527. https://doi.org/10.1016/j.neurobiolaging.2022.01.011.CrossRefGoogle ScholarPubMed
Chamberlain, J. D., Gagnon, H., Lalwani, P., et al. (2021). GABA levels in ventral visual cortex decline with age and are associated with neural distinctiveness. Neurobiology of Aging, 102, 170177. https://doi.org/10.1016/j.neurobiolaging.2021.02.013.CrossRefGoogle ScholarPubMed
Chan, M. Y., Alhazmi, F. H., Park, D. C., Savalia, N. K., & Wig, G. S. (2017). Resting-state network topology differentiates task signals across the adult life span. Journal of Neuroscience, 37(10), 27342745. https://doi.org/10.1523/jneurosci.2406-16.2017.CrossRefGoogle ScholarPubMed
Chan, M. Y., Han, L., Carreno, C. A., et al. (2021). Long-term prognosis and educational determinants of brain network decline in older adult individuals. Nature Aging, 1, 10531067.CrossRefGoogle ScholarPubMed
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult life span. Proceedings of the National Academy of Sciences of the United States of America, 111(46), E4997E5006.Google Scholar
Charles, S. T., Mather, M., & Carstensen, L. L. (2003). Aging and emotional memory: the forgettable nature of negative images for older adults. Journal of Experimental Psychology: General, 132(2), 310324.https://doi.org/10.1037/0096-3445.132.2.310.CrossRefGoogle ScholarPubMed
Charlton, R. A., Barrick, T. R., Markus, H. S., & Morris, R. G. (2009). Theory of mind associations with other cognitive functions and brain imaging in normal aging. Psychology and Aging, 24(2), 338348. https://doi.org/10.1037/a0015225.CrossRefGoogle ScholarPubMed
Chaudhary, S., Zhornitsky, S., Chao, H. H., Van Dyck, C. H., & Li, C.-S. R. (2022). Emotion processing dysfunction in alzheimer’s disease: An overview of behavioral findings, systems neural correlates, and underlying neural biology. American Journal of Alzheimer’s Disease & Other Dementias, 37, 153331752210828. https://doi.org/10.1177/15333175221082834.CrossRefGoogle ScholarPubMed
Chee, M. W., Chen, K. H., Zheng, H., et al. (2009). Cognitive function and brain structure correlations in healthy elderly East Asians. NeuroImage, 46(1), 257269.CrossRefGoogle ScholarPubMed
Chee, M. W., Goh, J. O., Venkatraman, V., et al. (2006). Age-related changes in object processing and contextual binding revealed using fMR adaptation. Journal of Cognitive Neuroscience, 18(4), 495507. https://doi.org/10.1162/jocn.2006.18.4.495.CrossRefGoogle ScholarPubMed
Chee, M. W., Zheng, H., Goh, J. O., Park, D. C., & Sutton, B. P. (2011). Brain structure in young and old East Asians and Westerners: Comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 23, 10651079.CrossRefGoogle Scholar
Chen, H. F., Sheng, X. N., Yang, Z. Y., et al. (2023). Multi-networks connectivity at baseline predicts the clinical efficacy of left angular gyrus-navigated rTMS in the spectrum of Alzheimer’s disease: A sham-controlled study. CNS Neuroscience & Therapeutics, 29(8), 22672280. https://doi.org/10.1111/cns.14177.CrossRefGoogle ScholarPubMed
Chen, Y. C., Chen, C. C., Decety, J., & Cheng, Y. W. (2014). Aging is associated with changes in the neural circuits underlying empathy. Neurobiology of Aging, 35(4), 827836. https://doi.org/10.1016/j.neurobiolaging.2013.10.080.CrossRefGoogle ScholarPubMed
Chen, Y. T., McDonough, I. M., Faig, K. E., Norman, G. J., & Gallo, D. A. (2022). Impact of stereotype threat on brain activity during memory tasks in older adults. NeuroImage, 260, 119413. https://doi.org/10.1016/j.neuroimage.2022.119413.CrossRefGoogle ScholarPubMed
Chhatwal, J. P., & Sperling, R. A. (2012). Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 31(s3), S155S167.CrossRefGoogle ScholarPubMed
Chiarelli, A. M., Low, K. A., Maclin, E. L., et al. (2019). The optical effective attenuation coefficient as an informative measure of brain health in aging. Photonics, 6(3), 79. https://doi.org/10.3390/photonics6030079.CrossRefGoogle Scholar
Chung, H. K., Tymula, A., & Glimcher, P. (2017). The reduction of ventrolateral prefrontal cortex gray matter volume correlates with loss of economic rationality in aging. Journal of Neuroscience, 37(49), 1206812077. https://doi.org/10.1523/jneurosci.1171-17.2017.CrossRefGoogle ScholarPubMed
Clare, L., Wu, Y. T., Teale, J. C., et al. (2017). Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Medicine 14(3): e1002259. https://doi.org/10.1371/journal.pmed.1002259.CrossRefGoogle ScholarPubMed
Clark, R., Anderson, N. B., Clark, V. R., & Williams, D. R. (1999). Racism as a stressor for African Americans. A biopsychosocial model. The American Psychologist, 54(10), 805816. https://doi.org/10.1037//0003-066x.54.10.805.CrossRefGoogle ScholarPubMed
Clewett, D., Bachman, S., & Mather, M. (2014). Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety. Neuropsychology, 28(4), 631642.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., & Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20(3), 363375.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 33163321.CrossRefGoogle ScholarPubMed
Colton, G., Leshikar, E. D., & Gutchess, A. H. (2013). Age differences in neural response to stereotype threat and resiliency for self-referenced information. Frontiers in Human Neuroscience, 7, 537. https://doi.org/10.3389/fnhum.2013.00537.CrossRefGoogle ScholarPubMed
Combs, H. L., Folley, B. S., Berry, D. T., et al. (2015). Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: A meta-analysis. Neuropsychology Review, 25(4), 439454. https://doi.org/10.1007/s11065-015-9302-0.CrossRefGoogle ScholarPubMed
Costa, P. T., & McCrae, R. R. (1987). Neuroticism, somatic complaints, and disease: Is the bark worse than the bite? Journal of Personality, 55(2), 299316.CrossRefGoogle Scholar
Cotelli, M., Manenti, R., Brambilla, M., et al. (2014). Anodal tDCS during face–name associations memory training in Alzheimer’s patients. Frontiers in Aging Neuroscience, 6, Article 38. https://doi.org/10.3389/fnagi.2014.00038.CrossRefGoogle ScholarPubMed
Coupe, P., Catheline, G., Lanuza, E., & Manjon, J. V. (2017). Towards a unified analysis of brain maturation and aging across the entire life span: a MRI analysis. Human Brain Mapping, 38(11), 55015518. https://doi.org/10.1002/hbm.23743.CrossRefGoogle Scholar
Cox, K. M., Aizenstein, H. J., & Fiez, J. A. (2008). Striatal outcome processing in healthy aging. Cognitive, Affective, and Behavioral Neuroscience, 8(3), 304317.CrossRefGoogle ScholarPubMed
Cox, S. R. & Deary, I. J. (2022). Brain and cognitive ageing: The present, and some predictions (… about the future). Aging Brain, 2, 100032. https://doi.org/10.1016/j.nbas.2022.100032.CrossRefGoogle ScholarPubMed
Cox, S., Ritchie, S., Tucker-Drob, E., et al. (2016). Ageing and brain white matter structure in 3,513 UK Biobank participants. Nature Communications, 7, 13629. https://doi.org/10.1038/ncomms13629.CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F. I. M. & Trehub, S. E. (Eds.), Aging and Cognitive Processes (pp. 191211). New York: Plenum Press.CrossRefGoogle Scholar
Craik, F. I. M., & Jennings, J. M. (1992). Human memory. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The Handbook of Aging and Cognition (pp. 51110). Hillsdale: Lawrence Erlbaum Associates, Inc.Google Scholar
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671684.CrossRefGoogle Scholar
Craik, F. I. M., Moroz, T. M., Moscovitch, M., Stuss, D. T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10(1), 2634.CrossRefGoogle Scholar
Craik, F. I. M., & Rabinowitz, J. C. (1984). Age differences in the acquisition and use of verbal information: a tutorial review. In Bouma, H. & Bouwhuis, D. G. (Eds.), Attention and Performance X: Control of Language Processes (pp. 471499). Hillsdale: Erlbaum.Google Scholar
Craik, F. I. M., & Salthouse, T. A. (2007). The Handbook of Aging and Cognition (3rd ed. ). New York: Psychology Press.Google Scholar
Crestol, A., Rajagopal, S., Lissaman, R., et al. (2023). Menopause status and within group differences in chronological age affect the functional neural correlates of spatial context memory in middle-aged females. Journal of Neuroscience, 43(50), 87568768. https://doi.org/10.1523/JNEUROSCI.0663-23.2023.CrossRefGoogle ScholarPubMed
Cronin-Golomb, A., Gilmore, G. C., Neargarder, S., Morrison, S. R., & Laudate, T. M. (2007). Enhanced stimulus strength improves visual cognition in aging and Alzheimer’s disease. Cortex, 43(7), 952966.CrossRefGoogle ScholarPubMed
Csernansky, J. G., Hamstra, J., Wang, L., et al. (2004). Correlations between antemortem hippocampal volume and postmortem neuropathology in AD subjects. Alzheimer Disease and Associated Disorders, 18(4), 190195.Google ScholarPubMed
Cutchin, M. P. (2003). The process of mediated aging-in-place: A theoretically and empirically based model. Social Science and Medicine, 57(6), 10771090.CrossRefGoogle ScholarPubMed
Daffner, K. R., Haring, A. E., Alperin, B. R., Zhuravleva, T. Y., Mott, K. K., & Holcomb, P. J. (2013). The impact of visual acuity on age-related differences in neural markers of early visual processing. NeuroImage, 67, 127136.CrossRefGoogle ScholarPubMed
Daley, R. T., Bowen, H. J., Fields, E. C., Gutchess, A., & Kensinger, E. A. (2020a). Age differences in ventromedial prefrontal cortex functional connectivity during socioemotional content processing. Social Behavior and Personality: An international journal, 48(7), e9380CrossRefGoogle Scholar
Daley, R. T., Bowen, H. J., Fields, E. C., Parisi, K. R., Gutchess, A., & Kensinger, E. A. (2020b). Neural mechanisms supporting emotional and self-referential information processing and encoding in older and younger adults. Social Cognitive and Affective Neuroscience, 15, 405421. https://doi.org/10.1093/scan/nsaa052.CrossRefGoogle ScholarPubMed
Daley, R. T., & Kensinger, E. A. (2022). Age-related differences in Default Mode Network resting-state functional connectivity but not gray matter volume relate to sacrificial moral decision-making and working memory performance. Neuropsychologia, 177, 108399. https://doi.org/10.1016/j.neuropsychologia.2022.108399.CrossRefGoogle Scholar
Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. NeuroImage, 160, 3240. https://doi.org/10.1016/j.neuroimage.2017.01.077.CrossRefGoogle ScholarPubMed
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16, 17711782.CrossRefGoogle ScholarPubMed
Daselaar, S. M., Veitman, D. J., Rombouts, S. A., Raaijmakers, J. G., & Jonker, C. (2003). Neuroanatomical corelates of episodic encoding and retrieval in young and elderly subjects. Brain, 126, 4356.CrossRefGoogle Scholar
Daselaar, S. M., Veitman, D. J., Rombouts, S. A., Raaijmakers, J. G., & Jonker, C. (2005). Aging affects both perceptual and lexical/semantic components of word stem priming: an event-related fMRI study. Neurobiology of Learning and Memory, 83(3), 251262.CrossRefGoogle ScholarPubMed
Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage, 46(2), 530541.CrossRefGoogle Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior–anterior shift in aging. Cerebral Cortex, 18(5), 12011209.CrossRefGoogle ScholarPubMed
Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cerebral Cortex, 22(1), 232242.CrossRefGoogle ScholarPubMed
Davis, T. M., & Jerger, J. (2014). The effect of middle age on the late positive component of the auditory event-related potential. Journal of the American Academy of Audiology, 25(2), 199209.CrossRefGoogle ScholarPubMed
Davis, T. M., Jerger, J., & Martin, J. (2013). Electrophysiological evidence of augmented interaural asymmetry in middle-aged listeners. Journal of the American Academy of Audiology, 24(3), 159173.CrossRefGoogle ScholarPubMed
Deary, I. J., & Batty, G. D. (2007). Cognitive epidemiology. Journal of Epidemiology and Community Health, 61(5), 378384. https://doi.org/10.1136/jech.2005.039206.CrossRefGoogle ScholarPubMed
Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian Birth Cohort of 1921. Psychological Science, 24(12), 23612368. https://doi.org/10.1177/0956797613486487.CrossRefGoogle ScholarPubMed
Deary, I. J., Yang, J., Davies, G., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482(7384), 212215. www.nature.com/nature/journal/v482/n7384/abs/nature10781.html.CrossRefGoogle ScholarPubMed
Denburg, N. L., Cole, C. A., Hernandez, M., et al. (2007). The orbitofrontal cortex, real-world decision making, and normal aging. Annals of the New York Academy of Sciences, 1121, 480498. https://doi.org/10.1196/annals.1401.031.CrossRefGoogle ScholarPubMed
Dennis, N. A., Bowman, C. R., & Peterson, K. M. (2014). Age-related differences in the neural correlates mediating false recollection. Neurobiology of Aging, 35(2), 395407.CrossRefGoogle ScholarPubMed
Dennis, N. A., & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiology of Aging, 32(12), 2318. e17–2318. e30.CrossRefGoogle ScholarPubMed
Dennis, N. A., Hayes, S. M., Prince, S. E., Madden, D. J., Huettel, S. A., & Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 791808.Google ScholarPubMed
Dennis, N. A., Kim, H., & Cabeza, R. (2007). Effects of aging on true and false memory formation: An fMRI study. Neuropsychologia, 45(14), 31573166. https://doi.org/10.1016/j.neuropsychologia.2007.07.003.CrossRefGoogle ScholarPubMed
Dennis, N. A., Kim, H., & Cabeza, R. (2008). Age-related differences in brain activity during true and false memory retrieval. Journal of Cognitive Neuroscience, 20(8), 13901402.CrossRefGoogle ScholarPubMed
Dennis, N. A., Overman, A. A., Carpenter, C. M., & Gerver, C. R. (2022). Understanding associative false memories in aging using multivariate analyses. Aging, Neuropsychology, and Cognition, 29(3), 500525. https://doi.org/10.1080/13825585.2022.2037500CrossRefGoogle ScholarPubMed
Dennis, N. A., & Turney, I. C. (2018). The influence of perceptual similarity and individual differences on false memories in aging. Neurobiology of Aging, 62, 221230. https://doi.org/10.1016/j.neurobiolaging.2017.10.020.CrossRefGoogle ScholarPubMed
Derksen, B. J., Duff, M. C., Weldon, K., et al. (2015). Older adults catch up to younger adults on a learning and memory task that involves collaborative social interaction. Memory, 23(4), 612624. https://doi.org/10.1080/09658211.2014.915974.CrossRefGoogle ScholarPubMed
Deters, K. D., Napolioni, V., Sperling, R. A., et al. (2021). Amyloid PET imaging in self-identified non-Hispanic Black participants of the Anti-Amyloid in Asymptomatic Alzheimer’s Disease (A4) study. Neurology, 96(11), e1491e1500. https://doi.org/10.1212.CrossRefGoogle ScholarPubMed
De Souza, L. C., Chupin, M., Lamari, F., et al. (2012). CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease. Neurobiology of Aging, 33(7), 12531257.CrossRefGoogle ScholarPubMed
D’Esposito, M., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. NeuroImage, 10(1), 614. https://doi.org/10.1006/nimg.1999.0444.CrossRefGoogle Scholar
Deuschl, G., Schade-Brittinger, C., Krack, P., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine, 355(9), 896908. https://doi.org/10.1056/NEJMoa060281.CrossRefGoogle ScholarPubMed
Diaz, M. T., & Yalcinbas, E. (2021). The neural bases of multimodal sensory integration in older adults. International Journal of Behavioral Development, 45(5), 409417. https://doi.org/10.1177/0165025420979362.CrossRefGoogle ScholarPubMed
Dickerson, B. C., Salat, D. H., Greve, D. N., et al. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65(3), 404411. https://doi.org/10.1212/01.wnl.0000171450.97464.49.CrossRefGoogle ScholarPubMed
Dickerson, B. C., & Sperling, R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: Insights from functional MRI studies. Neuropsychologia, 46(6), 16241635. https://doi.org/10.1016/j.neuropsychologia.2007.11.030.CrossRefGoogle ScholarPubMed
Dinius, C. J., Pocknell, C. E., Caffrey, M. P., & Roche, R. A. P. (2023). Cognitive interventions for memory and psychological well-being in aging and dementias. Frontiers in Psychology, 14, 1070012. https://doi.org/10.3389/fpsyg.2023.1070012.CrossRefGoogle ScholarPubMed
Dintica, C. S., Habes, M., Erus, G., Simone, T., Schreiner, P., & Yaffe, K. (2023). Long-term depressive symptoms and midlife brain age. Journal of Affective Disorders, 320, 436441. https://doi.org/10.1016/j.jad.2022.09.164.CrossRefGoogle ScholarPubMed
Dolcos, S., Katsumi, Y., & Dixon, R. A. (2014). The role of arousal in the spontaneous regulation of emotions in healthy aging: A fMRI investigation. Frontiers in Psychology, 5, Article 681. https://doi.org/10.3389/fpsyg.2014.00681.CrossRefGoogle ScholarPubMed
Donohue, M. C., Sperling, R. A., Petersen, R., Sun, C. K., Weiner, M. W., & Aisen, P. S. (2017). Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. Journal of the American Medical Association, 317(22), 23052316. https://doi.org/10.1001/jama.2017.6669.CrossRefGoogle ScholarPubMed
Donovan, N. J., Okereke, O. I., Vannini, P., et al. (2016). Association of higher cortical amyloid burden with loneliness in cognitively normal older adults. JAMA Psychiatry, 73(12), 12301237. https://doi.org/10.1001/jamapsychiatry.2016.2657.CrossRefGoogle ScholarPubMed
Dotson, V. M. & Duarte, A. (2020), The importance of diversity in cognitive neuroscience. Annals of the New York Academy of Sciences, 1464, 181191. https://doi.org/10.1111/nyas.14268.CrossRefGoogle ScholarPubMed
Dougherty, A. H. (2011). Gender balance in cardiovascular research: Importance to women’s health. Texas Heart Institute journal, 38(2), 148150.Google ScholarPubMed
Duarte, A., Graham, K. S., & Henson, R. N. (2010). Age-related changes in neural activity associated with familiarity, recollection and false recognition. Neurobiology of Aging, 31(10), 18141830.CrossRefGoogle ScholarPubMed
