Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T15:13:37.104Z Has data issue: false hasContentIssue false

Section I - Segmental Production

Published online by Cambridge University Press:  11 November 2021

Rachael-Anne Knight
Affiliation:
City, University of London
Jane Setter
Affiliation:
University of Reading
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.7 References

Anderson, P., Fels, S., Harandi, N. M., Ho, A., Moisik, S., Sánchez, C. A. et al. (2017). FRANK: A hybrid 3D biomechanical model of the head and neck. In Payan, Y. and Ohayon, J., eds., Biomechanics of Living Organs. Amsterdam: Elsevier, pp. 413–47.Google Scholar
Baer, T., Alphonso, P. J. & Honda, K. (1988). Electromyography of the tongue muscles during vowels in /əpVp/ environment. Annual Bulletin RILP, No. 22, 719.Google Scholar
Behrman, A., Dahl, L. D., Abramson, A. L. & Schutte, H. K. (2003). Anterior-posterior and medial compression of the supraglottis: Signs of nonorganic dysphonia or normal postures? Journal of Voice, 17(3), 403–10.CrossRefGoogle ScholarPubMed
Cattaneo, L. & Pavesi, G. (2014). The facial motor system. Neuroscience & Biobehavioral Reviews, 38, 135–59.Google Scholar
Chanaud, C. M., Pratt, C. A. & Loeb, G. E. (1991). Functionally complex muscles of the cat hindlimb. Experimental Brain Research, 85(2), 300–13.Google Scholar
Chang, Y., Cantelmi, D., Wisco, J. J., Fattah, A., Hannam, A. G. & Agur, A. M. (2013). Evidence for the functional compartmentalization of the temporalis muscle: A 3-dimensional study of innervation. Journal of Oral and Maxillofacial Surgery, 71(7), 1170–7.CrossRefGoogle ScholarPubMed
Cioffi, I., Gallo, L. M., Palla, S., Erni, S. & Farella, M. (2012). Macroscopic analysis of human masseter compartments assessed by magnetic resonance imaging. Cells Tissues Organs, 195(5), 465–72.Google Scholar
Dang, J. & Honda, K. (1997). Acoustic characteristics of the piriform fossa in models and humans. Journal of the Acoustical Society of America, 101(1), 456–65.Google Scholar
Davies, J. C., Charles, M., Cantelmi, D., Liebgott, B., Ravichandiran, M., Ravichandiran, K. & Agur, A. M. (2012). Lateral pterygoid muscle: A three-dimensional analysis of neuromuscular partitioning. Clinical Anatomy, 25(5), 576–83.Google Scholar
Dayan, E. & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443–54.Google Scholar
Dediu, D., Janssen, R. & Moisik, S. R. (2017). Language is not isolated from its wider environment: Vocal tract influences on the evolution of speech and language. Language & Communication, 54, 920.Google Scholar
Delattre, P. & Freeman, D. C. (1968). A dialect study of American r’s by X-ray motion picture. Linguistics, 6(44), 2968.Google Scholar
Delvaux, B. & Howard, D. (2014). A new method to explore the spectral impact of the piriform fossae on the singing voice: Benchmarking using MRI-based 3D-printed vocal tracts. PLoS One, 9(7), e102680.Google Scholar
De Troyer, A. D., Kirkwood, P. A. & Wilson, T. A. (2005). Respiratory action of the intercostal muscles. Physiological Reviews, 85(2), 717–56.Google Scholar
Eklund, R. (2008). Pulmonic ingressive phonation: Diachronic and synchronic characteristics, distribution and function in animal and human sound production and in human speech. Journal of the International Phonetic Association, 38(3), 235324.Google Scholar
Esling, J. H. (1996). Pharyngeal consonants and the aryepiglottic sphincter. Journal of the International Phonetic Association, 26(2), 6588.Google Scholar
Ezzat, A. E. & El-Shenawy, H. M. (2015). Palatopharyngeus the missing palatal muscles: Anatomical and physiological review. Annals of Maxillofacial Surgery, 5(2), 226.CrossRefGoogle ScholarPubMed
Fagel, S. (2010). Effects of smiling on articulation: Lips, larynx and acoustics. In Esposito, A., Campbell, N., Vogel, C., Hussain, A. & Nijholt, A. N., eds., Development of Multimodal Interfaces: Active Listening and Synchrony. Berlin: Springer-Verlag, pp. 294303.Google Scholar
Gick, B., Wilson, I. & Derrick, D. (2013). Articulatory Phonetics. Oxford: John Wiley & Sons.Google Scholar
Guenther, F. H. (2016). Neural Control of Speech. Cambridge, MA: MIT Press.Google Scholar
Hiiemae, K. M., Palmer, J. B., Medicis, S. W., Hegener, J., Jackson, B. S. & Lieberman, D. E. (2002). Hyoid and tongue surface movements in speaking and eating. Archives of Oral Biology, 47(1), 1127.Google Scholar
