Published online by Cambridge University Press: 28 May 2010
The complete stability phenomenon
Our main objective in this section is to derive and prove a general theorem which unifies all of the CNN templates presented in the preceding chapter, and numerous others, under one umbrella. In particular, the mathematical analyses presented for all templates in Chapter 5 could be greatly simplified. We did not present this fundamental theorem earlier for pedagogical reasons: it is essential for the uninitiated students of CNN to understand and appreciate the fundamental notion and power of the shifted DP plots and their dynamic routes.
We have been thoroughly exposed to these rather simple concepts and have learned to exploit the dynamic routes not only for the analysis of the nonlinear dynamics (i.e., transient and asymptotic behaviors), but also as a highly intuitive and potent design tool for deriving optimum and robust CNN templates.
The alert students who have gone over the previous chapter would have recognized that, except for a degenerate case, no matter what the initial conditions are, the solution always converges to a globally asymptotically stable and hence unique equilibrium point (monostable case), or to one of two locally stable equilibrium points (bistable case). Although this latter “convergence” property is rather unusual for nonlinear dynamic circuits having multiple equilibria, it is a gift that nature (i.e., the physical laws) has endowed upon an important class of CNNs on which all current nonlinear information processing applications are based.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.