Duarte, A., Henson, R. N., & Graham, K. S. (2008). The effects of aging on the neural correlates of subjective and objective recollection. Cerebral Cortex, 18(9), 21692180.CrossRefGoogle ScholarPubMed
Duarte, A., Ranganath, C., Trujillo, C., & Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18(1), 3347.CrossRefGoogle ScholarPubMed
Dulas, M. R., & Duarte, A. (2012). The effects of aging on material-independent and material-dependent neural correlates of source memory retrieval. Cerebral Cortex, 22(1), 3750.CrossRefGoogle ScholarPubMed
Dulas, M. R., & Duarte, A. (2013). The influence of directed attention at encoding on source memory retrieval in the young and old: An ERP study. Brain Research, 1500, 5571.CrossRefGoogle Scholar
Dulas, M. R., & Duarte, A. (2014). Aging affects the interaction between attentional control and source memory: An fMRI study. Journal of Cognitive Neuroscience, 26(12), 26532669.CrossRefGoogle ScholarPubMed
Dulas, M. R., Newsome, R. N., & Duarte, A. (2011). The effects of aging on ERP correlates of source memory retrieval for self-referential information. Brain Research, 1377, 84100. https://doi.org/10.1016/j.brainres.2010.12.087.CrossRefGoogle ScholarPubMed
Earles, J. L., Smith, A. D., & Park, D. C. (1994). Age differences in the effects of facilitating and distracting context on recall. Aging & Cognition, 1(2), 141151.Google Scholar
Ebner, N. C., Chen, H., Porges, E., et al. (2016). Oxytocin’s effect on resting-state functional connectivity varies by age and sex. Psychoneuroendocrinology, 69, 5059. https://doi.org/10.1016/j.psyneuen.2016.03.013.CrossRefGoogle ScholarPubMed
Ebner, N. C., Gluth, S., Johnson, M. R., Raye, C. L., Mitchell, K. J., & Johnson, M. K. (2011). Medial prefrontal cortex activity when thinking about others depends on their age. NeuroCase, 17(3), 260269. https://doi.org/10.1080/13554794.2010.536953.CrossRefGoogle ScholarPubMed
Ebner, N. C., Johnson, M. K., & Fischer, H. (2012). Neural mechanisms of reading facial emotions in young and older adults. Frontiers in Psychology, 3, Article 223. https://doi.org/10.3389/fpsyg.2012.00223.CrossRefGoogle ScholarPubMed
Eich, T. S., Langfield, C., Sakhardande, J., Gazes, Y., Habeck, C. & Stern, Y. (2023) Older adults compensate for switch, but not mixing costs, relative to younger adults on an intrinsically cued task switching experiment. Frontiers in Aging Neuroscience, 15, 1152582. https://doi.org/10.3389/fnagi.2023.1152582.CrossRefGoogle ScholarPubMed
Eich, T. S., Parker, D., Liu, D., et al. (2016). Functional brain and age-related changes associated with congruency in task switching. Neuropsychologia, 91, 211221. https://doi.org/10.1016/j.neuropsychologia.2016.08.009.CrossRefGoogle ScholarPubMed
Ellis, B. J., Bianchi, J., Griskevicius, V., & Frankenhuis, W. E. (2017). Beyond risk and protective factors: An adaptation-based approach to resilience. Perspectives on Psychological Science, 12(4), 561587. https://doi.org/10.1177/1745691617693054.CrossRefGoogle ScholarPubMed
ElShafei, H. A., Masson, R., Fakche, C., et al. (2022). Age-related differences in bottom-up and top-down attention: Insights from EEG and MEG. The European Journal of Neuroscience, 55(5), 12151231. https://doi.org/10.1111/ejn.15617.CrossRefGoogle ScholarPubMed
Engell, A. D., Haxby, J. V., & Todorov, A. (2007). Implicit trustworthiness decisions: automatic coding of face properties in the human amygdala. Journal of Cognitive Neuroscience, 19(9), 15081519. https://doi.org/10.1162/jocn.2007.19.9.1508.CrossRefGoogle ScholarPubMed
Erickson, K. I., Banducci, S. E., Weinstein, A. M., et al. (2013). The brainderived neurotrophic factor Val66 Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24(9),17701779. https://doi.org/10.1177/0956797613480367.CrossRefGoogle Scholar
Erickson, K. I., Colcombe, S. J., Elavsky, S., et al. (2007). Interactive effects of fitness and hormone treatment on brain health in postmenopausal women. Neurobiology of Aging, 28(2), 179185.CrossRefGoogle Scholar
Erickson, K. I., Gildengers, A. G., & Butters, M. A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues in Clinical Neuroscience, 15(1), 99108.CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 30173022.CrossRefGoogle ScholarPubMed
Fabiani, M., & Gratton, G. (2005). Electrophysiological and Optical Measures of Cognitive Aging. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 85106). New York: Oxford University Press.Google Scholar
Fairfield, B., Mammarella, N., Di Domenico, A., & Palumbo, R. (2015). Running with emotion: When affective content hampers working memory performance. International Journal of Psychology, 50(2), 161164.CrossRefGoogle ScholarPubMed
Fareri, D. S., Hackett, K., Tepfer, L. J., et al. (2022). Age-related differences in ventral striatal and default mode network function during reciprocated trust. NeuroImage, 256, 119267. https://doi.org/10.1016/j.neuroimage.2022.119267.CrossRefGoogle ScholarPubMed
Feigin, A., Ghilardi, M. F., Huang, C., et al. (2006). Preclinical Huntington’s disease: compensatory brain responses during learning. Annals of Neurology, 59(1), 5359.CrossRefGoogle ScholarPubMed
Fernandes, C., Macedo, I., Gonçalves, A. R., et al. (2023). Effects of aging on face processing: An ERP study of the own-age bias with neutral and emotional faces. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 161, 1325. https://doi.org/10.1016.CrossRefGoogle ScholarPubMed
Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience and Biobehavioral Reviews, 37(3), 384400. https://doi.org/10.1016/j.neubiorev.2013.01.017.CrossRefGoogle ScholarPubMed
Ferreira, L. K., Lindberg, O., Santillo, A. F., & Wahlund, L. O. (2022). Functional connectivity in behavioral variant frontotemporal dementia. Brain and Behavior, 12(12), e2790. https://doi.org/10.1002/brb3.2790.CrossRefGoogle ScholarPubMed
Ferreira, P. C. L., Zhang, Y., Snitz, B., et al. (2023). Plasma biomarkers identify older adults at risk of Alzheimer’s disease and related dementias in a real-world population-based cohort. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 19, 45074519. https://doi.org/10.1002/alz.12986.CrossRefGoogle Scholar
Fertonani, A., Brambilla, M., Cotelli, M., & Miniussi, C. (2014). The timing of cognitive plasticity in physiological aging: A tDCS study of naming. Frontiers in Aging Neuroscience, 6, Article 131. https://doi.org/10.3389/fnagi.2014.00131.CrossRefGoogle ScholarPubMed
Feyers, D., Collette, F., D’Argembeau, A., Majerus, S., & Salmon, E. (2010). Neural networks involved in self-judgement in young and elderly adults. NeuroImage, 53, 341347.CrossRefGoogle Scholar
Fields, E. C., Bowen, H. J., Daley, R. T., Parisi, K. R., Gutchess, A., & Kensinger, E. A. (2021). An ERP investigation of age differences in the negativity bias for self-relevant and non-self-relevant stimuli. Neurobiology of Aging, 103, 111. https://doi.org/10.1016/j.neurobiolaging.2021.02.009.CrossRefGoogle ScholarPubMed
Finn, E. S. (2021). Is it time to put rest to rest? Trends in Cognitive Sciences, 25, 10211032. https://doi.org/10.1016/j.tics.2021.09.005.CrossRefGoogle ScholarPubMed
Fischer, H., Sandblom, J., Gavazzeni, J., Fransson, P., Wright, C. I., & Backman, L. (2005). Age-differential patterns of brain activation during perception of angry faces. Neuroscience Letters, 386(2), 99104. https://doi.org/10.1016/j.neulet.2005.06.002.CrossRefGoogle ScholarPubMed
Fiske, S. T. (2017). Prejudices in cultural contexts: shared stereotypes (gender, age) versus variable stereotypes (race, ethnicity, religion). Perspectives on Psychological Science, 12(5), 791799. https://doi.org/10.1177/1745691617708204.CrossRefGoogle ScholarPubMed
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 2040.CrossRefGoogle ScholarPubMed
Fjell, A. M., Westlye, L. T., Grydeland, H., et al. (2014). Accelerating cortical thinning: Unique to dementia or universal in aging? Cerebral Cortex, 24(4), 919934. https://doi.org/10.1093/cercor/bhs379.CrossRefGoogle ScholarPubMed
Floel, A., Suttorp, W., Kohl, O., et al. (2012). Non-invasive brain stimulation improves objectlocation learning in the elderly. Neurobiology of Aging, 33(8), 16821689. https://doi.org/10.1016/j.neurobiolaging.2011.05.007.CrossRefGoogle ScholarPubMed
Foo, H., Mather, K. A., Jiang, J., Thalamuthu, A., Wen, W., & Sachdev, P. S. (2020). Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: A systematic review. Neuroscience and Biobehavioral Reviews, 113, 98110. https://doi.org/10.1016/j.neubiorev.2020.03.011.CrossRefGoogle ScholarPubMed
Foo, H., Thalamuthu, A., Jiang, J., et al. (2021) Age and sex-related topological organization of human brain functional networks and their relationship to cognition. Frontiers in Aging Neuroscience, 13, 758817. https://doi.org/10.3389/fnagi.2021.758817.CrossRefGoogle ScholarPubMed
Ford, J. H., & Kensinger, E. A. (2014). The relation between structural and functional connectivity depends on age and on task goals. Frontiers in Human Neuroscience, 8, Article 307. https://doi.org/10.3389/fnhum.2014.00307.CrossRefGoogle ScholarPubMed
Ford, J. H., & Kensinger, E. A. (2017). Age-related reversals in neural recruitment across memory retrieval phases. Journal of Neuroscience, 37(20), 51725182. https://doi.org/10.1523/jneurosci.0521-17.2017.CrossRefGoogle ScholarPubMed
Ford, J. H., Morris, J. A., & Kensinger, E. A. (2014). Neural recruitment and connectivity during emotional memory retrieval across the adult life span. Neurobiology of Aging, 35(12), 27702784. https://doi.org/10.1016/j.neurobiolaging.2014.05.029.CrossRefGoogle ScholarPubMed
Frank, C. C., & Seaman, K. L. (2023). Aging, uncertainty, and decision making – A review. Cognitive Affective and Behavioral Neuroscience, 23, 773787. https://doi.org/10.3758/s13415-023-01064-w.CrossRefGoogle ScholarPubMed
Frazier, I., Lin, T., Liu, P., Skarsten, S., Feifel, D., & Ebner, N. C. (2021). Age and intranasal oxytocin effects on trust-related decisions after breach of trust: Behavioral and brain evidence. Psychology and Aging, 36(1), 1021. https://doi.org/10.1037/pag0000545.CrossRefGoogle ScholarPubMed
Freitas, C., Farzan, F., & Pascual-Leone, A. (2013). Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how, and what is the ultimate goal? Frontiers in Neuroscience, 7, Article 42. https://doi.org/10.3389/fnins.2013.00042.CrossRefGoogle Scholar
Friedman, D. (2012). Components of aging. In Luck, S. J. & Kappenman, E. S. (Eds.), The Oxford Handbook of Event-Related Potential Components (pp. 513536). New York: Oxford University Press.Google Scholar
Friedman, D., de Chastelaine, M., Nessler, D., & Malcolm, B. (2010). Changes in familiarity and recollection across the lifespan: An ERP perspective. Brain Research, 1310, 124141.CrossRefGoogle ScholarPubMed
Friedman, D., Ritter, W., & Snodgrass, J. G. (1996). ERPs during study as a function of subsequent direct and indirect memory testing in young and old adults. Cognitive Brain Research, 4(1), 113.CrossRefGoogle ScholarPubMed
Friedman, D. & Trott, C. (2000).An event-related potential study of encoding in young and older adults. Neuropsychologia, 38(5), 542557.CrossRefGoogle ScholarPubMed
Gabrieli, J. D. E., Vaidya, C. J., Stone, M., et al. (1999). Convergent behavioral and neuropsychological evidence for a distinction between identification and production forms of repetition priming. Journal of Experimental Psychology: General, 128(4), 479498.CrossRefGoogle ScholarPubMed
Gajewski, P. D., Ferdinand, N. K., Kray, J., & Falkenstein, M. (2018). Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neuroscience and Biobehavioral Reviews, 92, 255275. https://doi.org/10.1016/j.neubiorev.2018.05.029.CrossRefGoogle ScholarPubMed
Gallant, S. N., Kennedy, B. L., Bachman, S. L., et al. (2022). Behavioral and fMRI evidence that arousal enhances bottom-up selectivity in young but not older adults. Neurobiology of Aging, 120, 149166. https://doi.org/10.1016/j.neurobiolaging.2022.08.006.CrossRefGoogle Scholar
Gallo, F., DeLuca, V., Prystauka, Y., Voits, T., Rothman, J. & Abutalebi, J. (2022) Bilingualism and aging: Implications for (delaying) neurocognitive decline. Frontiers in Human Neuroscience, 16, 819105. https://doi.org/10.3389/fnhum.2022.819105.CrossRefGoogle ScholarPubMed
Gard, T., Taquet, M., Dixit, R., et al. (2014). Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Frontiers in Aging Neuroscience, 6, 76.CrossRefGoogle ScholarPubMed
Garrett, D. D., Lindenberger, U., Hoge, R. D., et al. (2017). Age differences in brain signal variability are robust to multiple vascular controls. Scientific Reports, 7, 10149. https://doi.org/10.1038/s41598-017-09752-7.CrossRefGoogle ScholarPubMed
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W., Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews, 37(4), 610624. https://doi.org/10.1016/j.neubiorev.2013.02.015.CrossRefGoogle ScholarPubMed
Gavett, B. E., Fletcher, E., Harvey, D., et al. (2018). Ethnoracial differences in brain structure change and cognitive change. Neuropsychology, 32(5), 529540. https://doi.org/10.1037/neu0000452.CrossRefGoogle ScholarPubMed
Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 1312213126. https://doi.org/10.1073/pnas.0806074105.CrossRefGoogle ScholarPubMed
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8, 12981300.CrossRefGoogle ScholarPubMed
Ge, R., Fu, Y., Wang, D., Yao, L., & Long, Z. (2014). Age-related alterations of brain network underlying the retrieval of emotional autobiographical memories: An fMRI study using independent component analysis. Frontiers in Human Neuroscience, 8, Article 629. https://doi.org/10.3389/fnhum.2014.00629.CrossRefGoogle ScholarPubMed
Geronimus, A. T., Hicken, M., Keene, D., & Bound, J. (2006). “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. American Journal of Public Health, 96(5), 826833. https://doi.org/10.2105/AJPH.2004.060749.CrossRefGoogle ScholarPubMed
Getzmann, S., Gajewski, P. D., & Falkenstein, M. (2013). Does age increase auditory distraction? Electrophysiological correlates of high and low performance in seniors. Neurobiology of Aging, 34(8), 19521962.CrossRefGoogle ScholarPubMed
Ghosh, S., & Lippa, C. F. (2015). Clinical subtypes of frontotemporal dementia. American Journal of Alzheimer’s Disease and Other Dementias, 30(7), 653661. https://doi.org/10.1177/1533317513494442.CrossRefGoogle ScholarPubMed
Giannakopoulos, P., Rodriguez, C., Montandon, M. L., Garibotto, V., Haller, S., & Herrmann, F. R. (2020). Less agreeable, better preserved? A PET amyloid and MRI study in a community-based cohort. Neurobiology of Aging, 89, 2431. https://doi.org/10.1016/j.neurobiolaging.2020.02.004.CrossRefGoogle Scholar
Gigandet, X., Hagmann, P., Kurant, M., et al. (2008). Estimating the confidence level of white matter connections obtained with MRI tractography. PLoS One, 3(12), e4006. https://doi.org/10.1371/journal.pone.0004006.CrossRefGoogle ScholarPubMed
Giovanello, K. S., Kensinger, E. A., Wong, A. T., & Schacter, D. L. (2010). Age-related neural changes during memory conjunction errors. Journal of Cognitive Neuroscience, 22(7), 13481361.CrossRefGoogle ScholarPubMed
Giovanello, K. S., & Schacter, D. L. (2012). Reduced specificity of hippocampal and posterior ventrolateral prefrontal activity during relational retrieval in normal aging. Journal of Cognitive Neuroscience, 24(1), 159170.CrossRefGoogle ScholarPubMed
Glisky, E. L., & Marquine, M. J. (2009). Semantic and self-referential processing of positive and negative trait adjectives in older adults. Memory, 17(2), 144157. https://doi.org/10.1080/09658210802077405.CrossRefGoogle ScholarPubMed
Goh, J. O., Beason-Held, L. L., An, Y., Kraut, M. A., & Resnick, S. M. (2013). Frontal function and executive processing in older adults: Process and region specific age-related longitudinal functional changes. NeuroImage, 69, 4350. https://doi.org/10.1016/j.neuroimage.2012.12.026.CrossRefGoogle ScholarPubMed
Goh, J. O., Chee, M. W., Tan, J. C., et al. (2007). Age and culture modulate object processing and object-scene binding in the ventral visual area. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 4452.CrossRefGoogle ScholarPubMed
Goh, J. O., Hebrank, A. C., Sutton, B. P., Chee, M. W., Sim, S. K., & Park, D. C. (2013). Culture-related differences in default network activity during visuo-spatial judgments. Social Cognitive and Affective Neuroscience, 8(2), 134142. https://doi.org/10.1093/scan/nsr077.CrossRefGoogle ScholarPubMed
Goh, J. O., Su, Y. S., Tang, Y. J., et al. (2016). Frontal, striatal, and medial temporal sensitivity to value distinguishes risk-taking from risk-aversive older adults during decision making. Journal of Neuroscience, 36(49), 1249812509. https://doi.org/10.1523/jneurosci.1386-16.2016.CrossRefGoogle ScholarPubMed
Gorbach, T., Pudas, S., Lundquist, A., et al. (2017). Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiology of Aging, 51, 167176. https://doi.org/10.1016/j.neurobiolaging.2016.12.002.CrossRefGoogle ScholarPubMed
Gordon, B. A., Zacks, J. M., Blazey, T., et al. (2015). Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer’s disease biomarkers. Neurobiology of Aging, 36(5), 17711779.CrossRefGoogle ScholarPubMed
Gow, A. J., Johnson, W., Pattie, A., et al. (2011). Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian Birth Cohorts of 1921 and 1936. Psychology and Aging, 26(1), 232240.CrossRefGoogle ScholarPubMed
Grady, C. L., Bernstein, L. J., Beig, S., & Siegenthaler, A. L. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17(1), 723.CrossRefGoogle ScholarPubMed
Grady, C. L., Grigg, O., & Ng, C. (2012). Age differences in default and reward networks during processing of personally relevant information. Neuropsychologia, 50(7), 16821697. https://doi.org/10.1016/j.neuropsychologia.2012.03.024.CrossRefGoogle ScholarPubMed