Hirano, M. (1981). Clinical examination of voice. Disorders of Human Communication, 5, 199.Google Scholar
Hoit, J. D., Plassman, B. L., Lansing, R. W. & Hixon, T. J. (1988). Abdominal muscle activity during speech production. Journal of Applied Physiology, 65(6), 2656–64.Google Scholar
Honda, K., Murano, E. Z., Takano, S., Masaki, S. & Dang, J. (2013). Anatomical considerations on the extrinsic tongue muscles for articulatory modeling. Proceedings of Meetings on Acoustics, 133(5), 3607.Google Scholar
Hong, K. H., Ye, M., Kim, Y. M., Kevorkian, K. F. & Berke, G. S. (1997). The role of strap muscles in phonation: In vivo canine laryngeal model. Journal of Voice, 11(1), 2332.CrossRefGoogle ScholarPubMed
Jones, D. (2018). An Outline of English Phonetics, 9th ed. Cambridge: Cambridge University Press.Google Scholar
Kakita, Y., Fujimura, O. & Honda, K. (1985). Computation of mapping from muscular contraction patterns to formant patterns in vowel space. In Fromkin, V., ed., Phonetic Linguistics: Essays in Honor of Peter Ladefoged. Orlando FL: Academic Press, pp. 133–44.Google Scholar
Komisaruk, B. R., Mosier, K. M., Liu, W., Criminale, C., Zaborszky, L., Whipple, B. et al. (2002). Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. American Journal of Neuroradiology, 23(4), 609–17.Google Scholar
Ladefoged, P. & Loeb, G. (2002). Preliminary studies on respiratory activity in speech. UCLA Working Papers in Phonetics, 101, 5060. https://escholarship.org/uc/item/1qf5f44k.Google Scholar
Laver, J. (1994). Principles of Phonetics. Cambridge: Cambridge University Press.Google Scholar
Leanderson, R., Persson, A. & Öhman, S. (1971). Electromyographic studies of facial muscle activity in speech. Acta Oto-Laryngologica, 72(1–6), 361–9.Google Scholar
Levelt, W. J. (1989). Speaking: From Intention to Articulation. Cambridge, MA: MIT Press.Google Scholar
Magen, H. S., Kang, A. M., Tiede, M. K. & Whalen, D. H. (2003). Posterior pharyngeal wall position in the production of speech. Journal of Speech, Language, and Hearing Research, 46(1), 241–51.Google Scholar
Mathieson, L. (2001). Greene and Mathieson’s the Voice and Its Disorders, 6th ed. London: Whurr.Google Scholar
McMicken, B., Salles, F., Berg, S. V., Vento-Wilson, M., Rogers, K., Toutios, A. et al. (2017). Bilabial substitution patterns during consonant production in a case of congenital aglossia. Journal of Communication Disorders, Deaf Studies & Hearing Aids, 5(2), e1000175Google Scholar
Minifie, F. D., Abbs, J. H., Tarlow, A. & Kwaterski, M. (1974). EMG activity within the pharynx during speech production. Journal of Speech, Language, and Hearing Research, 17(3), 497504.Google Scholar
Miyawaki, K., Hirose, H., Ushijima, T. & Sawashimi, M. (1975). A preliminary report on the electromyographic study of the lingual muscles. Annual Bulletin RILP, 9, 91106.Google Scholar
Moll, K. L. (1962). Velopharyngeal closure on vowels. Journal of Speech, Language, and Hearing Research, 5(1), 30–7.Google Scholar
Mu, L. & Sanders, I. (2010). Human tongue neuroanatomy: Nerve supply and motor endplates. Clinical Anatomy, 23(7), 777–91.Google Scholar
Ogata, S., Mine, K., Tamatsu, Y. & Shimada, K. (2002). Morphological study of the human chondroglossus muscle in Japanese. Annals of Anatomy-Anatomischer Anzeiger, 184(5), 493–9.Google Scholar
Perkell, J. S. (1969). Physiology of Speech Production: Results and Implications of a Quantitative Cineradiography Study. MIT research monograph, no 53.Google Scholar
Perrier, P., Payan, Y., Buchaillard, S., Nazari, M. A. & Chabanas, M. (2011). Biomechanical models to study speech. Faits De Langues, 37, 155–71.Google Scholar
Saito, H. & Itoh, I. (2003). Three-dimensional architecture of the intrinsic tongue muscles, particularly the longitudinal muscle, by the chemical-maceration method. Anatomical Science International, 78(3), 168–76.Google Scholar
Saito, H. & Itoh, I. (2007). The three-dimensional architecture of the human styloglossus especially its posterior muscle bundles. Annals of Anatomy, 189(3), 261–7.Google Scholar
Sakamoto, Y. (2018). Structural arrangement of the intrinsic muscles of the tongue and their relationships with the extrinsic muscles. Surgical and Radiologic Anatomy, 40(6), 681–8.Google Scholar
Seaver, E. J. 3rd, & Kuehn, D. P. (1980). A cineradiographic and electromyographic investigation of velar positioning in non-nasal speech. The Cleft Palate Journal, 17(3), 216–26.Google Scholar
Stark, J., Ericsdotter, C., Branderud, P., Sundberg, J., Lundberg, H. & Lander, J. (1999). The APEX model as a tool in the specification of speaker-specific articulatory behavior. Proceedings from the XIVth ICPhS, San Francisco, 2279–82.Google Scholar
Takemoto, H. (2001). Morphological analyses of the human tongue musculature for three-dimensional modeling. Journal of Speech, Language, and Hearing Research, 44(1), 95107.Google Scholar
Terada, S. & Sato, T. (1982). Nerve supply of the medial and lateral pterygoid muscles and its morphological significance. Okajimas Folia Anatomica Japonica, 59(4), 251–64.Google Scholar
Tuller, B., Harris, K. S. & Gross, B. (1981). Electromyographic study of the jaw muscles during speech. Journal of Phonetics, 9, 175–88.Google Scholar
Wilhelms-Tricarico, R. (1995). Physiological modeling of speech production: Methods for modeling soft-tissue articulators. Journal of the Acoustical Society of America, 97(5), 3085–98.Google Scholar
Wood, S. (1979). A radiographic analysis of constriction locations for vowels. Journal of Phonetics, 7, 2543.Google Scholar
Zagzebski, J. A. (1975). Ultrasonic measurement of lateral pharyngeal wall motion at two levels in the vocal tract. Journal of Speech, Language, and Hearing Research, 18(2), 308.Google Scholar

2.7 References

Adank, P., Smits, R. & van Hout, R. (2004). A comparison of vowel normalization procedures for language variation research. Journal of the Acoustical Society of America, 116, 3099–107.Google Scholar
Avelino, H. (2018). Mexico City Spanish (illustrations of the IPA). Journal of the International Phonetic Association, 48(2), 223–30.Google Scholar
Barreda, S. (2015). phonTools: Tools for Phonetic and Acoustic Analyses (for R), retrieved from https://rdrr.io/cran/phonTools/, 9 October 2018.Google Scholar
Boersma, P. & Weenink, D. (2018). Praat: Doing Phonetics by Computer [computer program]. Version 6.0.37, www.praat.org/.Google Scholar
Carignan, C., Shosted, R. K., Fu, M., Liang, Z. P. & Sutton, B. P. (2015). A real-time MRI investigation of the role of lingual and pharyngeal articulation in the production of the nasal vowel system of French. Journal of Phonetics, 50, 3451.Google Scholar
Catford, J. C. (1977). Fundamental Problems in Phonetics. Edinburgh: Edinburgh University Press.Google Scholar
Clopper, C. (2009). Computational methods for normalization acoustic vowel data for talker differences. Language and Linguistics Compass, 3(6), 1430–42.Google Scholar
Cohn, A. C. (1993). Nasalization in English: Phonology or phonetics? Phonology, 10(1), 4381.Google Scholar
Cruttenden, A. (2014). Gimson’s Pronunciation of English, 8th ed. London: Routledge.Google Scholar
Czaplicki, B. (2008). Decomposition of nasal vowels in Polish. In Marusic, F. and Zaucer, R., eds., Studies in Formal Slavic Linguistics. Frankfurt am Main: Peter Lang, pp. 5573.Google Scholar
Deterding, D. (1997). The formants of monophthong vowels in Standard Southern British English pronunciation. Journal of the International Phonetic Association, 27, 4755.Google Scholar
Esling, J. H. (2005). There are no back vowels: The laryngeal articulator model. Canadian Journal of Linguistics, 50, 1344.Google Scholar
Fant, G. (1960). Acoustic Theory of Speech Production. Vol. 2 of Description and Analysis of Contemporary Standard Russian. The Hague: Mouton.Google Scholar
Gick, B., Wilson, I. & Derrick, D. (2013). Articulatory Phonetics. Oxford: Wiley-Blackwell.Google Scholar
Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1166–83.Google Scholar
Handbook of the International Phonetic Association (1999). Cambridge: Cambridge University Press.Google Scholar
Harrington, J., Palethorpe, S. & Watson, C. I. (2000). Does the Queen speak the Queen’s English? Nature, 408, 927–8.Google Scholar
Hawkins, S. & Midgley, J. (2005). Formant frequencies of RP monophthongs in four age groups of speakers. Journal of the International Phonetic Association, 35(2), 183–99.Google Scholar
Heselwood, B. (2013). Phonetics from ancient times up to the IPA. In Jones, M. J. & Knight, R.-A., eds., The Bloomsbury Companion to Phonetics. London: Bloomsbury, pp. 515.Google Scholar
Jacewicz, E., Fox, R. A. & Salmons, J. (2011). Cross-generational vowel change in American English. Language Variation and Change, 23, 4586.Google Scholar
Jassem, W. (2003). Polish (illustrations of the IPA). Journal of the International Phonetic Association, 33(1), 103–7.Google Scholar