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170181.CrossRefGoogle ScholarPubMed
Grady, C. L., McIntosh, A. R., Horwitz, B., et al. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269(5221), 218221.CrossRefGoogle Scholar
Grady, C. L., McIntosh, A. R., Rajah, M. N., Beig, S., & Craik, F. (1999). The effects of age on the neural correlates of episodic encoding. Cerebral Cortex, 9(8), 805814.CrossRefGoogle ScholarPubMed
Grady, C. L., Protzner, A. B., Kovacevic, N., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20(6), 14321447. https://doi.org/10.1093/cercor/bhp207.CrossRefGoogle ScholarPubMed
Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18(2), 227241.CrossRefGoogle ScholarPubMed
Granger, S. J., Colon-Perez, L., Larson, M. S., et al. (2023). Reduced structural connectivity of the medial temporal lobe including the perforant path is associated with aging and verbal memory impairment. Neurobiology of Aging, 121, 119128.CrossRefGoogle ScholarPubMed
Greenwood, P. M. (2007). Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology, 21(6), 657673. https://doi.org/10.1037/0894-4105.21.6.657.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 1423. https://doi.org/10.1016/j.tics.2005.11.006.CrossRefGoogle ScholarPubMed
Gross, J. J., Carstensen, L. L., Pasupathi, M., Tsai, J., Skorpen, C. G., & Hsu, A. Y. (1997). Emotion and aging: Experience, expression, and control. Psychology of Aging, 12(4), 590599.CrossRefGoogle ScholarPubMed
Grossman, M., Cooke, A., DeVita, C., Alsop, D., Detre, J., Chen, W., & Gee, J. (2002a). Age-related changes in working memory during sentence comprehension: An fMRI study. NeuroImage, 15(2), 302317.CrossRefGoogle ScholarPubMed
Grossman, M., Cooke, A., DeVita, C., et al. (2002b). Sentence processing strategies in healthy seniors with poor comprehension: An fMRI study. Brain and Language, 80(3), 296313.CrossRefGoogle ScholarPubMed
Grover, S., Fayzullina, R., Bullard, B. M., Levina, V., & Reinhart, R. M. G. (2023). A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Science Translational Medicine, 15(697), eabo2044. https://doi.org/10.1126/scitranslmed.abo2044.CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201. https://doi.org/10.1111/nyas.13333.CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24(2), 109117. https://doi.org/10.1002/gps.2087.CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., Gur, R. C., Perkins, A. C., et al. (2003). Age-related differences in brain activation during emotional face processing. Neurobiology of Aging, 24(2), 285295.CrossRefGoogle ScholarPubMed
Gur, R. C., Gunning-Dixon, F. M., Turetsky, B. I., Bilker, W. B., & Gur, R. E. (2002). Brain region and sex differences in age association with brain volume: A quantitative MRI study of healthy young adults. American Journal of Geriatric Psychiatry, 10(1), 7280.CrossRefGoogle ScholarPubMed
Gutchess, A. H. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579582. https://doi.org/10.1126/science.1254604.CrossRefGoogle ScholarPubMed
Gutchess, A. & Cho, I. (2024). Memory and aging across cultures. Current Opinion in Psychology, 55, 101728. https://doi.org/10.1016/j.copsyc.2023.101728.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Hebrank, A., Sutton, B. P., et al. (2007). Contextual interference in recognition memory with age. NeuroImage, 35(3), 13381347. https://doi.org/10.1016%2Fj.neuroimage.2007.01.043.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Ieuji, Y., & Federmeier, K. D. (2007). Event-related potentials reveal age differences in the encoding and recognition of scenes. Journal of Cognitive Neuroscience, 19(7), 10891103. https://doi.org/10.1162/jocn.2007.19.7.1089.CrossRefGoogle ScholarPubMed
Gutchess, A. & Kensinger, E.A. (2018). Shared mechanisms may support mnemonic benefits from self-referencing and emotion. Trends in Cognitive Science, 22, 712724. https://psycnet.apa.org/doi/10.1016/j.tics.2018.05.001.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Kensinger, E. A., & Schacter, D. L. (2007). Aging, self-referencing, and medial prefrontal cortex. Social Neuroscience, 2(2), 117133.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Kensinger, E. A., & Schacter, D. L. (2010). Functional neuroimaging of self-referential encoding with age. Neuropsychologia, 48, 211219.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Kensinger, E. A., Yoon, C., & Schacter, D. L. (2007). Ageing and the self-reference effect in memory. Memory, 15(8), 822837. https://doi.org/10.1080/09658210701701394.CrossRefGoogle ScholarPubMed
Gutchess, A. H., & Park, D. (2009). Effects of ageing on associative memory for related and unrelated pictures. European Journal of Cognitive Psychology, 21(2/3), 235254.CrossRefGoogle ScholarPubMed
Gutchess, A. H., & Park, D. C. (2006). fMRI environment can impair memory performance in young and elderly adults. Brain Research, 1099(1), 133140. https://doi.org/10.1016%2Fj.brainres.2006.04.102 .CrossRefGoogle Scholar
Gutchess, A. & Rajaram, S. (2023). Consideration of culture in cognition: How we can enrich methodology and theory. Psychonomic Bulletin & Review, 30, 914931. https://doi.org/10.3758/s13423-022-02227-5.CrossRefGoogle ScholarPubMed
Gutchess, A. H., & Schacter, D. L. (2012). The neural correlates of gist-based true and false recognition. NeuroImage, 59(4), 34183426.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Sokal, R., Coleman, J. A., Gotthilf, G., Grewal, L., & Rosa, N. (2015). Age differences in self-referencing: Evidence for common and distinct encoding strategies. Brain Research, 1612, 118127. https://doi.org/10.1016/j.brainres.2014.08.033.CrossRefGoogle ScholarPubMed
Gutchess, A. H., Welsh, R. C., Hedden, T., et al. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17(1), 8496.CrossRefGoogle ScholarPubMed
Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11(9), 651659. https://doi.org/10.1038/nrn2897.CrossRefGoogle ScholarPubMed
Håkansson, K., Ledreux, A., Daffner, K., et al. (2017). BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations with working memory function. Journal of Alzheimer’s Disease: JAD, 55(2), 645657. https://doi.org/10.3233/JAD-160593.CrossRefGoogle ScholarPubMed
Hakun, J. G., Zhu, Z., Johnson, N. F., & Gold, B. T. (2015). Evidence for reduced efficiency and successful compensation in older adults during task switching. Cortex, 64, 352362.CrossRefGoogle ScholarPubMed
Halfmann, K., Hedgcock, W., Bechara, A., & Denburg, N. L. (2014). Functional neuroimaging of the Iowa Gambling Task in older adults. Neuropsychology, 28(6), 870880. https://doi.org/10.1037/neu0000120.CrossRefGoogle ScholarPubMed
Halfmann, K., Hedgcock, W. & Denburg, N. L. (2021). Neural correlates of cognitive reappraisal of positive and negative affect in older adults, Aging & Mental Health, 25(1), 126133. https://doi.org/10.1080/13607863.2019.1693970.CrossRefGoogle ScholarPubMed
Halfmann, K., Hedgcock, W., Kable, J., & Denburg, N. L. (2016). Individual differences in the neural signature of subjective value among older adults. Social Cognitive and Affective Neuroscience, 11(7), 11111120. https://doi.org/10.1093/scan/nsv078.CrossRefGoogle ScholarPubMed
Hamami, A., Serbun, S. J., & Gutchess, A. H. (2011). Self-referential processing and memory specificity with age. Psychology and Aging, 26, 636646.CrossRefGoogle Scholar
Han, S. D., Fleischman, D. A., Yu, L., et al. (2022). Cognitive decline and hippocampal functional connectivity within older Black adults. Human Brain Mapping, 43(16), 50445052. https://doi.org/10.1002/hbm.26070.CrossRefGoogle ScholarPubMed
Han, S. D., Lamar, M., Fleischman, D., et al. Self-reported experiences of discrimination in older Black adults are associated with insula functional connectivity. Brain Imaging and Behavior, 15, 17181727 (2021). https://doi.org/10.1007/s11682-020-00365-9.CrossRefGoogle ScholarPubMed
Hardwick, R. M., & Celnik, P. A. (2014). Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiology of Aging, 35(10), 22172221. https://doi.org/10.1016/j.neurobiolaging.2014.03.030.CrossRefGoogle ScholarPubMed
Harle, K. M., & Sanfey, A. G. (2012). Social economic decision-making across the life span: An fMRI investigation. Neuropsychologia, 50(7), 14161424. https://doi.org/10.1016/j.neuropsychologia.2012.02.026.CrossRefGoogle Scholar
Harris, C. B., Keil, P. G., Sutton, J., Barnier, A. J., & McIlwain, D. J. F. (2011). We remember, we forget: Collaborative remembering in older couples. Discourse Processes, 48(4), 267303. https://doi.org/10.1080/0163853x.2010.541854.CrossRefGoogle Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory, 22 (vol. XXII, pp. 193225). San Diego: Academic Press.Google Scholar
Hay, J. F., & Jacoby, L. L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14(1), 122134.CrossRefGoogle Scholar
He, Y., Ebner, N. C., & Johnson, M. K. (2011). What predicts the own-age bias in face recognition memory? Social Cognition, 29(1), 97109.CrossRefGoogle ScholarPubMed
Head, D., Buckner, R. L., Shimony, J. S., et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: Evidence from diffusion tensor imaging. Cerebral Cortex, 14(4), 410423.CrossRefGoogle ScholarPubMed
Heatherton, T. F., Krendl, A. C., Macrae, C. N., & Kelley, W. M. (2007). A social brain sciences approach to understanding self. In Sedikides, C. & Spencer, S. (Eds.), The Self (pp. 320). New York: Psychology Press.Google Scholar
Heatherton, T. F., Wyland, C. L., Macrae, C. N., Demos, K. E., Denny, B. T., & Kelley, W. M. (2006). Medial prefrontal activity differentiates self from close others. Social Cognitive and Affective Neuroscience, 1(1), 1825.CrossRefGoogle ScholarPubMed
Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 8796. https://doi.org/10.1038/nrn1323.CrossRefGoogle ScholarPubMed
Hedden, T., Mormino, E. C., Amariglio, R. E., et al. (2012). Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. Journal of Neuroscience, 32(46), 1623316242.CrossRefGoogle ScholarPubMed
Hedden, T., Van Dijk, K. R. A., Becker, J. A., et al. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. Journal of Neuroscience, 29(40), 1268612694. https://doi.org/10.1523/JNEUROSCI.3189-09.2009.CrossRefGoogle ScholarPubMed
Helion, C., Krueger, S. M., & Ochsner, K. N. (2019). Emotion regulation across the life span. Handbook of Clinical Neurology, 163, 257280. https://doi.org/10.1016/B978-0-12-804281-6.00014-8.CrossRefGoogle ScholarPubMed
Henkel, L. A., & Rajaram, S. (2011). Collaborative remembering in older adults: Age-invariant outcomes in the context of episodic recall deficits. Psychology and Aging, 26(3), 532545. https://doi.org/10.1037/a0023106.CrossRefGoogle ScholarPubMed
Henry, J. D., Phillips, L. H., Ruffman, T., & Bailey, P. E. (2013). A meta-analytic review of age differences in theory of mind. Psychology and Aging, 28(3), 826839. https://doi.org/10.1037/a0030677.CrossRefGoogle ScholarPubMed
Henry, J. D., Phillips, L. H., & Von Hippel, C. (2014). A meta-analytic review of theory of mind difficulties in behavioural-variant frontotemporal dementia. Neuropsychologia, 56, 5362.CrossRefGoogle ScholarPubMed
Herrera, A. Y., & Mather, M. (2015). Actions and interactions of estradiol and glucocorticoids in cognition and the brain: Implications for aging women. Neuroscience & Biobehavioral Reviews, 55, 3652.CrossRefGoogle Scholar
Herrmann, L. L., Le Masurier, M., & Ebmeier, K. P. (2008). White matter hyperintensities in late life depression: A systematic review. Journal of Neurology, Neurosurgery, and Psychiatry, 79(6), 619624. https://doi.org/10.1136/jnnp.2007.124651.CrossRefGoogle ScholarPubMed
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 165.CrossRefGoogle ScholarPubMed
Herz, D. M., Eickhoff, S. B., Løkkegaard, A., & Siebner, H. R. (2014). Functional neuroimaging of motor control in Parkinson’s disease: A meta-analysis. Human Brain Mapping, 35(7), 32273237.CrossRefGoogle ScholarPubMed
Hess, T. M., Auman, C., Colcombe, S. J., & Rahhal, T. (2003). The impact of stereotype threat on age differences in memory performance. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 58(1), 311.CrossRefGoogle ScholarPubMed
Hess, T. M., Bolstad, C. A., Woodburn, S. M., & Auman, C. (1999). Trait diagnosticity versus behavioral consistency as determinants of impression change in adulthood. Psychology and Aging, 14(1), 7789.CrossRefGoogle ScholarPubMed
Hess, T. M., & Pullen, S. M. (1994). Adult age-differences in impression change processes. Psychology and Aging, 9(2), 237250.CrossRefGoogle ScholarPubMed
Hess, T. M., & Tate, C. S. (1991). Adult age-differences in explanations and memory for behavioral information. Psychology and Aging, 6(1), 8692.CrossRefGoogle ScholarPubMed
Heuninckx, S., Wenderoth, N., & Swinnen, S. P. (2008). Systems neuroplasticity in the aging brain: Recruiting additional neural resources for successful motor performance in elderly persons. Journal of Neuroscience, 28(1), 9199.CrossRefGoogle ScholarPubMed
Hidalgo, V., Almela, M., Villada, C., & Salvador, A. (2014). Acute stress impairs recall after interference in older people, but not in young people. Hormones and Behavior, 65(3), 264272.CrossRefGoogle ScholarPubMed
Hoagey, D. A., Lazarus, L. T. T., Rodrigue, K. M., & Kennedy, K. M. (2021). The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex, 141, 403420. https://doi.org/10.1016/j.cortex.2021.04.016.CrossRefGoogle ScholarPubMed
Hokett, E., Mirjalili, S., & Duarte, A. (2022). Greater sleep variance related to decrements in memory performance and event-specific neural similarity: A racially/ethnically diverse lifespan sample. Neurobiology of Aging, 117, 3343. https://doi.org/10.1016/j.neurobiolaging.2022.04.015.CrossRefGoogle ScholarPubMed
Hou, M., de Chastelaine, M., Jayakumar, M., Donley, B. E., & Rugg, M. D. (2020). Recollection-related hippocampal fMRI effects predict longitudinal memory change in healthy older adults. Neuropsychologia, 146, 107537. https://doi.org/10.1016/j.neuropsychologia.2020.107537.CrossRefGoogle ScholarPubMed
Hsu, W. Y., Ku, Y., Zanto, T. P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36(8), 23482359. https://doi.org/10.1016/j.neurobiolaging.2015.04.016.CrossRefGoogle ScholarPubMed
Huang, C.-M., Fan, Y.-T., Lee, S.-H., et al. (2019). Cognitive reserve-mediated neural modulation of emotional control and regulation in people with late-life depression, Social Cognitive and Affective Neuroscience, 14(8), 849860. https://doi.org/10.1093/scan/nsz054.CrossRefGoogle ScholarPubMed
Huang, S., Faul, L., Sevinc, G., et al. (2021). Age differences in intuitive moral decision-making: Associations with inter-network neural connectivity. Psychology and Aging, 36(8), 902916. https://doi.org/10.1037/pag0000633.CrossRefGoogle ScholarPubMed
Huettel, S. A., Singerman, J. D., & McCarthy, G. (2001). The effects of aging upon the hemodynamic response measured by functional MRI. NeuroImage, 13(1), 161175. https://doi.org/10.1006/nimg.2000.0675.CrossRefGoogle ScholarPubMed
Hughes, C., Cassidy, B. S., Faskowitz, J., Avena-Koenigsberger, A., Sporns, O., & Krendl, A. C. (2019). Age differences in specific neural connections within the Default Mode Network underlie theory of mind. NeuroImage, 191, 269277. https://doi.org/10.1016/j.neuroimage.2019.02.024.CrossRefGoogle ScholarPubMed
Huijbers, W., Mormino, E. C., Wigman, S. E., et al. (2014). Amyloid deposition is linked to aberrant entorhinal activity among cognitively normal older adults. Journal of Neuroscience, 34(15), 52005210.CrossRefGoogle ScholarPubMed
Iidaka, T., Okada, T., Murata, T., et al. (2002). Age-related differences in the medial temporal lobe responses to emotional faces as revealed by fMRI. Hippocampus, 12(3), 352362.CrossRefGoogle ScholarPubMed
Insel, P. S., Young, C. B., Aisen, P. S., et al. (2023). Tau positron emission tomography in preclinical Alzheimer’s disease. Brain: A Journal of Neurology, 146(2), 700711. https://doi.org/10.1093/brain/awac299.CrossRefGoogle ScholarPubMed
Intzandt, B., Vrinceanu, T., Huck, J., et al. (2021). Comparing the effect of cognitive vs. exercise training on brain MRI outcomes in healthy older adults: A systematic review. Neuroscience and Biobehavioral Reviews, 128, 511533. https://doi.org/10.1016/j.neubiorev.2021.07.003.CrossRefGoogle ScholarPubMed
Iordan, A., Moored, K., Katz, B., et al. (2021). Age differences in functional network reconfiguration with working memory training. Human Brain Mapping, 42, 18881909. https://doi.org/10.1002/hbm.25337.CrossRefGoogle ScholarPubMed
Iordan, A. D., Cooke, K. A., Moored, K. D., et al. (2020). Neural correlates of working memory training: Evidence for plasticity in older adults. NeuroImage, 217, 116887. https://doi.org/10.1016/j.neuroimage.2020.116887.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Wadlinger, H. A., Goren, D., & Wilson, H. R. (2006a). Is there an age-related positivity effect in visual attention? A comparison of two methodologies. Emotion, 6(3), 511516. https://doi.org/10.1037/1528-3542.6.3.511.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Wadlinger, H. A., Goren, D., & Wilson, H. R. (2006b). Selective preference in visual fixation away from negative images in old age? An eye-tracking study. Psychology and Aging, 21(2), 221.CrossRefGoogle ScholarPubMed
Jack, C. R., Jr, Bennett, D. A., Blennow, K., et al. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 14(4), 535562. https://doi.org/10.1016/j.jalz.2018.02.018.CrossRefGoogle Scholar
Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2021). Age-related hearing loss and cognitive decline: MRI and cellular evidence. Annals of the New York Academy of Sciences, 1500, 1733. https://doi.org/10.1111/nyas.14617.CrossRefGoogle ScholarPubMed