Jones, D. (1940). An Outline of English Phonetics, 6th ed. New York: Dutton.Google Scholar
Jones, D. (1972). An Outline of English Phonetics, 9th ed. Cambridge: Heffer.Google Scholar
Jones, D. (2011). Cambridge English Pronouncing Dictionary, 18th ed., ed. by Roach, P., Setter, J. and Esling, J.. Cambridge: Cambridge University Press.Google Scholar
Joos, M. (1948). Acoustic phonetics. Language Monographs, 23, suppl. 1.Google Scholar
Kemp, J. A. (2001). The development of phonetics from the late 18th to the late 19th century. In Auroux, S., ed., History of the Language Sciences / Geschichte der Sprachwissenschaften / Histoire des sciences du langage, vol. 2. Berlin: De Gruyter, pp. 1468–79.Google Scholar
Labov, W., Boberg, C. & Ash, S. (2005). Atlas of North American English: Phonetics, Phonology and Sound Change. Berlin: De Gruyter.Google Scholar
Ladefoged, P. & Ferrari Disner, S. (2012). Vowels and Consonants, 3rd ed. Oxford: Wiley-Blackwell.Google Scholar
Ladefoged, P. & Maddieson, I. (1996). The Sounds of the World’s Languages. Oxford: Blackwell.Google Scholar
Laver, J. (1994). Principles of Phonetics. Cambridge: Cambridge University Press.Google Scholar
Lindsey, G. (2012). The British English vowel system. http://englishspeechservices.com/blog/british-vowels/, accessed 11 August 2020.Google Scholar
Lindsey, G. (2013). The vowel space. http://englishspeechservices.com/blog/the-vowel-space/, accessed 11 August 2020.Google Scholar
Loehr, D. & van Guilder, L. (2012). Using the Internet for collecting phonological data. In Cohn, A. C., Fougeron, C. & Huffman, M. K., eds., The Oxford Handbook of Laboratory Phonology. Oxford: Oxford University Press, pp. 441–9.Google Scholar
MacMahon, M. K. C. (2013). Orthography and the early history of phonetics. In Allan, K., ed., The Oxford Handbook of the History of Linguistics. Oxford: Oxford University Press, pp. 105–22.Google Scholar
Mielke, J. (2015). An ultrasound study of Canadian French rhotic vowels with polar smoothing spline comparisons. Journal of the Acoustical Society of America, 137, 2858–69.Google Scholar
Morrison, G. S. & Assmann, P. F., eds. (2012). Vowel-Inherent Spectral Change. Berlin: Springer.Google Scholar
Peterson, G. E. & Barney, H. L. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24, 175–84.Google Scholar
Pike, K. L. (1943). Phonetics: A Critical Analysis of Phonetic Theory and a Technique for the Practical Description of Sounds, Ann Arbor, MI: University of Michigan Press.Google Scholar
Proctor, M., Lo, C. Y. & Narayanan, S. (2015). Articulation of English vowels in running speech: A real-time MRI study. In Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS), Glasgow, The Scottish Consortium for ICPhS 2015, Paper# 220.Google Scholar
Recasens, D. &. Rodríguez, C. (2017). Lingual articulation and coarticulation for Catalan consonants and vowels: An ultrasound study. Phonetica, 74, 125–56.Google Scholar
Reddy, S. & Stanford, J. (2015). Toward completely automated vowel extraction: Introducing DARLA. Linguistics Vanguard, 1(1), 1528.CrossRefGoogle Scholar
Rosenfelder, I., Fruehwald, J., Evanini, K., Seyfarth, S., Gorman, K., Prichard, H. et al. (2014). FAVE (Forced Alignment and Vowel Extraction) Program Suite v 1.2.2.Google Scholar
Sánchez-Miret, F. (1998). Some reflections on the notion of diphthong. Papers and Studies in Contrastive Linguistics, 34, 2751.Google Scholar
Schwartz, G., Aperliński, G., Kaźmierski, K. & Weckwerth, J. (2016). Dynamic targets in the acquisition of L2 English vowels. Research in Language, 14(2), 181202.Google Scholar
Šimáčková, Š., Podlipský, V. J. & Chládková, K. (2012). Czech spoken in Bohemia and Moravia. Journal of the International Phonetic Association, 42(2), 225–32.Google Scholar
Song, J. Y. (2017). The use of ultrasound in the study of articulatory properties of vowels in clear speech. Clinical Linguistics and Phonetics, 31(5), 351–74.CrossRefGoogle Scholar
Teixeira, A., Martins, P., Oliveira, C., Ferreira, C., Silva, A. & Shosted, R. (2012). Real-time MRI for Portuguese. Database, methods and applications. In Proceedings of the International Conference on Computational Processing of the Portuguese Language. Berlin: Springer, pp. 306–17.Google Scholar
Upton, C., Kretzschmar, W. & Konopka, R. (2001). Oxford Dictionary of Pronunciation for Current English. Oxford: Oxford University Press.Google Scholar