Jagust, W. (2009). Amyloid + activation = Alzheimer’s? Neuron, 63(2), 141143.CrossRefGoogle ScholarPubMed
Jagust, W. (2018). Imaging the evolution and pathophysiology of Alzheimer disease. Nature Reviews Neuroscience, 19, 687700. https://doi.org/10.1038/s41583-018-0067-3.CrossRefGoogle ScholarPubMed
Jagust, W. J., Teunissen, C. E., & DeCarli, C. (2023). The complex pathway between amyloid β and cognition: Implications for therapy. The Lancet: Neurology, 22(9), 847857. https://doi.org/10.1016/S1474-4422(23)00128-X.CrossRefGoogle ScholarPubMed
James, S. N., Nicholas, J. M., Lu, K., et al. (2023). Adulthood cognitive trajectories over 26 years and brain health at 70 years of age: Findings from the 1946 British Birth Cohort. Neurobiology of Aging, 122, 2232. https://doi.org/10.1016/j.neurobiolaging.2022.10.003.CrossRefGoogle Scholar
Jimura, K., & Braver, T. S. (2010). Age-related shifts in brain activity dynamics during task switching. Cerebral Cortex, 20(6), 14201431.CrossRefGoogle ScholarPubMed
Johnson, K. A., Fox, N. C., Sperling, R. A., & Klunk, W. E. (2012). Brain imaging in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006213.CrossRefGoogle ScholarPubMed
Johnson, M. K., Kim, J. K., & Risse, G. (1985). Do alcoholic Korsakoff’s syndrome patients acquire affective reactions? Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(1), 2236.Google ScholarPubMed
Johnson, M. K., Mitchell, K. J., Raye, C. L., & Greene, E. J. (2004). An age-related deficit in prefrontal cortical function associated with refreshing information. Psychological Science, 15(2), 127132.CrossRefGoogle ScholarPubMed
Jones, W. E., Benge, J. F., & Scullin, M. K. (2021). Preserving prospective memory in daily life: A systematic review and meta-analysis of mnemonic strategy, cognitive training, external memory aid, and combination interventions. Neuropsychology, 35(1), 123140. https://doi.org/10.1037/neu0000704.CrossRefGoogle ScholarPubMed
Jones, K. T., Johnson, E. L., Gazzaley, A., & Zanto, T. P. (2022). Structural and functional network mechanisms of rescuing cognitive control in aging. NeuroImage, 262, 119547. https://doi.org/10.1016/j.neuroimage.2022.119547.CrossRefGoogle ScholarPubMed
Karama, S., Bastin, M., Murray, C., et al. (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19(5), 555559.CrossRefGoogle ScholarPubMed
Katsumi, Y., Dolcos, S., Dixon, R. A., Fabiani, M., Stine-Morrow, E. A. L., & Dolcos, F. (2020). Immediate and long-term effects of emotional suppression in aging: A functional magnetic resonance imaging investigation. Psychology and Aging, 35(5), 676696. https://doi.org/10.1037/pag0000437.CrossRefGoogle ScholarPubMed
Keightley, M. L., Chiew, K. S., Winocur, G., & Grady, C. L. (2007). Age-related differences in brain activity underlying identification of emotional expressions in faces. Social Cognitive and Affective Neuroscience, 2(4), 292302. https://doi.org/10.1093/scan/nsm024.CrossRefGoogle ScholarPubMed
Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14(5), 785794.CrossRefGoogle ScholarPubMed
Kemp, J., Després, O., Sellal, F., & Dufour, A. (2012). Theory of mind in normal ageing and neurodegenerative pathologies. Ageing Research Reviews, 11(2), 199219.CrossRefGoogle ScholarPubMed
Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47(3), 916927.CrossRefGoogle ScholarPubMed
Kennedy, K. M., Reese, E. D., Horn, M. M., et al. (2015). BDNF val66 met polymorphism affects aging of multiple types of memory. Brain Research, 1612, 104117.CrossRefGoogle Scholar
Kennedy, K. M., Rodrigue, K. M., Bischof, G. N., Hebrank, A. C., Reuter-Lorenz, P. A., & Park, D. C. (2015). Age trajectories of functional activation under conditions of low and high processing demands: An adult lifespan fMRI study of the aging brain. NeuroImage, 104, 2134.CrossRefGoogle ScholarPubMed
Kennedy, Q., Mather, M., & Carstensen, L. L. (2004). The role of motivation in the age-related positivity effect in autobiographical memory. Psychological Science, 15(3), 208214.CrossRefGoogle ScholarPubMed
Kensinger, E. A., & Gutchess, A. H. (2017). Cognitive aging in a social and affective context: Advances over the past 50 years. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 72(1), 6170. https://doi.org/10.1093/geronb/gbw056.CrossRefGoogle Scholar
Kensinger, E. A., & Schacter, D. L. (2008). Neural processes supporting young and older adults’ emotional memories. Journal of Cognitive Neuroscience, 20(7), 11611173.CrossRefGoogle Scholar
Kirchhoff, B. A., Anderson, B. A., Barch, D. M., & Jacoby, L. L. (2012). Cognitive and neural effects of semantic encoding strategy training in older adults. Cerebral Cortex, 22(4), 788799.CrossRefGoogle ScholarPubMed
Kirchhoff, B. A., Anderson, B. A., Smith, S. E., Barch, D. M., & Jacoby, L. L. (2012). Cognitive training-related changes in hippocampal activity associated with recollection in older adults. NeuroImage, 62(3), 19561964.CrossRefGoogle ScholarPubMed
Kirchhoff, B. A., Gordon, B. A., & Head, D. (2014). Prefrontal gray matter volume mediates age effects on memory strategies. NeuroImage, 90, 326334.CrossRefGoogle ScholarPubMed
Kisley, M. A., Wood, S., & Burrows, C. L. (2007). Looking at the sunny side of life: Age-related change in an event-related potential measure of the negativity bias. Psychological Science, 18(9), 838843. https://doi.org/10.1111/j.1467-9280.2007.01988.x.CrossRefGoogle Scholar
Knights, E., Morcom, A.M., & Henson, R.N. (2021). Does hemispheric asymmetry reduction in older adults in motor cortex reflect compensation? Journal of Neuroscience, 41(45), 93619373. https://doi.org/10.1523/JNEUROSCI.1111-21.2021.CrossRefGoogle ScholarPubMed
Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 13991402.CrossRefGoogle ScholarPubMed
Koch, C., Baeuchl, C., Glöckner, F., et al. (2022). L-DOPA enhances neural direction signals in younger and older adults. NeuroImage, 264, 119670. https://doi.org/10.1016/j.neuroimage.2022.119670.CrossRefGoogle ScholarPubMed
Koen, J. D., Srokova, S., & Rugg, M. D. (2020). Age-related neural dedifferentiation and cognition. Current Opinion in Behavioral Sciences, 32, 714. https://doi.org/10.1016/j.cobeha.2020.01.006.CrossRefGoogle ScholarPubMed
Kok, F. K., Van Leerdam, S. L., & De Lange, E. C. M. (2022). Potential mechanisms underlying resistance to dementia in non-demented individuals with Alzheimer’s disease neuropathology. Journal of Alzheimer’s Disease, 87, 5181. https://doi.org/10.3233/JAD-210607.CrossRefGoogle ScholarPubMed
Koutstaal, W., & Schacter, D. L. (1997). Gist-based false recognition of pictures in older and younger adults. Journal of Memory and Language, 37(4), 555583.CrossRefGoogle Scholar
Krebs, C., Peter, J., Wyss, P., Brem, A. K., & Klöppel, S. (2021). Transcranial electrical stimulation improves cognitive training effects in healthy elderly adults with low cognitive performance. Clinical Neurophysiology, 132(6), 12541263. https://doi.org/10.1016/j.clinph.2021.01.034.CrossRefGoogle ScholarPubMed
Krendl, A. C. (2018). Reduced cognitive capacity impairs the malleability of older adults’ negative attitudes to stigmatized individuals. Experimental Aging Research, 44, 271283.CrossRefGoogle ScholarPubMed
Krendl, A. C., Heatherton, T. F., & Kensinger, E. A. (2009). Aging minds and twisting attitudes: An fMRI investigation of age differences in inhibiting prejudice. Psychology and Aging, 24(3), 530541.CrossRefGoogle ScholarPubMed
Krendl, A. C., Mannering, W., Jones, M. N., Hugenberg, K., & Kennedy, D. P. (2023). Determining whether older adults use similar strategies to young adults in theory of mind tasks. The Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 78(6), 969976. https://doi.org/10.1093/geronb/gbac187.CrossRefGoogle Scholar
Krendl, A. C., Rule, N. O., & Ambady, N. (2014). Does aging impair first impression accuracy? Differentiating emotion recognition from complex social inferences. Psychology and Aging, 29(3), 482490. https://doi.org/10.1037/a0037146.CrossRefGoogle ScholarPubMed
Krivanek, T. J., Gale, S. A., McFeeley, B. M., Nicastri, C. M., & Daffner, K. R. (2021). Promoting successful cognitive aging: A ten-year update. Journal of Alzheimer’s Disease: JAD, 81(3), 871920. https://doi.org/10.3233/JAD-201462.CrossRefGoogle ScholarPubMed
Kubarych, T. S., Prom-Wormley, E. C., Franz, C. E., et al. (2012). A multivariate twin study of hippocampal volume, self-esteem and well-being in middle-aged men. Genes, Brain, and Behavior, 11(5), 539544.CrossRefGoogle ScholarPubMed
Kurkela, K. A., & Dennis, N. A. (2016). Event-related fMRI studies of false memory: an activation likelihood estimation meta-analysis. Neuropsychologia, 81, 149167. https://doi.org/10.1016/j.neuropsychologia.2015.12.006.CrossRefGoogle ScholarPubMed
Kwon, D., Maillet, D., Pasvanis, S., Ankudowich, E., Grady, C. L., & Rajah, M. N. (2015). Context memory decline in middle-aged adults is related to changes in prefrontal cortex function. Cerebral Cortex, 26(6), 24402460.CrossRefGoogle ScholarPubMed
Kwon, S., Rugg, M. D., Wiegand, R., Curran, T., & Morcom, A. M. (2023). A meta-analysis of event-related potential correlates of recognition & memory. Psychonomic Bulletin & Review, 30, 20832105. https://doi.org/10.3758/s13423-023-02309-y.CrossRefGoogle ScholarPubMed
La Joie, R., Bejanin, A., Fagan, A. M., et al. (2017). Associations between [(18)F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology, 90(4), e282e290. https://doi.org/10.1212/wnl.0000000000004860.Google Scholar
Laborda-Sánchez, F., & Cansino, S. (2021). The effects of neurofeedback on aging-associated cognitive decline: A systematic review. Applied Psychophysiology and Biofeedback, 46, 110. https://doi.org/10.1007/s10484-020-09497-6.CrossRefGoogle ScholarPubMed
Lamar, M., Charlton, R. A., Ajilore, O., et al. (2013). Prefrontal vulnerabilities and whole brain connectivity in aging and depression. Neuropsychologia, 51(8), 14631470.CrossRefGoogle ScholarPubMed
Lan, C.-C., Tsai, S.-J., Huang, C.-C., et al. (2015). Functional connectivity density mapping of depressive symptoms and loneliness in non-demented elderly male. Frontiers in Aging Neuroscience, 7.Google ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Gainsville: NIMH Center for the Study of Emotion and Attention.Google Scholar
Langeslag, S. J., & Van Strien, J. W. (2008). Age differences in the emotional modulation of ERP old/new effects. International Journal of Psychophysiology, 70(2), 105114.CrossRefGoogle ScholarPubMed
Langeslag, S. J., & Van Strien, J. W. (2009). Aging and emotional memory: The co-occurrence of neurophysiological and behavioral positivity effects. Emotion, 9(3), 369377. https://doi.org/10.1037/a0015356.CrossRefGoogle ScholarPubMed
Lantrip, C., & Huang, J. H. (2017). Cognitive control of emotion in older adults: a review. Clinical Psychiatry (Wilmington), 3(1). https://doi.org/10.21767/2471-9854.100040.Google ScholarPubMed
Laurita, A. C., DuPre, E., Ebner, N. C., Turner, G. R., & Spreng, R. N. (2020). Default network interactivity during mentalizing about known others is modulated by age and social closeness. Social Cognitive and Affective Neuroscience, 15(5), 537549. https://doi.org/10.1093/scan/nsaa067.CrossRefGoogle ScholarPubMed
Lazar, S. W., Kerr, C. E., Wasserman, R. H., et al. (2005). Meditation experience is associated with increased cortical thickness. NeuroReport, 16(17), 18931897.CrossRefGoogle ScholarPubMed
Lebedev, A. V., Nilsson, J., Lindström, J., et al. (2020). Effects of daily L-dopa administration on learning and brain structure in older adults undergoing cognitive training: A randomised clinical trial. Scientific Reports, 10(1), 5227. https://doi.org/10.1038/s41598-020-62172-y.CrossRefGoogle ScholarPubMed
Lebowitz, B. D., Pearson, J. L., Schneider, L. S., et al. (1997). Diagnosis and treatment of depression in late life: Consensus statement update. Journal of the American Medical Association, 278(14), 11861190.CrossRefGoogle ScholarPubMed
Leclerc, C. M., & Kensinger, E. A. (2008). Age-related differences in medial prefrontal activation in response to emotional images. Cognitive, Affective, and Behavioral Neuroscience, 8(2), 153164.CrossRefGoogle ScholarPubMed
Leclerc, C. M., & Kensinger, E. A. (2010). Age-related valence-based reversal in recruitment of medial prefrontal cortex on a visual search task. Social Neuroscience, 5(5–6), 560576. https://doi.org/10.1080/17470910903512296.CrossRefGoogle ScholarPubMed
Lee, A. C., Buckley, M. J., Gaffan, D., Emery, T., Hodges, J. R., & Graham, K. S. (2006). Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: A double dissociation in dementia. Journal of Neuroscience, 26(19), 51985203. https://doi.org/10.1523/jneurosci.3157-05.2006.CrossRefGoogle ScholarPubMed
Lee, B., Wang, Y., Carlson, S. A., et al. (2023). National, state-level, and county-level prevalence estimates of adults aged ≥18 years self-reporting a lifetime diagnosis of depression – United States, 2020. Morbidity and Mortality Weekly Report, 72, 644650. https://doi.org/10.15585/mmwr.mm7224a1.CrossRefGoogle ScholarPubMed
Lemaire, P. (2016). Cognitive Aging: The Role of Strategies. New York: Routledge/Taylor & Francis Group.CrossRefGoogle Scholar
Leshikar, E. D., Cassidy, B. S., & Gutchess, A. H. (2015). Similarity to the self influences cortical recruitment during impression formation. Cognitive, Affective, and Behavioral Neuroscience, 16(2), 302314. https://doi.org/10.3758/s13415-015-0390-3.CrossRefGoogle Scholar
Leshikar, E. D., & Duarte, A. (2014). Medial prefrontal cortex supports source memory for self-referenced materials in young and older adults. Cognitive, Affective, and Behavioral Neuroscience, 14(1), 236252. https://doi.org/10.3758/s13415-013-0198-y.CrossRefGoogle ScholarPubMed
Leshikar, E. D., & Gutchess, A. H. (2015). Similarity to the self affects memory for impressions of others. Journal of Applied Research in Memory and Cognition, 4(1), 2028. https://doi.org/10.1016/j.jarmac.2014.10.002.CrossRefGoogle Scholar
Leshikar, E. D., Gutchess, A. H., Hebrank, A. C., Sutton, B. P., & Park, D. C. (2010). The impact of increased relational encoding demands on frontal and hippocampal function in older adults. Cortex, 46(4), 507521. https://doi.org/10.1016/j.cortex.2009.07.011.CrossRefGoogle ScholarPubMed
Leshikar, E. D., Park, J. M., & Gutchess, A. H. (2015). Similarity to the self affects memory for impressions of others in younger and older adults. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 70(5), 737742. https://doi.org/10.1093/geronb/gbt132.CrossRefGoogle Scholar
Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17(4), 677689.CrossRefGoogle ScholarPubMed
Levy, B. R. (2003). Mind matters: Cognitive and physical effects of aging self-stereotypes. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 58(4), P203P211.CrossRefGoogle ScholarPubMed
Li, S. C., Lindenberger, U., & Sikstrom, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479486.CrossRefGoogle ScholarPubMed
Li, S. C., Papenberg, G., Nagel, I. E., et al. (2013). Aging magnifies the effects of dopamine transporter and D2 receptor genes on backward serial memory. Neurobiology of Aging, 34(1), 358.e1–358.e10. https://doi.org/10.1016/j.neurobiolaging.2012.08.001.CrossRefGoogle ScholarPubMed
Li, X., Salami, A., Avelar-Pereira, B., Bäckman, L., & Persson, J. (2022). White-matter integrity and working memory: Links to aging and dopamine-related genes. eNeuro, 9 (2), ENEURO.0413-21.2022; https://doi.org/10.1523/ENEURO.0413-21.2022.CrossRefGoogle ScholarPubMed
Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259289. https://doi.org/10.1146/annurev.psych.58.110405.085654.CrossRefGoogle ScholarPubMed
Light, L. L. (1992). The organization of memory in old age. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The Handbook of Aging and Cognition (pp. 111165). Hillsdale: Lawrence Erlbaum Associates, Inc.Google Scholar
Light, L. L., & Singh, A. (1987). Implicit and explicit memory in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 531541.Google ScholarPubMed
Lighthall, N. R., Pearson, J. M., Huettel, S. A., & Cabeza, R. (2018). Feedback-based learning in aging: Contributions and trajectories of change in striatal and hippocampal systems. The Journal of Neuroscience, 38(39), 84538462. https://doi.org/10.1523/JNEUROSCI.0769-18.2018.CrossRefGoogle ScholarPubMed
Lim, Y. Y., Villemagne, V. L., Pietrzak, R. H., et al. (2015). APOE ε4 moderates amyloidrelated memory decline in preclinical Alzheimer’s disease. Neurobiology of Aging, 36(3), 12391244.CrossRefGoogle ScholarPubMed
Limbert, M. J., Coleman, J. A., & Gutchess, A. H. (2018). Effects of aging on general and specific memory for impressions. Collabra: Psychology, 4(1), 17. http://doi.org/10.1525/collabra.109.CrossRefGoogle ScholarPubMed
Lin, F. R., Ferrucci, L., An, Y., et al. (2014). Association of hearing impairment with brain volume changes in older adults. NeuroImage, 90, 8492.CrossRefGoogle ScholarPubMed
Lin, F. R., Pike, J. R., Albert, M. S., et al. ( 2023). Hearing intervention versus health education control to reduce cognitive decline in older adults with hearing loss in the USA (ACHIEVE): a multicentre, randomised controlled trial. Lancet. 10. https://doi.org/10.1016/S0140-6736(23)01406-X.Google Scholar
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339355.CrossRefGoogle Scholar
Liu, L., Ding, X., Li, H., et al. (2021). Reduced listener–speaker neural coupling underlies speech understanding difficulty in older adults. Brain Structure and Function, 226, 15711584. https://doi.org/10.1007/s00429-021-02271-2.CrossRefGoogle ScholarPubMed