Wells, J. (1982). Accents of English. Cambridge: Cambridge University Press.Google Scholar
Wells, J. (2008). Longman English Pronunciation Dictionary, 3rd ed. Harlow: Pearson.Google Scholar
Williams, D. & Escudero, P. (2014). A cross-dialectal acoustic comparison of vowels in Northern and Southern British English. Journal of the Acoustical Society of America, 136(5), 2751–61.Google Scholar
Wissing, D. (2017). Afrikaans phonology: Segment inventory. www.taalportaal.org/taalportaal/topic/pid/topic-14610909940908011, last accessed 11 August 2020.Google Scholar

2.7.1 Online Resources

SPAN: Speech Production and Articulation Knowledge Group. The real-time MRI IPA charts, http://sail.usc.edu/span/rtmri_ipa/index.html. These include Cardinal Vowel charts with audio and fMRI video by four leading phoneticians.Google Scholar
Pink Trombone: Bare-handed speech synthesis, https://dood.al/pinktrombone/. An interactive vocal tract simulation, allowing the user to experiment with the effect of tongue position on the resulting sound.Google Scholar
Sound Comparisons, www.soundcomparisons.com. An interactive map-based website comparing lexical items diachronically and across related dialects and languages. Vowels constitute one of the major areas of comparison.Google Scholar
NORM: The vowel normalisation and plotting suite, http://lingtools.uoregon.edu/norm/. A suite of software with an easy online interface for plotting and normalising vowel data.Google Scholar
FAVE (Forced Alignment and Vowel Extraction), http://fave.ling.upenn.edu/index.html. A comprehensive suite for forced alignment of audio and text data, and for automated analysis of vowel formants.Google Scholar

3.7 References

Abercrombie, D. (1967). Elements of General Phonetics. Edinburgh: Edinburgh University Press.Google Scholar
Abramson, A. S. (1986). The perception of word-initial consonant length: Pattani Malay. Journal of the International Phonetic Association, 16(1), 816.Google Scholar
Allen, W. S. (1981). The Greek contribution to the history of phonetics. In Asher, R. E. & Henderson, E. J., eds., Towards a History of Phonetics. Edinburgh: Edinburgh University Press, pp. 115–22.Google Scholar
Alwan, A., Narayanan, S. & Haker, K. (1997). Toward articulatory–acoustic models for liquid approximants based on MRI and EPG data. Part II. The rhotics. Journal of the Acoustical Society of America, 101(2), 1078–89.Google Scholar
Aoki, H. (1970). A note on glottalized consonants. Phonetica, 21(2), 6574.Google Scholar
Ball, M. J. (1990). The lateral fricative: Lateral or fricative? In Ball, M. J., Fife, J., Poppe, E. & Rowland, J., eds., Celtic Linguistics/Ieithyddiaeth Geltaidd. Readings in the Brythonic Languages: Festschrift for T. Arwyn Watkins. Amsterdam: John Benjamins, pp. 109–25.Google Scholar
Barry, W. J. (1997). Another r-tickle. Journal of the International Phonetic Association, 27(1–2), 3545.CrossRefGoogle Scholar
Bell, A. M. (1863). The Principles of Speech and Vocal Physiology, and Dictionary of Sounds, Etc. London: Hamilton & Adams.Google Scholar
Bird, S., Caldecott, M., Campbell, F., Gick, B. & Shaw, P. A. (2008). Oral–laryngeal timing in glottalised resonants. Journal of Phonetics, 36(3), 492507.Google Scholar
Blevins, J. (2003). The phonology of Yurok glottalized sonorants: Segmental fission under syllabification. International Journal of American Linguistics, 69(4), 371–96.Google Scholar
Browman, C. P. & Goldstein, L. (1988). Some notes on syllable structure in Articulatory Phonology. Phonetica, 45(2–4), 140–55.Google Scholar
Browman, C. P. & Goldstein, L. M. (1989). Articulatory gestures as phonological units. Phonology, 6(2), 201–51.Google Scholar
Browman, C. P. & Goldstein, L. M. (1990). Gestural specification using dynamically-defined articulatory structures. Journal of Phonetics, 18(3), 299320.CrossRefGoogle Scholar
Browman, C. P. & Goldstein, L. M. (1992). Articulatory Phonology: An overview. Phonetica, 49(3–4), 155–80.Google Scholar
Browman, C. P. & Goldstein, L. (1995). Dynamics and Articulatory Phonology. In van Gelder, T. & Port, B., eds., Mind as Motion: Explorations in the Dynamics of Cognition. Cambridge, MA: MIT Press, pp. 175–93.Google Scholar
Browman, C. P. & Goldstein, L. M. (2000). Competing constraints on intergestural coordination and self-organization of phonological structures. Bulletin de la Communication Parlée, 5, 2534.Google Scholar