Löckenhoff, C. E. (2018). Aging and decision-making: A conceptual framework for future research – A mini-review. Gerontology, 64(2), 140148. https://doi.org/10.1159/000485247.CrossRefGoogle ScholarPubMed
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33(5), 827840.CrossRefGoogle ScholarPubMed
Lu, W., Sun, Y., Gao, H., & Qiu, J. (2023). A review of multi-modal magnetic resonance imaging studies on perimenopausal brain: A hint towards neural heterogeneity. European radiology, 33(8), 52825297. https://doi.org/10.1007/s00330-023-09549-5.CrossRefGoogle Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique (2nd ed. ). Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., & Kappenman, E. S. (2012). Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
Luders, E., & Cherbuin, N. (2016). Searching for the philosopher’s stone: Promising links between meditation and brain preservation. Annals of the New York Academy of Sciences, 1373(1), 3844. https://doi.org/10.1111/nyas.13082.CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 1680816813.CrossRefGoogle ScholarPubMed
Lustig, C., & Buckner, R. L. (2004). Preserved neural correlates of priming in old age and dementia. Neuron, 42(5), 865875.CrossRefGoogle ScholarPubMed
Lustig, C., Snyder, A. Z., Bhakta, M., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 1450414509. https://doi.org/10.1073/pnas.2235925100.CrossRefGoogle ScholarPubMed
Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14(6), 647654. https://doi.org/10.1093/cercor/bhh025.CrossRefGoogle ScholarPubMed
Madan, C. R. (2015). Creating 3D visualizations of MRI data: A brief guide. F1000Res, 4, 466. https://doi.org/10.12688/f1000research.6838.1.CrossRefGoogle Scholar
Madden, D. J., Parks, E. L., Davis, S. W., et al. (2014). Age mediation of frontoparietal activation during visual feature search. NeuroImage, 102, 262274.CrossRefGoogle ScholarPubMed
Madden, D. J., Turkington, T. G., Provenzale, J. M., Hawk, T. C., Hoffman, J. M., & Coleman, R. E. (1997). Selective and divided visual attention: age-related changes in regional cerebral blood flow measured by H2 (15)O PET. Human Brain Mapping, 5(6), 389409. https://doi.org/10.1002/(sici)1097-0193(1997)5:6%3C389::aid-hbm1%3E3.0.co;2-#.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Madden, D. J., Whiting, W. L., Cabeza, R., & Huettel, S. A. (2004). Age-related preservation of top-down attentional guidance during visual search. Psychology and Aging, 19(2), 304309.CrossRefGoogle ScholarPubMed
Madden, D. J., Whiting, W. L., Huettel, S. A., White, L. E., MacFall, J. R., & Provenzale, J. M. (2004). Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. NeuroImage, 21(3), 11741181. https://doi.org/10.1016/j.neuroimage.2003.11.004.CrossRefGoogle ScholarPubMed
Maguire, E. A., & Frith, C. D. (2003). Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain, 126(7), 15111523.CrossRefGoogle ScholarPubMed
Maillet, D., & Rajah, M. N. (2014). Age-related differences in brain activity in the subsequent memory paradigm: A meta-analysis. Neuroscience & Biobehavioral Reviews, 45, 246257.CrossRefGoogle ScholarPubMed
Manan, H. A., Franz, E. A., Yusoff, A. N., & Mukari, S. Z.-M. S. (2015). The effects of aging on the brain activation pattern during a speech perception task: An fMRI study. Aging Clinical and Experimental Research, 27(1), 2736.CrossRefGoogle ScholarPubMed
Manenti, R., Brambilla, M., Petesi, M., Ferrari, C., & Cotelli, M. (2013). Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Frontiers in Aging Neuroscience, 5, Article 49. https://doi.org/10.3389/fnagi.2013.00049.CrossRefGoogle Scholar
Manenti, R., Sandrini, M., Gobbi, E., et al. (2017). Strengthening of existing episodic memories through non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints. Frontiers in Aging Neuroscience, 9, Article 401. https://doi.org/10.3389/fnagi.2017.00401.CrossRefGoogle ScholarPubMed
Manza, P., Zhang, S., Li, C. S. R., & Leung, H. C. (2015). Resting-state functional connectivity of the striatum in early-stage Parkinson’s disease: Cognitive decline and motor symptomatology. Human Brain Mapping, 37(2), 648662.CrossRefGoogle ScholarPubMed
Mark, R. E., & Rugg, M. D. (1998). Age effects on brain activity associated with episodic memory retrieval. Brain, 121, 861873.CrossRefGoogle ScholarPubMed
Martin, C. B., Hong, B., Newsome, R. N., et al. (2022). A smartphone intervention that enhances real-world memory and promotes differentiation of hippocampal activity in older adults. Proceedings of the National Academy of Sciences of the United States of America, 119 (51), e2214285119. https://doi.org/10.1073/pnas.2214285119.CrossRefGoogle ScholarPubMed
Martin, S., Al Khleifat, A., & Al-Chalabi, A. (2017). What causes amyotrophic lateral sclerosis? F1000Res, 6, 371. https://doi.org/10.12688/f1000research.10476.1.CrossRefGoogle ScholarPubMed
Martinelli, P., Sperduti, M., Devauchelle, A.-D., et al. (2013). Age-related changes in the functional network underlying specific and general autobiographical memory retrieval: A pivotal role for the anterior cingulate cortex. PLoSOne, 8(12), e82385.CrossRefGoogle ScholarPubMed
Martins, B., Ponzio, A., Velasco, R., Kaplan, J., & Mather, M. (2015). Dedifferentiation of emotion regulation strategies in the aging brain. Social Cognitive and Affective Neuroscience, 10(6), 840847. https://doi.org/10.1093/scan/nsu129.CrossRefGoogle ScholarPubMed
Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences, 1235, 1829. https://doi.org/10.1111/j.1749-6632.2011.06200.x.CrossRefGoogle ScholarPubMed
Mather, M. (2012). The emotion paradox in the aging brain. Annals of the New York Academy of Sciences, 1251, 3349. https://doi.org/10.1111/j.1749-6632.2012.06471.x.CrossRefGoogle ScholarPubMed
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213238. https://doi.org/10.1146/annurev-psych-122414-033540.CrossRefGoogle ScholarPubMed
Mather, M. (2024). The emotion paradox in the aging body and brain. PsyArXiv. https://doi.org/10.31234/osf.io/v8p3e.CrossRefGoogle Scholar
Mather, M., Canli, T., English, T., et al. (2004). Amygdala responses to emotionally valenced stimuli in older and younger adults. Psychological Science, 15(4), 259263.CrossRefGoogle ScholarPubMed
Mather, M., & Carstensen, L. L. (2003). Aging and attentional biases for emotional faces. Psychological Science, 14(5), 409415.CrossRefGoogle ScholarPubMed
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496502. https://doi.org/10.1016/j.tics.2005.08.005.CrossRefGoogle ScholarPubMed
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. The Behavioral and Brain Sciences, 39, e200. https://doi.org/10.1017/S0140525X15000667.CrossRefGoogle ScholarPubMed
Mather, M., & Knight, M. (2005). Goal-directed memory: The role of cognitive control in older adults’ emotional memory. Psychology and Aging, 20(4), 554570.CrossRefGoogle ScholarPubMed
Mather, M., Mazar, N., Gorlick, M. A., et al. (2012). Risk preferences and aging: The “certainty effect” in older adults’ decision making. Psychology and Aging, 27(4), 801816. https://doi.org/10.1037/a0030174.CrossRefGoogle Scholar
Mattay, V. S., Fera, F., Tessitore, A., et al. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58(4), 630635.CrossRefGoogle ScholarPubMed
Matzen, L. E., & Benjamin, A. S. (2013). Older and wiser: Older adults’ episodic word memory benefits from sentence study contexts. Psychology and Aging, 28(3), 754767. https://doi.org/10.1037/a0032945.CrossRefGoogle ScholarPubMed
Maylor, E. A., Moulson, J. M., Muncer, A. M., & Taylor, L. A. (2002). Does performance on theory of mind tasks decline in old age? British Journal of Psychology, 93, 465485. https://doi.org/10.1348/000712602761381358.CrossRefGoogle ScholarPubMed
McCarrey, A. C., Henry, J. D., von Hippel, W., et al. (2012). Age differences in neural activity during slot machine gambling: An fMRI study. PLoS One, 7(11), e49787. https://doi.org/10.1371/journal.pone.0049787.CrossRefGoogle ScholarPubMed
McDonough, I. M. (2017). Beta-amyloid and cortical thickness reveal racial disparities in preclinical Alzheimer’s disease. NeuroImage: Clinical, 16, 659667. https://doi.org/10.1016/j.nicl.2017.09.014.CrossRefGoogle ScholarPubMed
McDonough, I. M., Cervantes, S. N., Gray, S. J., & Gallo, D. A. (2014). Memory’s aging echo: Age-related decline in neural reactivation of perceptual details during recollection. NeuroImage, 98, 346358.CrossRefGoogle ScholarPubMed
McDonough, I. M., Festini, S. B., & Wood, M. M. (2020). Risk for Alzheimer’s disease: A review of long-term episodic memory encoding and retrieval fMRI studies. Ageing Research Reviews, 62, 101133. https://doi.org/10.1016/j.arr.2020.101133.CrossRefGoogle ScholarPubMed
McDonough, I. M., Wong, J. T., & Gallo, D. A. (2013). Age-related differences in prefrontal cortex activity during retrieval monitoring: Testing the compensation and dysfunction accounts. Cerebral Cortex, 23(5), 10491060.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8(4), 367381.CrossRefGoogle ScholarPubMed
Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 1247012478. https://doi.org/10.1523/JNEUROSCI.5743-12.2013.CrossRefGoogle ScholarPubMed
Merenstein, J. L., Corrada, M. M., Kawas, C. H., & Bennett, I. J. (2021). Age affects white matter microstructure and episodic memory across the older adult lifespan. Neurobiology of Aging, 106, 282291.CrossRefGoogle ScholarPubMed
Merenstein, J. L., Mullin, H. A. & Madden, D. J. (2023). Age-related differences in frontoparietal activation for target and distractor singletons during visual search. Attention, Perception, & Psychophysics, 85, 749768. https://doi.org/10.3758/s13414-022-02640-x.CrossRefGoogle ScholarPubMed
Mirabito, G. & Verhaeghen, P. (2023). The effects of mindfulness interventions on older adults’ cognition: A meta-analysis. The Journals of Gerontology: Series B, 78, 394408. https://doi.org/10.1093/geronb/gbac143.CrossRefGoogle ScholarPubMed
Mishra, J., de Villers-Sidani, E., Merzenich, M., & Gazzaley, A. (2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84(5), 10911103.CrossRefGoogle ScholarPubMed
Mishra, J., Rolle, C., & Gazzaley, A. (2015). Neural plasticity underlying visual perceptual learning in aging. Brain Research, 1612, 140151.CrossRefGoogle ScholarPubMed
Mitchell, J. P. (2008). Contributions of functional neuroimaging to the study of social cognition. Current Directions in Psychological Science, 17(2), 142146. https://doi.org/10.1111/j.1467-8721.2008.00564.x.CrossRefGoogle Scholar
Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2004). Encoding-specific effects of social cognition on the neural correlates of subsequent memory. Journal of Neuroscience, 24(21), 49124917.CrossRefGoogle ScholarPubMed
Mitchell, K. J., Ankudowich, E., Durbin, K.A., Greene, E. J., & Johnson, M. K. (2013). Age-related differences in agenda-driven monitoring of format and task information. Neuropsychologia, 51(12), 24272441.CrossRefGoogle ScholarPubMed
Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638677.CrossRefGoogle ScholarPubMed
Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197206.CrossRefGoogle ScholarPubMed
Mitchell, K. J., Raye, C. L., Ebner, N. C., Tubridy, S. M., Frankel, H., & Johnson, M. K. (2009). Age-group differences in medial cortex activity associated with thinking about self-relevant agendas. Psychology and Aging, 24(2), 438449.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N., Emerson, M., Witzki, A., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Montague, P. R., Berns, G. S., Cohen, J. D., et al. (2002). Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage, 16(4), 11591164.CrossRefGoogle ScholarPubMed
Moran, J. M. (2013). Lifespan development: the effects of typical aging on theory of mind. Behavioural Brain Research, 237, 3240. https://doi.org/10.1016/j.bbr.2012.09.020.CrossRefGoogle ScholarPubMed
Moran, J. M., Jolly, E., & Mitchell, J. P. (2012). Social-cognitive deficits in normal aging. Journal of Neuroscience, 32(16), 55535561.CrossRefGoogle ScholarPubMed
Morand, A., Segobin, S., Lecouvey, G., et al. (2021). Brain substrates of time-based prospective memory decline in aging: A voxel-based morphometry and diffusion tensor imaging study. Cerebral Cortex, 31(1), 396409. https://doi.org/10.1093/cercor/bhaa232.CrossRefGoogle ScholarPubMed
Morand, A., Segobin, S., Lecouvey, G., et al. (2023). Alterations in resting-state functional connectivity associated to the age-related decline in time-based prospective memory. Cerebral Cortex, 33(8), 43744383, https://doi.org/10.1093/cercor/bhac349.CrossRefGoogle Scholar
Morcom, A. M., Li, J., & Rugg, M. D. (2007). Age effects on the neural correlates of episodic retrieval: Increased cortical recruitment with matched performance. Cerebral Cortex, 17(11), 24912506.CrossRefGoogle ScholarPubMed
Morelli, S. A., Leong, Y. C., Carlson, R. W., Kullar, M., & Zaki, J. (2018). Neural detection of socially valued community members. Proceedings of the National Academy of Sciences, 115(32), 81498154. www.pnas.org/cgi/doi/10.1073/pnas.1712811115.CrossRefGoogle ScholarPubMed
Moriguchi, Y., Negreira, A., Weierich, M., et al. (2011). Differential hemodynamic response in affective circuitry with aging: An fMRI study of novelty, valence, and arousal. Journal of Cognitive Neuroscience, 23(5), 10271041. https://doi.org/10.1162/jocn.2010.21527.CrossRefGoogle ScholarPubMed
Mormino, E. C., Betensky, R. A., Hedden, T., et al. (2014). Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology, 82(20), 17601767.CrossRefGoogle ScholarPubMed
Morrison, C., Dadar, M., Manera, A. L., & Collins, D. L. (2023). Racial differences in white matter hyperintensity burden in older adults. Neurobiology of Aging, 122, 112119. https://doi.org/10.1016/j.neurobiolaging.2022.11.012.CrossRefGoogle Scholar
Mowszowski, L., Hermens, D. F., Diamond, K., et al. (2012). Reduced mismatch negativity in mild cognitive impairment: Associations with neuropsychological performance. Journal of Alzheimer’s Disease, 30(1), 209219.CrossRefGoogle ScholarPubMed
Mueller, J. H., Wonderlich, S., & Dugan, K. (1986). Self-referent processing of age-specific material. Psychology and Aging, 1(4), 293299. https://doi.org/10.1037/0882-7974.1.4.293.CrossRefGoogle ScholarPubMed
Murphy, C. (2019). Olfactory and other sensory impairments in Alzheimer disease. Nature Reviews Neurology, 15(1), 1124. http://dx.doi.org/10.1038/s41582-018-0097-5.CrossRefGoogle ScholarPubMed
Murphy, N. A., & Isaacowitz, D. M. (2008). Preferences for emotional information in older and younger adults: A meta-analysis of memory and attention tasks. Psychology and Aging, 23, 263286.CrossRefGoogle ScholarPubMed
Murray, T., O’Brien, J., Sagiv, N., & Kumari, V. (2022). Changes in functional connectivity associated with facial expression processing over the working adult lifespan. Cortex, 151, 211223. https://doi.org/10.1016/j.cortex.2022.03.00.CrossRefGoogle ScholarPubMed
Murty, V. P., Ritchey, M., Adcock, R. A., & LaBar, K. S. (2010). fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 48(12), 34593469. https://doi.org/10.1016/j.neuropsychologia.2010.07.030.CrossRefGoogle ScholarPubMed
Mwilambwe-Tshilobo, L., Setton, R., Bzdok, D., Turner, G. R., & Spreng, R. N. (2023). Age differences in functional brain networks associated with loneliness and empathy. Network Neuroscience, 7(2), 496521. https://doi.org/10.1162/netn_a_00293.CrossRefGoogle ScholarPubMed
Nakamura, T., Ghilardi, M., Mentis, M., et al. (2001). Functional networks in motor sequence learning: Abnormal topographies in Parkinson’s disease. Human Brain Mapping, 12(1), 4260.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nashiro, K., Sakaki, M., Braskie, M. N., & Mather, M. (2017). Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiology of Aging, 54, 152162. https://doi.org/10.1016/j.neurobiolaging.2017.03.003.CrossRefGoogle ScholarPubMed
Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation? Gerontology, 58(2), 156163. https://doi.org/10.1159/000328465.CrossRefGoogle ScholarPubMed
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 11701187. https://doi.org/10.1037//0278-7393.26.5.1170.Google ScholarPubMed
Nessler, D., Friedman, D., Johnson, R., Jr., & Bersick, M. (2007). Does repetition engender the same retrieval processes in young and older adults? NeuroReport, 18(17), 18371840.CrossRefGoogle ScholarPubMed
Newsome, R. N., Duarte, A., & Barense, M. D. (2012). Reducing perceptual interference improves visual discrimination in mild cognitive impairment: Implications for a model of perirhinal cortex function. Hippocampus, 22(10), 19901999.CrossRefGoogle Scholar
Newsome, R. N., Dulas, M. R., & Duarte, A. (2012). The effects of aging on emotion-induced modulations of source retrieval ERPs: evidence for valence biases. Neuropsychologia, 50(14), 33703384. https://doi.org/10.1016/j.neuropsychologia.2012.09.024.CrossRefGoogle ScholarPubMed
Nielsen, L., & Mather, M. (2011). Emerging perspectives in social neuroscience and neuroeconomics of aging. Social Cognitive and Affective Neuroscience, 6(2), 149164. https://doi.org/10.1093/scan/nsr019.CrossRefGoogle ScholarPubMed
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Science, 10(9), 424430. https://doi.org/10.1016/j.tics.2006.07.005.CrossRefGoogle ScholarPubMed
North, M. S., & Fiske, S. T. (2012). An inconvenienced youth? Ageism and its potential intergenerational roots. Psychological Bulletin, 138(5), 982997. https://doi.org/10.1037/a0027843.CrossRefGoogle ScholarPubMed
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain – A meta-analysis of imaging studies of the self. NeuroImage, 31(1), 440457.CrossRefGoogle Scholar
Nosheny, R. L., Insel, P. S., Truran, D., et al. (2015). Variables associated with hippocampal atrophy rate in normal aging and mild cognitive impairment. Neurobiology of Aging, 36(1), 273282.CrossRefGoogle ScholarPubMed
Novak, M. J. U., Seunarine, K. K., Gibbard, C. R., et al. (2015). Basal ganglia-cortical structural connectivity in Huntington’s disease. Human Brain Mapping, 36(5), 17281740.CrossRefGoogle ScholarPubMed
Nyberg, L., Sandblom, J., Jones, S., et al. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 1372813733. https://doi.org/10.1073/pnas.1735487100.CrossRefGoogle ScholarPubMed
Oberlin, L. E., Verstynen, T. D., Burzynska, A. Z., et al. (2016). White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. NeuroImage, 131, 91101. https://doi.org/10.1016/j.neuroimage.2015.09.053.CrossRefGoogle ScholarPubMed
O’Brien, J. L., O’Keefe, K. M., LaViolette, P. S., et al. (2010). Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology, 74(24), 19691976. https://doi.org/10.1212/WNL.0b013e3181e3966e.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Science, 9(5), 242249. https://doi.org/10.1016/j.tics.2005.03.010.CrossRefGoogle ScholarPubMed
Oh, H. (2022). Extraversion is associated with lower brain beta-Amyloid deposition in cognitively normal older adults. Frontiers in Aging Neuroscience, 14, 900581. https://doi.org/10.3389/fnagi.2022.900581.CrossRefGoogle ScholarPubMed
Oh, H., & Jagust, W. J. (2013). Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid. Journal of Neuroscience, 33(47), 1842518437.CrossRefGoogle ScholarPubMed
Oishi, K., & Lyketsos, C. G. (2014). Alzheimer’s disease and the fornix. Frontiers in Aging Neuroscience, 6.CrossRefGoogle ScholarPubMed
Opitz, P. C., Lee, I. A., Gross, J. J., & Urry, H. L. (2014). Fluid cognitive ability is a resource for successful emotion regulation in older and younger adults. Frontiers in Psychology, 5, Article 609. https://doi.org/10.3389/fpsyg.2014.00609.CrossRefGoogle ScholarPubMed
Opitz, P. C., Rauch, L. C., Terry, D. P., & Urry, H. L. (2012). Prefrontal mediation of age differences in cognitive reappraisal. Neurobiology of Aging, 33(4), 645655. https://doi.org/10.1016/j.neurobiolaging.2010.06.004.CrossRefGoogle ScholarPubMed
Ossenkoppele, R., Pichet Binette, A., Groot, C., et al. (2022). Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nature Medicine, 28(11), 23812387. https://doi.org/10.1038/s41591-022-02049-x.CrossRefGoogle ScholarPubMed
Paige, L. E., Cassidy, B. S., Schacter, D. L., & Gutchess, A. H. (2016). Age differences in hippocampal activation during gist-based false recognition. Neurobiology of Aging, 46, 7683. https://doi.org/10.1016/j.neurobiolaging.2016.06.014.CrossRefGoogle ScholarPubMed
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299320.CrossRefGoogle ScholarPubMed
Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 1309113095.CrossRefGoogle ScholarPubMed
Park, D. C., & Reuter-Lorenz, P. A. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196.CrossRefGoogle ScholarPubMed
Park, D. C., Smith, A. D., Lautenschlager, G., et al. (1996). Mediators of long-term memory performance across the life span. Psychology and Aging, 11(4), 621637.CrossRefGoogle ScholarPubMed
Park, J., Carp, J., Kennedy, K. M., et al. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. Journal of Neuroscience, 32(6), 21542158.CrossRefGoogle ScholarPubMed
Park, S., Han, Y., Kim, B., & Dunkle, R. E. (2015). Aging in place of vulnerable older adults: person–environment fit perspective. Journal of Applied Gerontology, 36(11), 13271350. https://doi.org/10.1177/0733464815617286.CrossRefGoogle ScholarPubMed
Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 10101028.CrossRefGoogle ScholarPubMed
Peelle, J. E., Troiani, V., Grossman, M., & Wingfield, A. (2011). Hearing loss in older adults affects neural systems supporting speech comprehension. Journal of Neuroscience, 31(35), 1263812643.CrossRefGoogle ScholarPubMed
Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 10211032.CrossRefGoogle ScholarPubMed
Persson, J., Pudas, S., Lind, J., Kauppi, K., Nilsson, L.-G., & Nyberg, L. (2011). Longitudinal structure–function correlates in elderly reveal MTL dysfunction with cognitive decline. Cerebral Cortex, 22(10), 2297–1304.Google ScholarPubMed
Phillips, L. H., MacLean, R. D. J., & Allen, R. (2002). Age and the understanding of emotions: Neuropsychological and sociocognitive perspectives. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 57(6), P526P530.CrossRefGoogle ScholarPubMed
Pistono, A., Guerrier, L., Péran, P., et al. (2021). Increased functional connectivity supports language performance in healthy aging despite gray matter loss. Neurobiology of Aging, 98, 5262. https://doi.org/10.1016/j.neurobiolaging.2020.09.015.CrossRefGoogle ScholarPubMed
Pletnikova, O., Kageyama, Y., Rudow, G., et al. (2018). The spectrum of preclinical Alzheimer’s disease pathology and its modulation by ApoE genotype. Neurobiology of Aging, 71, 7280. https://doi.org/10.1016/j.neurobiolaging.2018.07.007.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 5963. https://doi.org/10.1016/j.tics.2005.12.004.CrossRefGoogle ScholarPubMed
Poletti, M., Enrici, I., & Adenzato, M. (2012). Cognitive and affective theory of mind in neurodegenerative diseases: Neuropsychological, neuroanatomical and neurochemical levels. Neuroscience & Biobehavioral Reviews, 36(9), 21472164.CrossRefGoogle ScholarPubMed
Poletti, M., Enrici, I., Bonuccelli, U., & Adenzato, M. (2011). Theory of mind in Parkinson’s disease. Behavioural Brain Research, 219(2), 342350.CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 21422154. https://doi.org/10.1016/j.neuroimage.2011.10.018.CrossRefGoogle ScholarPubMed
Prakash, R. S., De Leon, A. A., Patterson, B., Schirda, B. L., & Janssen, A. L. (2014). Mindfulness and the aging brain: A proposed paradigm shift. Frontiers in Aging Neuroscience, 6.CrossRefGoogle ScholarPubMed
Prakash, R. S., Fountain-Zaragoza, S., Kramer, A. F., Samimy, S., & Wegman, J. (2020). Mindfulness and attention: Current state-of-affairs and future considerations. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 4, 340367. https://doi.org/10.1007/s41465-019-00144-5.CrossRefGoogle ScholarPubMed
Prenderville, J. A., Kennedy, P. J., Dinan, T. G., & Cryan, J. F. (2015). Adding fuel to the fire: the impact of stress on the ageing brain. Trends in Neurosciences, 38(1), 1325.CrossRefGoogle Scholar
Pritschet, L., Santander, T., Taylor, C. M., et al. (2020). Functional reorganization of brain networks across the human menstrual cycle. NeuroImage, 220, 117091. https://doi.org/10.1016/j.neuroimage.2020.117091.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Baldwin, M. W., Dedovic, K., et al. (2005). Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. NeuroImage, 28(4), 815826.CrossRefGoogle Scholar
Pudas, S., Persson, J., Nilsson, L. G., & Nyberg, L. (2014). Midlifememory ability accounts for brain activity differences in healthy aging. Neurobiology of Aging, 35(11), 24952503. https://doi.org/10.1016/j.neurobiolaging.2014.05.022.CrossRefGoogle ScholarPubMed
Pulopulos, M. M., Almela, M., Hidalgo, V., Villada, C., Puig-Perez, S., & Salvador, A. (2013). Acute stress does not impair long-term memory retrieval in older people. Neurobiology of Learning and Memory, 104, 1624.CrossRefGoogle Scholar
Pur, D. R., Preti, M. G., de Ribaupierre, A., et al. (2022). Mapping of Structure-Function Age-Related Connectivity Changes on Cognition Using Multimodal MRI. Frontiers in Aging Neuroscience, 14, 757861. https://doi.org/10.3389/fnagi.2022.757861.CrossRefGoogle ScholarPubMed
Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default-mode network? NeuroImage, 57(3), 12211233. https://doi.org/10.1016/j.neuroimage.2011.05.028.CrossRefGoogle Scholar
Rana, M., Varan, A. Q., Davoudi, A., Cohen, R. A., Sitaram, R., & Ebner, N. C. (2016). Real-time fMRI in neuroscience research and its use in studying the aging brain. Frontiers in Aging Neuroscience, 8, 239. https://doi.org/10.3389/fnagi.2016.00239.CrossRefGoogle ScholarPubMed
Rankin, K. P., Salazar, A., Gorno-Tempini, M. L., et al. (2009). Detecting sarcasm from paralinguistic cues: Anatomic and cognitive correlates in neurodegenerative disease. NeuroImage, 47(4), 20052015.CrossRefGoogle ScholarPubMed
Rashid, B., Glasser, M. F., Nichols, T., et al. (2023). Cardiovascular and metabolic health is associated with functional brain connectivity in middle-aged and older adults: Results from the Human Connectome Project-Aging study. NeuroImage, 276, 120192. https://doi.org/10.1016/j.neuroimage.2023.120192.CrossRefGoogle ScholarPubMed
Raye, C. L., Mitchell, K. J., Reeder, J. A., Greene, E. J., & Johnson, M. K. (2008). Refreshing one of several active representations: Behavioral and functional magnetic resonance imaging differences between young and older adults. Journal of Cognitive Neuroscience, 20(5), 852862.CrossRefGoogle ScholarPubMed
Raz, N. (2000). Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In Craik, F. I. M. & Salthouse, T. A. (Eds.), The Handbook of Aging and Cognition (2nd ed., pp. 190). Mahwah: Lawrence Erlbaum Associates, Inc.Google Scholar
Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. NeuroImage, 51(2), 501511. https://doi.org/10.1016/j.neuroimage.2010.03.020.CrossRefGoogle ScholarPubMed
Raz, N., Lindenberger, U., Rodrigue, K. M., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 16761689.CrossRefGoogle ScholarPubMed
Reagh, Z. M., Delarazan, A. I., Garber, A., & Ranganath, C. (2020). Aging alters neural activity at event boundaries in the hippocampus and posterior medial network. Nature Communications, 11, 3980. https://doi.org/10.1038/s41467-020-17713-4.CrossRefGoogle ScholarPubMed
Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29(1), 115. https://doi.org/10.1037/a0035194.CrossRefGoogle ScholarPubMed
Ren, P., Luo, G., Huang, J., Tan, M., Wu, D., & Rong, H. (2023) Aging-related changes in reward-based decision-making depend on punishment frequency: An fMRI study. Frontiers in Aging Neuroscience, 15, 1078455. https://doi.org/10.3389/fnagi.2023.1078455.CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. https://doi.org/10.1111/j.1467-8721.2008.00570.x.CrossRefGoogle Scholar
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174187.CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A., Marshuetz, C., Jonides, J., Smith, E. E., Hartley, A., & Koeppe, R. (2001). Neurocognitive ageing of storage and executive processes. European Journal of Cognitive Psychology, 13(1–2), 257278.CrossRefGoogle Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065-014-9270-9.CrossRefGoogle ScholarPubMed
Rhodes, M. G., & Anastasi, J. S. (2012). The own-age bias in face recognition: A meta-analytic and theoretical review. Psychological Bulletin, 138(1), 146174. https://doi.org/10.1037/a0025750.CrossRefGoogle ScholarPubMed
Rhodes, S., Greene, N. R. & Naveh-Benjamin, M. (2019). Age-related differences in recall and recognition: A meta-analysis. Psychonomic Bulletin and Review, 26, 15291547. https://doi.org/10.3758/s13423-019-01649-y.CrossRefGoogle ScholarPubMed
Rieck, J. R., Baracchini, G., & Grady, C. L. (2021). Contributions of brain function and structure to three different domains of cognitive control in normal aging. Journal of Cognitive Neuroscience, 33 (9), 18111832. https://doi.org/10.1162/jocn_a_01685.CrossRefGoogle ScholarPubMed
Rieck, J. R., Baracchini, G., Nichol, D., Abdi, H., & Grady, C. L. (2021). Reconfiguration and dedifferentiation of functional networks during cognitive control across the adult lifespan. Neurobiology of Aging, 106, 8094. https://doi.org/10.1016/j.neurobiolaging.2021.03.019.CrossRefGoogle ScholarPubMed
Rieck, J. R., Rodrigue, K. M., Park, D. C., & Kennedy, K. M. (2020). White matter microstructure predicts focal and broad functional brain dedifferentiation in normal aging. Journal of Cognitive Neuroscience, 32(8), 15361549. https://doi.org/https://doi.org/10.1162/jocn_a_01562.CrossRefGoogle ScholarPubMed
Riecker, A., Gröschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage, 32(3), 13451354.CrossRefGoogle ScholarPubMed
Rieckmann, A., Fischer, H., & Bäckman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance. NeuroImage, 50(3), 13031312.CrossRefGoogle ScholarPubMed
Ritchey, M., Bessette-Symons, B., Hayes, S. M., & Cabeza, R. (2011). Emotion processing in the aging brain is modulated by semantic elaboration. Neuropsychologia, 49(4), 640650. https://doi.org/10.1016/j.neuropsychologia.2010.09.009.CrossRefGoogle ScholarPubMed
Ritchie, S. J., Dickie, D. A., Cox, S. R., et al. (2017). Brain structural differences between 73- and 92-year-olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging, 62, 146158. https://doi.org/10.1016/j.neurobiolaging.2017.10.005.CrossRefGoogle ScholarPubMed
Roalf, D. R., Pruis, T. A., Stevens, A. A., & Janowsky, J. S. (2011). More is less: Emotion induced prefrontal cortex activity habituates in aging. Neurobiology of Aging, 32(9), 16341650. https://doi.org/10.1016/j.neurobiolaging.2009.10.007.CrossRefGoogle ScholarPubMed
Roberts, S. O., Bareket-Shavit, C., Dollins, F. A., Goldie, P. D., & Mortenson, E. (2020). Racial inequality in psychological research: Trends of the past and recommendations for the future. Perspectives on Psychological Science, 15(6), 12951309. https://doi.org/10.1177/1745691620927709.CrossRefGoogle ScholarPubMed
Robinson, T., Klinger, H., Buckley, R., et al. (2023). Subjective cognitive decline across ethnoracial groups in the A4 study. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 19(9), 40844093. https://doi.org/10.1002/alz.13138.CrossRefGoogle ScholarPubMed
Rodrigue, K. M., Daugherty, A. M., Foster, C. M., & Kennedy, K. M. (2020). Striatal iron content is linked to reduced fronto-striatal brain function under working memory load. NeuroImage, 210, 116544. https://doi.org/10.1016/j.neuroimage.2020.116544.CrossRefGoogle ScholarPubMed
Rodrigue, K. M., & Raz, N. (2004). Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. Journal of Neuroscience, 24(4), 956963. https://doi.org/10.1523/JNEUROSCI.4166-03.2004.CrossRefGoogle ScholarPubMed
Rogers, C. S., Jones, M. S., McConkey, S., et al. (2020). Age-related differences in auditory cortex activity during spoken word recognition. Neurobiology of Language, 1(4), 452473. https://doi.org/10.1162/nol_a_00021.CrossRefGoogle ScholarPubMed
Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology, 35(9), 677688.CrossRefGoogle ScholarPubMed
Rosa, N. M., & Gutchess, A. H. (2011). Source memory for actions in young and older adults: Self vs. close or unknown others. Psychology and Aging, 26, 625630. https://doi.org/10.1037/a0022827.CrossRefGoogle ScholarPubMed
Rosa, N. M., & Gutchess, A. H. (2013). False memory in aging resulting from self-referential processing. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 68B(6), 882892. https://doi.org/10.1093/geronb/gbt018.CrossRefGoogle Scholar
Rosano, C., Venkatraman, V. K., Guralnik, J., et al. (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(6), 639647.CrossRefGoogle ScholarPubMed
Rosenbaum, R. S., Furey, M. L., Horwitz, B., & Grady, C. L. (2010). Altered connectivity among emotion-related brain regions during short-term memory in Alzheimer’s disease. Neurobiology of Aging, 31(5), 780786.CrossRefGoogle ScholarPubMed
Ross, L. A., McCoy, D., Coslett, H. B., Olson, I. R., & Wolk, D. A. (2011). Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Frontiers in Aging Neuroscience, 3, Article 16. https://doi.org/10.3389/fnagi.2011.00016.CrossRefGoogle ScholarPubMed
Rossi, S., Miniussi, C., Pasqualetti, P., Babiloni, C., Rossini, P. M., & Cappa, S. F. (2004). Age-related functional changes of prefrontal cortex in long-term memory: A repetitive transcranial magnetic stimulation study. Journal of Neuroscience, 24(36), 79397944. https://doi.org/10.1523/jneurosci.0703-04.2004.CrossRefGoogle ScholarPubMed
Ruby, P., Fabienne, C., D’Argembeau, A., et al. (2009). Perspective taking to assess self-personality: What’s modified in Alzheimer’s disease. Neurobiology of Aging, 30, 16371651. https://doi.org/10.1016.2007.12.014.CrossRefGoogle ScholarPubMed
Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32(4), 863881. https://doi.org/10.1016/j.neubiorev.2008.01.001.CrossRefGoogle ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 11611178. https://doi.org/10.1037/h0077714.CrossRefGoogle Scholar
Rypma, B., & D’Esposito, M. (2001). Age-related changes in brain–behaviour relationships: Evidence from event-related functional MRI studies. European Journal of Cognitive Psychology, 13(1–2), 235256.CrossRefGoogle Scholar
Sakaki, M., Nga, L., & Mather, M. (2013). Amygdala functional connectivity with medial prefrontal cortex at rest predicts the positivity effect in older adults’ memory. Journal of Cognitive Neuroscience, 25(8), 12061224. https://doi.org/10.1162/jocn_a_00392.CrossRefGoogle ScholarPubMed
Sala, G., Nishita, Y., Tange, C., et al. (2023). No appreciable effect of education on aging-associated declines in cognition: A 20-year follow-up study. Psychological Science, 34(5), 527536. https://doi.org/10.1177/09567976231156793.CrossRefGoogle ScholarPubMed
Sala-Llonch, R., Bartrés-Faz, D., & Junqué, C. (2015). Reorganization of brain networks in aging: A review of functional connectivity studies. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
Salat, D. H., Buckner, R. L., Snyder, A. Z., et al. (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721730.CrossRefGoogle ScholarPubMed
Salat, D. H., Tuch, D. S., Hevelone, N. D., et al. (2005). Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Annals of the New York Academy of Science, 1064, 3749. https://doi.org/10.1196/annals.1340.009.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428.CrossRefGoogle ScholarPubMed