Brown, L. (2001). A Grammar of Nias Selatan. PhD thesis, University of Sydney.Google Scholar
Brücke, E. (1856). Grundzüge der Physiologie und Systematik der Sprachlaute für Linguisten und Traub-Stummenlehrer. Vienna: Carl Gerold.Google Scholar
Butcher, A. (2004). ‘Fortis/lenis’ revisited one more time: The aerodynamics of some oral stop contrasts in three continents. Clinical Linguistics & Phonetics, 18(6–8), 547–57.Google Scholar
Byrd, D., Tobin, S., Bresch, E. & Narayanan, S. (2009). Timing effects of syllable structure and stress on nasals: A real-time MRI examination. Journal of Phonetics, 37, 97110.Google Scholar
Carignan, C., Shosted, R. K., Fu, M., Liang, Z.-P. & Sutton, B. P. (2015). A real-time MRI investigation of the role of lingual and pharyngeal articulation in the production of the nasal vowel system of French. Journal of Phonetics, 50, 3451.Google Scholar
Catford, J. & Esling, J. (2006). Phonetics, articulatory. In Brown, K., ed., Encyclopedia of Language & Linguistics, 2nd ed. Oxford: Elsevier, pp. 425–42.Google Scholar
Catford, J. C. (1939). On the classification of stop consonants. Le Maître Phonétique, 65, 25.Google Scholar
Catford, J. C. (1964). Phonation types: The classification of some laryngeal components of speech production. In Abercrombie, D., ed., In Honour of Daniel Jones. London: Longman, pp. 2637.Google Scholar
Chafe, W. L. (1960). Seneca morphology I: Introduction. International Journal of American Linguistics, 26(1), 1122.Google Scholar
Chen, W.-R., Chang, Y.-C. & Iskarous, K. (2015). Vowel coarticulation: Landmark statistics measure vowel aggression. Journal of the Acoustical Society of America, 138(2), 1221–32.Google Scholar
Chiba, T. & Kajiyama, M. (1941). The Vowel: Its Nature and Structure. Tokyo: Kaseikan.Google Scholar
Chitoran, I. (2002). A perception-production study of Romanian diphthongs and glide-vowel sequences. Journal of the International Phonetic Association, 32/2, 203–22.Google Scholar
Cho, T., Jun, S.-A. & Ladefoged, P. (2002). Acoustic and aerodynamic correlates of Korean stops and fricatives. Journal of Phonetics, 30(2), 193228.Google Scholar
Chomsky, N. & Halle, M. (1968). The Sound Pattern of English. New York: Harper & Row.Google Scholar
Cohn, A. C., Ham, W. H., & Podesva, R. J. (1999). The phonetic realization of singleton-geminate contrasts in three languages of Indonesia. In In J. J. Ohala, Y. Hasegawa, M. Ohala, D. Granville & A. C. Bailey, eds., Proceedings of the 14th International Congress of Phonetic Sciences (Vol. 1, pp. 587–590). Berkeley, CA: ICPhS.Google Scholar
Colarusso, J. (1992). How many consonants does Ubykh have? In Hewitt, G., ed., Caucasian Perspectives. Munich: Lincom Europa, pp. 145–56.Google Scholar
Cooke, M., Barker, J., Cunningham, S. & Shao, X. (2006). An audio-visual corpus for speech perception and automatic speech recognition. Journal of the Acoustical Society of America, 120(5), 2421–4.Google Scholar
Coulmas, F., ed. (1999). The Blackwell Encyclopedia of Writing Systems. Malden, MA: Blackwell.CrossRefGoogle Scholar
Cox, F. & Fletcher, J. (2017). Australian English Pronunciation and Transcription. Cambridge: Cambridge University Press.Google Scholar
Dart, S. N. (1987). An aerodynamic study of Korean stop consonants: Measurements and modeling. Journal of the Acoustical Society of America, 81(1), 138–47.Google Scholar
De Jong, K. (1998). Stress-related variation in the articulation of coda alveolar stops: Flapping revisited. Journal of Phonetics, 26(3), 283310.Google Scholar
Delattre, P. & Freeman, D. C. (1968). A dialect study of American r’s by X-ray motion picture. Linguistics, 44, 2968.Google Scholar
Demolin, D. (1995). The phonetics and phonology of glottalized consonants in Lendu. In Connell, B., Arvaniti, A., Kingston, J., Connell, B., Arvaniti, A. & Kingston, J., eds., Phonology and Phonetic Evidence: Papers in Laboratory Phonology IV. Cambridge: Cambridge University Press, pp. 368–85.Google Scholar
Derrick, D. & Gick, B. (2011). Individual variation in English flaps and taps: A case of categorical phonetics. Canadian Journal of Linguistics/Revue canadienne de linguistique, 56(3), 307–19.Google Scholar
DiCanio, C. T. (2012). The phonetics of fortis and lenis consonants in Itunyoso Trique. International Journal of American Linguistics, 78(2), 239–72.Google Scholar