Salthouse, T. A. (2017). Shared and unique influences on age-related cognitive change. Neuropsychology, 31(1), 1119. https://doi.org/10.1037/neu0000330.CrossRefGoogle ScholarPubMed
Salthouse, T. A., & Babcock, R. L. (1991). Decomposing adult age-differences in working memory. Developmental Psychology, 27(5), 763776.CrossRefGoogle Scholar
Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787791. https://doi.org/10.1038/nn1894.CrossRefGoogle Scholar
Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews Neuroscience, 16(5), 278289. https://doi.org/10.1038/nrn3917.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. Journal of Neuroscience, 30(4), 14261434. https://doi.org/10.1523/JNEUROSCI.4902-09.2010.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., Levens, S. M., Perry, L. M., Dougherty, R. F., & Knutson, B. (2012). Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. Journal of Neuroscience, 32(15), 53335337. https://doi.org/10.1523/JNEUROSCI.5756-11.2012.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., Mata, R., Radu, P. T., Ballard, I. C., Carstensen, L. L., & McClure, S. M. (2011). Age differences in striatal delay sensitivity during intertemporal choice in healthy adults. Frontiers in Neuroscience, 5, Article 126. https://doi.org/10.3389/fnins.2011.00126.CrossRefGoogle ScholarPubMed
Samanez-Larkin, G. R., Worthy, D. A., Mata, R., McClure, S. M., & Knutson, B. (2014). Adult age differences in frontostriatal representation of prediction error but not reward outcome. Cognitive, Affective, and Behavioral Neuroscience, 14(2), 672682. https://doi.org/10.3758/s13415-014-0297-4.CrossRefGoogle Scholar
Sanches, C., Stengel, C., Godard, J., et al. (2021). Past, present, and future of non-invasive brain stimulation approaches to treat cognitive impairment in neurodegenerative diseases: Time for a comprehensive critical review. Frontiers in Aging Neuroscience, 12, 578339. https://doi.org/10.3389/fnagi.2020.578339.CrossRefGoogle ScholarPubMed
Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2012). Amplitude modulations and inter-trial phase stability of alpha-oscillations differentially reflect working memory constraints across the lifespan. NeuroImage, 59(1), 646654.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8(9), 657661. https://doi.org/10.1038/nrn2213.CrossRefGoogle ScholarPubMed
Schacter, D. L., Guerin, S. A., &, St. Jacques, P.L . (2011). Memory distortion: An adaptive perspective. Trends in Cognitive Sciences, 15, 467474.CrossRefGoogle ScholarPubMed
Schacter, D. L., & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44(1), 149160.CrossRefGoogle ScholarPubMed
Schaefer, J. D., Caspi, A., Belsky, D. W., et al. (2016). Early-life intelligence predicts midlife biological age. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 12(6), 968977. https://doi.org/10.1093/geronb/gbv035.CrossRefGoogle Scholar
Schiller, D., Freeman, J. B., Mitchell, J. P., Uleman, J. S., & Phelps, E. A. (2009). A neural mechanism of first impressions. Nature Neuroscience, 12, 508514.CrossRefGoogle ScholarPubMed
Schmitz, T. W., Cheng, F. H., & De Rosa, E. (2010). Failing to ignore: Paradoxical neural effects of perceptual load on early attentional selection in normal aging. Journal of Neuroscience, 30(44), 1475014758.CrossRefGoogle ScholarPubMed
Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., et al. (2010). Span, CRUNCH, and beyond: working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655669.CrossRefGoogle ScholarPubMed
Schröder, J., & Pantel, J. (2016). Neuroimaging of hippocampal atrophy in early recognition of Alzheimer’s disease – A critical appraisal after two decades of research. Psychiatry Research: Neuroimaging, 247, 7178.CrossRefGoogle ScholarPubMed
Seaman, K. L., Abiodun, S. J., Fenn, Z., Samanez-Larkin, G. R., & Mata, R. (2022). Temporal discounting across adulthood: A systematic review and meta-analysis. Psychology and Aging, 37(1), 111124. https://doi.org/10.1037/pag0000634.CrossRefGoogle ScholarPubMed
Seaman, K. L., Christensen, A. P., Senn, K. D., Cooper, J. A., & Cassidy, B. S. (2023). Age-related differences in the social associative learning of trust information. Neurobiology of Aging, 125, 3240. https://doi.org/10.1016/j.neurobiolaging.2023.01.011.CrossRefGoogle ScholarPubMed
Seaman, K. L., Gorlick, M. A., Vekaria, K. M., Hsu, M., Zald, D. H., & Samanez-Larkin, G. R. (2016). Adult age differences in decision making across domains: Increased discounting of social and health-related rewards. Psychology and Aging, 31(7), 737746. https://doi.org/10.1037/pag0000131.CrossRefGoogle ScholarPubMed
Seaman, K. L., Leong, J. K., Wu, C. C., Knutson, B., & Samanez-Larkin, G. R. (2017). Individual differences in skewed financial risk-taking across the adult life span. Cognitive, Affective, and Behavioral Neuroscience, 17(6), 12321241. https://doi.org/10.3758/s13415-017-0545-5.CrossRefGoogle ScholarPubMed
Sebastian, A., Baldermann, C., Feige, B., et al. (2013). Differential effects of age on subcomponents of response inhibition. Neurobiology of Aging, 34(9), 21832193.CrossRefGoogle ScholarPubMed
Sedek, G., Hess, T., and Touron, D. (2021), Multiple Pathways of Cognitive Aging: Motivational and Contextual Influences. New York: Oxford Academic.CrossRefGoogle Scholar
Seidler, R. D., Bernard, J. A., Burutolu, T. B., et al. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721733.CrossRefGoogle ScholarPubMed
Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2013). A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. American Journal of Geriatric Psychiatry, 21(2), 184195.CrossRefGoogle ScholarPubMed
Shafto, M. A., & Tyler, L. K. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346(6209), 583587.CrossRefGoogle Scholar
Shany-Ur, T., Lin, N., Rosen, H. J., Sollberger, M., Miller, B. L., & Rankin, K. P. (2014). Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention. Brain, 137(8), 23682381.CrossRefGoogle ScholarPubMed
Shany-Ur, T., Poorzand, P., Grossman, S. N., et al. (2012). Comprehension of insincere communication in neurodegenerative disease: Lies, sarcasm, and theory of mind. Cortex, 48(10), 13291341.CrossRefGoogle ScholarPubMed
Shany-Ur, T., & Rankin, K. P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550555.CrossRefGoogle ScholarPubMed
Shaw, J. S., & Hosseini, S. M. H. (2021). The effect of baseline performance and age on cognitive training improvements in older adults: A qualitative review. The Journal of Prevention of Alzheimer’s Disease, 8, 100109. https://doi.org/10.14283/jpad.2020.55.CrossRefGoogle ScholarPubMed
Slade, K., Plack, C. J., & Nuttall, H. E. (2020). The effects of age-related hearing loss on the brain and cognitive function. Trends in Neurosciences, 43(10), 810821. https://doi.org/10.1016/j.tins.2020.07.005.CrossRefGoogle ScholarPubMed
Smart, C. M., Segalowitz, S. J., Mulligan, B. P., & MacDonald, S. W. (2014). Attention capacity and self-report of subjective cognitive decline: A P3 ERP study. Biological Psychology, 103, 144151.CrossRefGoogle ScholarPubMed
Smith, A. D., Park, D. C., Cherry, K., & Berkovsky, K. (1990). Age differences in memory for concrete and abstract pictures. Journal of Gerontology, 45(5), P205209.CrossRefGoogle ScholarPubMed
Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 1206112068.CrossRefGoogle ScholarPubMed
Smith, E. T., Hennessee, J. P., Wig, G. S., et al. (2023). Longitudinal changes in grey matter correspond to changes in cognition across the lifespan: Implications for theories of cognition. Neurobiology of Aging. 129, 114. https://doi.org/10.1016/j.neurobiolaging.2023.04.014.CrossRefGoogle ScholarPubMed
Song, S., Stern, Y. & Gu, Y. (2022). Modifiable lifestyle factors and cognitive reserve: A systematic review of current evidence. Ageing Research Reviews, 74, 101551. https://doi.org/10.1016/j.arr.2021.101551.CrossRefGoogle ScholarPubMed
Soshi, T., Andersson, M., Kawagoe, T. et al. (2021). Prefrontal plasticity after a 3-month exercise intervention in older adults relates to enhanced cognitive performance. Cerebral Cortex, 31, 45014517. https://doi.org/10.1093/cercor/bhab102.CrossRefGoogle ScholarPubMed
Spencer, W. D., & Raz, N. (1995). Differential effects of aging on memory for content and context: A meta-analysis. Psychology and Aging, 10(4), 527539. https://doi.org/10.1037//0882–7974.10.4.527.CrossRefGoogle ScholarPubMed
Sperling, R. A., Aisen, P. S., Beckett, L. A., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia, 7(3), 280292. https://doi.org/10.1016/j.jalz.2011.03.003.CrossRefGoogle ScholarPubMed
Sperling, R. A., Bates, J. F., Chua, E. F., et al. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74(1), 4450.CrossRefGoogle Scholar
Sperling, R. A., LaViolette, P. S., O’Keefe, K., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178188.CrossRefGoogle ScholarPubMed
Spreng, R. N., Cassidy, B. N., Darboh, B. S., et al. (2017). Financial exploitation is associated with structural and functional brain differences in healthy older adults. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(10), 13651368. https://doi.org/10.1093/gerona/glx051.CrossRefGoogle ScholarPubMed
Spreng, R. N., & Schacter, D. L. (2012). Default network modulation and large-scale network interactivity in healthy young and old adults. Cerebral Cortex, 22(11), 26102621. https://doi.org/10.1093/cercor/bhr339.CrossRefGoogle ScholarPubMed
Spreng, R. N., Stevens, W. D., Viviano, J. D., & Schacter, D. L. (2016). Attenuated anticorrelation between the default and dorsal attention networks with aging: Evidence from task and rest. Neurobiology of Aging, 45, 149160. https://doi.org/10.1016/j.neurobiolaging.2016.05.020.CrossRefGoogle ScholarPubMed
Spreng, R. N., & Turner, G. R. (2019). The shifting architecture of cognition and brain function in older adulthood. Perspectives on Psychological Science, 14(4), 523542. https://doi.org/10.1177/1745691619827511.CrossRefGoogle ScholarPubMed
Sreedharan, S., Chandran, A., Yanamala, V. R., Sylaja, P. N., Kesavadas, C., & Sitaram, R. (2020). Self-regulation of language areas using real-time functional MRI in stroke patients with expressive aphasia. Brain Imaging and Behavior, 14(5), 17141730. https://doi.org/10.1007/s11682-019-00106-7.CrossRefGoogle ScholarPubMed
Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51(12), 24422449.CrossRefGoogle ScholarPubMed
Stark, S. M., Yassa, M. A., & Stark, C. E. L. (2010). Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learning & Memory, 17(6), 284288.CrossRefGoogle ScholarPubMed
Stebbins, G. T., Carrillo, M. C., Dorfman, J., et al. (2002). Aging effects on memory encoding in the frontal lobes. Psychology and Aging, 17(1), 4455.CrossRefGoogle ScholarPubMed
Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797811.CrossRefGoogle ScholarPubMed
Stephens, J. A., & Berryhill, M. E. (2016). Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulation, 9(4), 553559. https://doi.org/10.1016/j.brs.2016.04.001.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.CrossRefGoogle ScholarPubMed
Stern, Y., Albert, M., Barnes, C. A., Cabeza, R., Pascual-Leone, A., & Rapp, P. R. (2023). A framework for concepts of reserve and resilience in aging. Neurobiology of Aging, 124, 100103.CrossRefGoogle ScholarPubMed
Stevens, W. D., Hasher, L., Chiew, K. S., & Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. Journal of Neuroscience, 28(48), 1282012824.CrossRefGoogle ScholarPubMed
St Jacques, P. L., Bessette-Symons, B., & Cabeza, R. (2009). Functional neuroimaging studies of aging and emotion: Fronto-amygdalar differences during emotional perception and episodic memory. Journal of the International Neuropsychology Society, 15(6), 819825. https://doi.org/10.1017/S1355617709990439.CrossRefGoogle ScholarPubMed
St Jacques, P. L., Dolcos, F., & Cabeza, R. (2009). Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: A network analysis of functional magnetic resonance imaging data. Psychological Science, 20(1), 7484. https://doi.org/10.1111/j.1467-9280.2008.02258.x.CrossRefGoogle ScholarPubMed
St Jacques, P. L., Dolcos, F., & Cabeza, R. (2010). Effects of aging on functional connectivity of the amygdala during negative evaluation: A network analysis of fMRI data. Neurobiology of Aging, 31(2), 315327. https://doi.org/10.1016/j.neurobiolaging.2008.03.012.CrossRefGoogle ScholarPubMed
St Jacques, P. L., Dolcos, F., & Cabeza, R. (2012). Age-related effects on the neural correlates of autobiographical memory retrieval. Neurobiology of Aging, 33(7), 12981310.CrossRefGoogle ScholarPubMed
St-Laurent, M., Abdi, H., Bondad, A., & Buchsbaum, B. R. (2014). Memory reactivation in healthy aging: Evidence of stimulus-specific dedifferentiation. Journal of Neuroscience, 34(12), 41754186. https://doi.org/10.1523/JNEUROSCI.3054-13.2014.CrossRefGoogle ScholarPubMed
St-Laurent, M., Abdi, H., Burianová, H., & Grady, C. L. (2011). Influence of aging on the neural correlates of autobiographical, episodic, and semantic memory retrieval. Journal of Cognitive Neuroscience, 23(12), 41504163.CrossRefGoogle ScholarPubMed
Sturm, V. E., Yokoyama, J. S., Seeley, W. W., Kramer, J. H., Miller, B. L., & Rankin, K. P. (2013). Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 99449949.CrossRefGoogle ScholarPubMed
Su, Y. S., Chen, J. T., Tang, Y. J., Yuan, S. Y., McCarrey, A. C., & Goh, J. O. S. (2018). Age-related differences in striatal, medial temporal, and frontal involvement during value-based decision processing. Neurobiology of Aging, 69, 185198. https://doi.org/10.1016/j.neurobiolaging.2018.05.01.CrossRefGoogle ScholarPubMed
Subramaniapillai, S., Almey, A., Rajah, N. M., & Einstein, G. (2021). Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. Frontiers in Neuroendocrinology, 60, 100879. https://doi.org/10.1016/j.yfrne.2020.100879.CrossRefGoogle ScholarPubMed
Subramaniapillai, S., Rajagopal, S., Ankudowich, E., Pasvanis, S., Misic, B., & Rajah, M. N. (2022). Age- and episodic memory-related differences in task-based functional connectivity in women and men. Journal of Cognitive Neuroscience, 34(8), 15001520. https://doi.org/10.1162/jocn_a_01868.CrossRefGoogle ScholarPubMed
Subramaniapillai, S., Rajagopal, S., Elshiekh, A., Pasvanis, S., Ankudowich, E., & Rajah, M. N. (2019). Sex differences in the neural correlates of spatial context memory decline in healthy aging. Journal of Cognitive Neuroscience, 31(12), 18951916. https://doi.org/10.1162/jocn_a_01455CrossRefGoogle ScholarPubMed
Sullivan, S., & Ruffman, T. (2004). Social understanding: How does it fare with advancing years? British Journal of Psychology, 95, 118. https://doi.org/10.1348/000712604322779424.CrossRefGoogle ScholarPubMed
Sutin, A. R., Beason-Held, L. L., Resnick, S. M., & Costa, P. T. (2009). Sex differences in resting-state neural correlates of openness to experience among older adults. Cerebral Cortex, 19(12), 27972802.CrossRefGoogle ScholarPubMed
Suzuki, A., Ueno, M., Ishikawa, K., Kobayashi, A., Okubo, M., & Nakai, T. (2019). Age-related differences in the activation of the mentalizing- and reward-related brain regions during the learning of others’ true trustworthiness. Neurobiology of aging, 73, 18. https://doi.org/10.1016/j.neurobiolaging.2018.09.002.CrossRefGoogle ScholarPubMed
Suzuki, H., Gao, H., Bai, W., et al. (2017). Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension. PLoS One, 12(11), e0187600. https://doi.org/10.1371/journal.pone.0187600.CrossRefGoogle ScholarPubMed
Symons, C. S., & Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin, 121(3), 371394. https://doi.org/10.1037/0033-2909.121.3.371.CrossRefGoogle ScholarPubMed
Talwar, P., Kushwaha, S., Chaturvedi, M. & Mahajan, V. (2021). Systematic review of different neuroimaging correlates in mild cognitive impairment and Alzheimer’s disease. Clinical Neuroradiology, 31, 953967. https://doi.org/10.1007/s00062-021-01057-7.CrossRefGoogle ScholarPubMed
Tam, A., Luedke, A. C., Walsh, J. J., et al. Effects of reaction time variability and age on brain activity during Stroop task performance. Brain Imaging and Behavior, 9, 609618 (2015). https://doi.org/10.1007/s11682-014-9323-y.CrossRefGoogle ScholarPubMed
Tao, Q., Akhter-Khan, S. C., Ang, T. F. A., et al. (2022). Different loneliness types, cognitive function, and brain structure in midlife: Findings from the Framingham Heart Study. EClinicalMedicine, 53, 101643. https://doi.org/10.1016/j.eclinm.2022.101643.CrossRefGoogle ScholarPubMed
Tessitore, A., Hariri, A. R., Fera, F., et al. (2005). Functional changes in the activity of brain regions underlying emotion processing in the elderly. Psychiatry Research, 139(1), 918.CrossRefGoogle ScholarPubMed
Thomas, A. K., & Gutchess, A. (Eds.). (2020). The Cambridge Handbook of Cognitive Aging: A Life Course Perspective. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Todorov, A., & Engell, A. D. (2008). The role of the amygdala in implicit evaluation of emotionally neutral faces. Social Cognitive and Affective Neuroscience, 3(4), 303312. https://doi.org/10.1093/scan/nsn033.CrossRefGoogle ScholarPubMed
Todorov, A., & Olson, I. R. (2008). Robust learning of affective trait associations with faces when the hippocampus is damaged, but not when the amygdala and temporal pole are damaged. Social Cognitive and Affective Neuroscience, 3, 195203.CrossRefGoogle Scholar
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Molecular Psychiatry, 17(5), 471, 549–458. https://doi.org/10.1038/mp.2011.81.CrossRefGoogle ScholarPubMed
Trott, C. T., Friedman, D., Ritter, W., Fabiani, M., & Snodgrass, J. G. (1999). Episodic priming and memory for temporal source: Event-related potentials reveal age-related differences in prefrontal functioning. Psychology and Aging, 14(3), 390413.CrossRefGoogle ScholarPubMed
Tse, Z. C. K., Cao, Y., Ogilvie, J. M., et al. (2023). Prospective memory training in older adults: A systematic review and meta-analysis. Neuropsychology Review, 33, 347372. https://doi.org/10.1007/s11065-022-09536-5.CrossRefGoogle ScholarPubMed
Tsuruha, E. & Tsukiura, T. (2021). Effects of aging on the neural mechanisms underlying the recollection of memories encoded by social interactions with persons in the same and different age groups. Frontiers in Behavioral Neuroscience, 15, 743064. https://doi.org/10.3389/fnbeh.2021.743064.CrossRefGoogle ScholarPubMed
Tsvetanov, K. A., Henson, R. N. A., Jones, P. S., et al. (2021). The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology, 58, e13714. https://doi.org/10.1111/psyp.13714.CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M. (2011). Global and domain-specific changes in cognition throughout adulthood. Developmental Psychology, 47(2), 331343. https://doi.org/10.1037/a0021361.CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., et al. (2022). A strong dependency between changes in fluid and crystallized abilities in human cognitive aging. Science Advances, 8, eabj2422. https://www.science.org/doi/10.1126/sciadv.abj2422.CrossRefGoogle Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125.CrossRefGoogle ScholarPubMed
Tun, P. A., McCoy, S., & Wingfield, A. (2009). Aging, hearing acuity, and the attentional costs of effortful listening. Psychology and Aging, 24(3), 761766. https://doi.org/10.1037/a0014802.CrossRefGoogle ScholarPubMed
Tun, P. A., Wingfield, A., Rosen, M. J., & Blanchard, L. (1998). Response latencies for false memories: Gist-based processes in normal aging. Psychology and Aging, 13(2), 230241.CrossRefGoogle ScholarPubMed
Turner, G. R., & Spreng, R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiology of Aging, 33(4), 826.e821–826.e813.CrossRefGoogle ScholarPubMed
Turner, G. R., & Spreng, R. N. (2015). Prefrontal engagement and reduced default network suppression co-occur and are dynamically coupled in older adults: The default–executive coupling hypothesis of aging. Journal of Cognitive Neuroscience, 27(12), 24622476.CrossRefGoogle ScholarPubMed
Underwood, E. (2014). Starting young. Science, 346(6209), 568571.CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19(6), 352357. https://doi.org/10.1177/0963721410388395.CrossRefGoogle Scholar
Velanova, K., Lustig, C., Jacoby, L. L., & Buckner, R. L. (2007). Evidence for frontally mediated controlled processing differences in older adults. Cerebral Cortex, 17(5), 10331046. https://doi.org/10.1093/cercor/bhl013.CrossRefGoogle ScholarPubMed
Vespa, J. (2018). The US Joins Other Countries with Large Aging Populations. www.census.gov/library/stories/2018/03/graying-america.html.Google Scholar
Viard, A., Chételat, G., Lebreton, K., Desgranges, B., et al. (2011). Mental time travel into the past and the future in healthy aged adults: an fMRI study. Brain and Cognition, 75(1), 19.CrossRefGoogle ScholarPubMed
Viard, A., Lebreton, K., Chételat, G., et al. (2010). Patterns of hippocampal–neocortical interactions in the retrieval of episodic autobiographical memories across the entire life-span of aged adults. Hippocampus, 20(1), 153165.CrossRefGoogle ScholarPubMed
Viard, A., Piolino, P., Desgranges, B., et al. (2007). Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged subjects: an fMRI study. Cerebral Cortex, 17(10), 24532467.CrossRefGoogle ScholarPubMed
Volkow, N. D., Gur, R. C., Wang, , et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155(3), 344349.Google ScholarPubMed
Vonk, J. M. J., Ghaznawi, R., Zwartbol, M. H. T., Stern, Y., Geerlings, M. I., & UCC-SMART-Study Group. (2022). The role of cognitive and brain reserve in memory decline and atrophy rate in mid and late-life: The SMART-MR study, Cortex, 148, 204-214. https://doi.org/10.1016/j.cortex.2021.11.022.CrossRefGoogle ScholarPubMed
Voss, M. W., Heo, S., Prakash, R. S., et al. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Human Brain Mapping, 34(11), 29722985.CrossRefGoogle ScholarPubMed
Voytek, B., Kramer, M. A., Case, J., et al. (2015). Age-related changes in 1/f neural electrophysiological noise. Journal of Neuroscience, 35 (38), 1325713265; https://doi.org/10.1523/JNEUROSCI.2332-14.2015.CrossRefGoogle ScholarPubMed
Waldinger, R. J., Kensinger, E. A., & Schulz, M. S. (2011). Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: Links with life satisfaction. Cognitive, Affective, and Behavioral Neuroscience, 11(3), 426436. https://doi.org/10.3758/s13415-011-0039-9.CrossRefGoogle ScholarPubMed
Wang, J. X., Rogers, L. M., Gross, E. Z., et al. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 10541057. https://doi.org/10.1126/science.1252900.CrossRefGoogle ScholarPubMed
Wang, L., Li, Y., Metzak, P., He, Y., & Woodward, T. S. (2010). Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. NeuroImage, 50(3), 862872.CrossRefGoogle ScholarPubMed
Wang, T. H., Johnson, J. D., de Chastelaine, M., Donley, B. E., & Rugg, M. D. (2016). The effects of age on the neural correlates of recollection success, recollection-related cortical reinstatement, and post-retrieval monitoring. Cerebral Cortex, 26(4), 16981714.CrossRefGoogle ScholarPubMed
Wang, X., Ren, P., Baran, T. M., Raizada, R. D. S., Mapstone, M., & Lin, F. (2017). Longitudinal functional brain mapping in supernormals. Cerebral Cortex, Nov 23, 111 [epub ahead of print]. https://doi.org/10.1093/cercor/bhx322.Google Scholar
Waring, J. D., Addis, D. R., & Kensinger, E. A. (2013). Effects of aging on neural connectivity underlying selective memory for emotional scenes. Neurobiology of Aging, 34(2), 451467. https://doi.org/10.1016/j.neurobiolaging.2012.03.011.CrossRefGoogle ScholarPubMed
Wedig, M. M., Rauch, S. L., Albert, M. S., & Wright, C. I. (2005). Differential amygdala habituation to neutral faces in young and elderly adults. Neuroscience Letters, 385(2), 114119. https://doi.org/10.1016/j.neulet.2005.05.039.CrossRefGoogle Scholar
Wegesin, D. J., Friedman, D., Varughese, N., & Stern, Y. (2002). Age-related changes in source memory retrieval: An ERP replication and extension. Cognitive Brain Research, 13(3), 323338.CrossRefGoogle ScholarPubMed
Wei, L., Zhang, Y., Wang, J., et al. (2022). Parietal-hippocampal rTMS improves cognitive function in Alzheimer’s disease and increases dynamic functional connectivity of default mode network. Psychiatry Research, 315, 114721. https://doi.org/10.1016/j.psychres.2022.114721.CrossRefGoogle ScholarPubMed
Weissberger, G. H., Mosqueda, L., Nguyen, A. L., et al. (2020). Functional connectivity correlates of perceived financial exploitation in older adults. Frontiers in Aging Neuroscience, 12, 583433. https://doi.org/10.3389/fnagi.2020.583433.CrossRefGoogle ScholarPubMed
West, R. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272292.CrossRefGoogle ScholarPubMed
West, R., & Moore, K. (2005). Adjustments of cognitive control in younger and older adults. Cortex, 41(4), 570581.CrossRefGoogle ScholarPubMed
Westerberg, C., Mayes, A., Florczak, S. M., et al. (2013). Distinct medial temporal contributions to different forms of recognition in amnestic mild cognitive impairment and Alzheimer’s disease. Neuropsychologia, 51(12), 24502461.CrossRefGoogle ScholarPubMed
Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 1112511129.CrossRefGoogle ScholarPubMed
Wiese, H., Schweinberger, S. R., & Hansen, K. (2008). The age of the beholder: ERP evidence of an own-age bias in face memory. Neuropsychologia, 46(12), 29732985.CrossRefGoogle ScholarPubMed
Wilckens, K. A., Stillman, C. M., Waiwood, A. M., et al. (2021). Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus, 31, 335347. https://doi.org/10.1002/hipo.23292.CrossRefGoogle ScholarPubMed
Williams, L. M., Brown, K. J., Palmer, D., et al. (2006). The mellow years? Neural basis of improving emotional stability over age. Journal of Neuroscience, 26(24), 64226430.CrossRefGoogle ScholarPubMed
Wilson, R. S., & Bennett, D. A. (2017). How does psychosocial behavior contribute to cognitive health in old age? Brain Science, 7(6), 56. https://doi.org/10.3390/brainsci7060056.CrossRefGoogle ScholarPubMed
Wilson, R. S., Krueger, K. R., Arnold, S. E., et al. (2007). Loneliness and risk of Alzheimer disease. Archives of General Psychiatry, 64(2), 234240. https://doi.org/10.1001/archpsyc.64.2.234.CrossRefGoogle ScholarPubMed
Winecoff, A., Labar, K. S., Madden, D. J., Cabeza, R., & Huettel, S. A. (2011). Cognitive and neural contributors to emotion regulation in aging. Social Cognitive and Affective Neuroscience, 6(2), 165176. https://doi.org/10.1093/scan/nsq030.CrossRefGoogle ScholarPubMed
Wingfield, A., Amichetti, N. M., & Lash, A. (2015). Cognitive aging and hearing acuity: Modeling spoken language comprehension. Frontiers in Psychology, 6, Article 684. https://doi.org/10.3389/fpsyg.2015.00684.CrossRefGoogle ScholarPubMed
Wingfield, A., & Grossman, M. (2006). Language and the aging brain: Patterns of neural compensation revealed by functional brain imaging. Journal of Neurophysiology, 96(6), 28302839.CrossRefGoogle ScholarPubMed
Wolff, N., Wiese, H., & Schweinberger, S. R. (2012). Face recognition memory across the adult life span: Event-related potential evidence from the own-age bias. Psychology and Aging, 27(4), 10661081. https://doi.org/10.1037/a0029112.CrossRefGoogle ScholarPubMed
Wood, S., & Kisley, M. A. (2006). The negativity bias is eliminated in older adults: Age-related reduction in event-related brain potentials associated with evaluative categorization. Psychology and Aging, 21(4), 815820. https://doi.org/10.1037/0882-7974.21.4.815.CrossRefGoogle ScholarPubMed
Wright, C. I., Dickerson, B. C., Feczko, E., Negeira, A., & Williams, D. (2007). A functional magnetic resonance imaging study of amygdala responses to human faces in aging and mild Alzheimer’s disease. Biological Psychiatry, 62(12), 13881395.CrossRefGoogle ScholarPubMed
Wright, C. I., Wedig, M. M., Williams, D., Rauch, S. L., & Albert, M. S. (2006). Novel fearful faces activate the amygdala in healthy young and elderly adults. Neurobiology of Aging, 27(2), 361374. https://doi.org/10.1016/j.neurobiolaging.2005.01.014.CrossRefGoogle Scholar
Wu, T., & Hallett, M. (2005a). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 22502259.CrossRefGoogle ScholarPubMed
Wu, T., & Hallett, M. (2005b). The influence of normal human ageing on automatic movements. Journal of Physiology, 562(2), 605615.CrossRefGoogle ScholarPubMed
Xie, Y., Ksander, J., Gutchess, A., et al. (2021). Age differences in neural activation to face trustworthiness: Voxel pattern and activation level assessments. Cognitive, Affective, & Behavioral Neuroscience, 21, 278291. https://doi.org/10.3758/s13415-021-00868-y.CrossRefGoogle ScholarPubMed
Xu, J. Q., Murphy, S. L., Kochanek, K. D., & Arias, E. (2022). Mortality in the United States, 2021. NCHS Data Brief, no 456. Hyattsville, MD: National Center for Health Statistics. https://doi.org/10.15620/cdc:122516.CrossRefGoogle Scholar
Yang, X., Wu, H., Song, Y., et al. (2023). Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: An ALE meta-analysis. Frontiers in Aging Neuroscience, 15, 1165908. https://doi.org/10.3389/fnagi.2023.1165908.CrossRefGoogle ScholarPubMed
Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E. (2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21(9), 968979. https://doi.org/10.1002/hipo.20808.CrossRefGoogle ScholarPubMed
Yassa, M. A., Mattfeld, A. T., Stark, S. M., & Stark, C. E. L. (2011). Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 88738878.CrossRefGoogle ScholarPubMed
Yassa, M. A., Muftuler, L. T., & Stark, C. E. L. (2010). Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 1268712691.CrossRefGoogle ScholarPubMed
Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515525.CrossRefGoogle ScholarPubMed
Yoon, B., Baker, S. L., Korman, D., et al. (2020). Conscientiousness is associated with less amyloid deposition in cognitively normal aging. Psychology and Aging, 35(7), 993999. https://doi.org/10.1037/pag0000582.CrossRefGoogle ScholarPubMed
Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180192.CrossRefGoogle ScholarPubMed
Zachariou, V., Bauer, C. E., Pappas, C., & Gold, B. T. (2023). High cortical iron is associated with the disruption of white matter tracts supporting cognitive function in healthy older adults. Cerebral Cortex, 33(8), 48154828. https://doi.org/10.1093/cercor/bhac382.CrossRefGoogle ScholarPubMed
Zacks, J. M., & Swallow, K. M. (2007). Event segmentation. Current Directions in Psychological Science, 16(2), 8084. https://doi.org/10.1111/j.1467-8721.2007.00480.x.CrossRefGoogle ScholarPubMed
Zacks, R., & Hasher, L. (1997). Cognitive gerontology and attentional inhibition: a reply to Burke and McDowd. Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 52(6), P274P283.CrossRefGoogle ScholarPubMed
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 64306435. https://doi.org/10.1073/pnas.0607061104.CrossRefGoogle ScholarPubMed
Zahodne, L. B., Kraal, A. Z., Sharifian, N., Zaheed, A. B., & Sol, K. (2019). Inflammatory mechanisms underlying the effects of everyday discrimination on age-related memory decline. Brain, Behavior, and Immunity, 75, 149154. https://doi.org/10.1016/j.bbi.2018.10.002.CrossRefGoogle ScholarPubMed
Zahodne, L. B., Manly, J. J., Narkhede, A., et al. (2015). Structural MRI predictors of late-life cognition differ across African Americans, Hispanics, and Whites. Current Alzheimer Research, 12(7), 632639. https://doi.org/10.2174/1567205012666150530203214.CrossRefGoogle ScholarPubMed
Zahodne, L. B., Sharifian, N., Kraal, A. Z., et al. (2023). Longitudinal associations between racial discrimination and hippocampal and white matter hyperintensity volumes among older Black adults. Social Science & Medicine (1982), 316, 114789. https://doi.org/10.1016/j.socscimed.2022.114789.CrossRefGoogle ScholarPubMed
Zamboni, G., de Jager, C. A., Drazich, E., et al. (2013). Structural and functional bases of visuospatial associative memory in older adults. Neurobiology of Aging, 34(3), 961972.CrossRefGoogle ScholarPubMed
Zanto, T. P., Sekuler, R., Dube, C., & Gazzaley, A. (2013). Age-related changes in expectation based modulation of motion detectability. PLoS One, 8(8), e69766. https://doi.org/10.1371/journal.pone.0069766.CrossRefGoogle ScholarPubMed
Zebrowitz, L. A., & Franklin, R. G. (2014). The attractiveness halo effect and the babyface stereotype in older and younger adults: Similarities, own-age accentuation, and older adult positivity effects. Experimental Aging Research, 40(3), 375393. https://doi.org/10.1080/0361073x.2014.897151.CrossRefGoogle ScholarPubMed
Zebrowitz, L. A., Franklin, R. G., Boshyan, J., et al. (2014). Older and younger adults’ accuracy in discerning health and competence in older and younger faces. Psychology and Aging, 29(3), 454468. https://doi.org/10.1037/a0036255.CrossRefGoogle ScholarPubMed
Zebrowitz, L. A., Franklin, R. G., Hillman, S., & Boc, H. (2013). Older and younger adults’ first impressions from faces: Similar in agreement but different in positivity. Psychology and Aging, 28(1), 202212. https://doi.org/10.1037/a0030927.CrossRefGoogle ScholarPubMed
Zebrowitz, L. A., Ward, N., Boshyan, J., Gutchess, A., & Hadjikhani, N. (2018). Older adults’ neural activation in the reward circuit is sensitive to face trustworthiness. Cognitive, Affective, & Behavioral Neuroscience, 18, 2134. https://doi.org/10.3758/s13415-017-0549-1.CrossRefGoogle ScholarPubMed
Zhang, B., Lin, Y., Gao, Q., Zawisza, M., Kang, Q., & Chen, X. (2017). Effects of aging stereotype threat on working self-concepts: an eventrelated potentials approach. Frontiers in Aging Neuroscience, 9, Article 223. https://doi.org/10.3389/fnagi.2017.00223.CrossRefGoogle ScholarPubMed
Zhang, H., Bai, X., & Diaz, M. T. (2021). The intensity and connectivity of spontaneous brain activity in a language network relate to aging and language. Neuropsychologia, 154, 107784. https://doi.org/10.1016/j.neuropsychologia.2021.107784.CrossRefGoogle Scholar
Zhang, H., Eppes, A., & Diaz, M. T. (2019). Task difficulty modulates age-related differences in the behavioral and neural bases of language production. Neuropsychologia, 124, 254273. https://doi.org/10.1016/j.neuropsychologia.2018.11.017.CrossRefGoogle ScholarPubMed
Zhang, W., Andrews-Hanna, J, Mair, R., Goh, J. O. S., & Gutchess, A. (2022). Functional connectivity with medial temporal regions differs across cultures. Cognitive, Affective, & Behavioral Neuroscience, 22, 13341348. https://doi.org/10.3758/s13415-022-01027-7.CrossRefGoogle ScholarPubMed
Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L. G., & Hummel, F. C. (2013). Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 73(1), 1015. https://doi.org/10.1002/ana.23761twelve.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Angela Gutchess, Brandeis University, Massachusetts
  • Book: Cognitive and Social Neuroscience of Aging
  • Online publication: 14 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009354233.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Angela Gutchess, Brandeis University, Massachusetts
  • Book: Cognitive and Social Neuroscience of Aging
  • Online publication: 14 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009354233.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Angela Gutchess, Brandeis University, Massachusetts
  • Book: Cognitive and Social Neuroscience of Aging
  • Online publication: 14 February 2025
  • Chapter DOI: https://doi.org/10.1017/9781009354233.010
Available formats
×