Diehl, R. (1989). Remarks on Steven’s quantal theory of speech. Journal of Phonetics, 17(1–2), 71–8.Google Scholar
Elliott, R. W. V. (1954). Isaac Newton as phonetician. The Modern Language Review, 49(1), 512.Google Scholar
Ernestus, M. (2014). Acoustic reduction and the roles of abstractions and exemplars in speech processing. Lingua, 142, 2741.Google Scholar
Esling, J. H. (2010). Phonetic notation. In Hardcastle, W. J., Laver, J. & Gibbon, F. E., eds., The Handbook of Phonetic Sciences, 2nd ed. Oxford: Blackwell, pp. 678702.Google Scholar
Esling, J. H. & Harris, J. G. (2005). States of the glottis: An articulatory phonetic model based on laryngoscopic observations. In Hardcastle, W. J. and & Beck, J. M., eds., A Figure of Speech: A Festschrift for John Laver. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Esling, J. H., Fraser, K. E. & Harris, J. G. (2005). Glottal stop, glottalized resonants, and pharyngeals: A reinterpretation with evidence from a laryngoscopic study of Nuuchahnulth (Nootka). Journal of Phonetics, 33(4), 383410.Google Scholar
Espy-Wilson, C. Y., Boyce, S. E., Jackson, M., Narayanan, S. & Alwan, A. (2000). Acoustic modeling of American English /r/. Journal of the Acoustical Society of America, 108(1), 343–56.Google Scholar
Everett, D. L. (1986). Pirahã. In Derbyshire, D. C. & Pullum, G. K., eds., Handbook of Amazonian Languages, vol. 1. Berlin: Mouton de Gruyter, pp. 200326.Google Scholar
Ewan, W. G. & Krones, R. (1974). Measuring larynx movement using the thyroumbrometer. Journal of Phonetics, 2, 327–35.Google Scholar
Fant, G. (1960). Acoustic Theory of Speech Production, with Calculations Based on X-ray Studies of Russian Articulations. s’Gravenhage: Mouton.Google Scholar
Firchow, I. & Firchow, J. (1969). An abbreviated phoneme inventory.Anthropological Linguistics, 11, 271–6.Google Scholar
Flemming, E., Ladefoged, P. & Thomason, S. (2008). Phonetic structures of Montana Salish. Journal of Phonetics, 36(3), 465–91.Google Scholar
Fletcher, S. G. & Newman, D. G. (1991). [s] and [ʃ] as a function of linguapalatal contact place and sibilant groove width. Journal of the Acoustical Society of America, 89(2), 850–8.Google Scholar
Foulkes, P. & Docherty, G. (2006). The social life of phonetics and phonology. Journal of Phonetics, 34(4), 409–38.Google Scholar
Fowler, C. A. (1994). Invariants, specifiers, cues: An investigation of locus equations as information for place of articulation. Attention, Perception & Psychophysics, 55(6), 597610.Google Scholar
Fowler, C. A. (2005). Parsing coarticulated speech in perception: Effects of coarticulation resistance. Journal of Phonetics, 33(2), 199213.Google Scholar
Fu, M., Zhao, B., Carignan, C., Shosted, R. K., Perry, J. L., Kuehn, D. P. et al. (2015). High-resolution dynamic speech imaging with joint low-rank and sparsity constraints. Magnetic Resonance in Medicine, 73(5), 1820–32.Google Scholar
Fu, M., Barlaz, M. S., Holtrop, J. L., Perry, J. L., Kuehn, D. P., Shosted, R. K. et al. (2017). High-frame-rate full-vocal tract 3D dynamic speech imaging. Magnetic Resonance in Medicine, 77(4), 1619–29.Google Scholar
Gick, B. (2002). The use of ultrasound for linguistic phonetic fieldwork. Journal of the International Phonetics Association, 32(2), 113–21.Google Scholar
Gick, B. & Campbell, F. (2003). Intergestural timing in English /r/. In Proceedings of the 15th International Congress of Phonetic Sciences, pp. 1911–14.Google Scholar
Gick, B., Iskarous, K., Whalen, D. H. & Goldstein, L. M. (2003). Constraints on variations in the production of English /r/. In Proceedings of the 6th International Seminar on Speech Production, Sydney: ISSP, pp. 7378.Google Scholar
Gick, B., Wilson, I. & Derrick, D. (2012). Articulatory Phonetics. Malden, MA: Wiley-Blackwell.Google Scholar
Giles, S. B. & Moll, K. L. (1975). Cinefluorographic study of selected allophones of English /l/. Phonetica, 31(3–4), 206–27.Google Scholar
Gobl, C. (2010). Voice source variation and its communicative functions. In Hardcastle, W. J., Laver, J. & Gibbon, F. E., eds., The Handbook of Phonetic Sciences, vol. 1, 2nd ed. Oxford: Wiley-Blackwell, pp. 378423.Google Scholar
Gobl, C. & Chasaide, A. N. (2003). The role of voice quality in communicating emotion, mood and attitude. Speech Communication, 40, 189212.CrossRefGoogle Scholar
Goldstein, L. & Fowler, C. A. (2003). Articulatory Phonology: A phonology for public language use. In Schiller, N. O. and & Meyer, A. S., eds., Phonetics and Phonology in Language Comprehension and Production: Differences and Similarities. Berlin; New York: Mouton de Gruyter, pp. 159207.Google Scholar
Goldstein, L., Chitoran, I. & Selkirk, E. (2007). Syllable structure as coupled oscillator modes: Evidence from Georgian vs. Tashlhiyt Berber. In Proc. XVIth International Congress of Phonetic Sciences, pp. 241–4.Google Scholar
Gordon, M. & Ladefoged, P. (2001). Phonation types: A cross-linguistic overview. Journal of Phonetics, 29(4), 383406.Google Scholar
Gordon, M. K. (2016). Phonological Typology, vol. 1. Oxford: Oxford University Press.Google Scholar
Grawunder, S., Simpson, A. P. & Khalilov, M. (2010). Phonetic characteristics of ejectives–samples from Caucasian languages. In Fuchs, S., Toda, M. & Żygis, M., eds., Turbulent Sounds: An Interdisciplinary Guide. Berlin: de Gruyter, pp. 209–44.Google Scholar
Guenther, F. H. (2016). Neural Control of Speech. Cambridge, MA: MIT Press.Google Scholar
Guenther, F. H., Espy-Wilson, C. Y., Boyce, S. E., Matthies, M. L., Zandipour, M. & Perkell, J. S. (1999). Articulatory tradeoffs reduce acoustic variability during American English /r/ production. Journal of the Acoustical Society of America, 105(5), 2854–65.Google Scholar
Güldemann, T. (2001). Phonological regularities of consonant systems across Khoisan lineages. University of Leipzig Papers on Africa, 16, 150.Google Scholar
Hagiwara, R. (1994). Three types of American /r/. UCLA Working Papers in Phonetics, pp. 5562.Google Scholar
Ham, W. H. (2001). Phonetic and Phonological Aspects of Geminate Timing. New York: Routledge.Google Scholar
Hankamer, J., Lahiri, A. & Koreman, J. (1989). Perception of consonant length: Voiceless stops in Turkish and Bengali. Journal of Phonetics, 17(4), 283–98.Google Scholar
Hanson, H. M., Stevens, K. N., Kuo, H.-K. J., Chen, M. Y. & Slifka, J. (2001). Towards models of phonation. Journal of Phonetics, 29(4), 451–80.Google Scholar
Harrison, K. D. (2008). When Languages Die: The Extinction of the World’s Languages and the Erosion of Human Knowledge. Oxford: Oxford University Press.Google Scholar
Hay, J. (2004). Causes and Consequences of Word Structure. London: Routledge.Google Scholar
Hay, J. & Drager, K. (2007). Sociophonetics. Annual Review of Anthropology, 36, 89103.Google Scholar
Henton, C., Ladefoged, P. & Maddieson, I. (1992). Stops in the world’s languages. Phonetica, 49(2), 65101.Google Scholar
Hermes, A., Grice, M., Mücke, D. & Niemann, H. (2008). Articulatory indicators of syllable affiliation in word initial consonant clusters in Italian. In Sock, R., Fuchs, S. & Laprie, Y., eds., Proceedings of the 8th International Seminar on Speech Production. Strasbourg, France: INRIA, pp. 433–6.Google Scholar
Heselwood, B., Hassan, Z. M. & Jones, M. J. (2013). Historical overview of phonetics. In Jones, M. J. and Knight, R.-A., eds., The Bloomsbury Companion to Phonetics. London: Bloomsbury Publishing, pp. 520.Google Scholar
Hoole, P. (1998). Do airstream mechanisms influence tongue movement paths? Phonetica, 55(3), 131–46.Google Scholar
Hoole, P. & Pouplier, M. (2017). Öhman returns: New horizons in the collection and analysis of imaging data in speech production research. Computer Speech & Language, 45 (Supplement C), 253–77.Google Scholar
Hualde, J. I. (2005). The Sounds of Spanish. Cambridge: Cambridge University Press.Google Scholar
Hueber, T., Aversano, G., Cholle, G., Denby, B., Dreyfus, G., Oussar, Y. et al. (2007). Eigentongue feature extraction for an ultrasound-based silent speech interface. In IEEE International Conference on Acoustics, Speech and Signal Processing – ICASSP07, I-1245– I-1248.Google Scholar
Idemaru, K. & Guion, S. G. (2008). Acoustic covariants of length contrast in Japanese stops. Journal of the International Phonetic Association, 38(2), 167–86.Google Scholar
Iskarous, K. (2006). The articulation of the palatal gesture in American English [r]. In Yehia, H., Demolin, D. & Laboissiere, R., eds., Proceedings of the 7th International Seminar on Speech Production (ISSP), Ubatuba. Belo Horizonte: UFMG, pp. 341–8.Google Scholar
Iskarous, K., Fowler, C. A. & Whalen, D. H. (2010). Locus equations are an acoustic expression of articulator synergy. Journal of the Acoustical Society of America, 128(4), 2021–32.CrossRefGoogle ScholarPubMed
Iskarous, K., Shadle, C. H. & Proctor, M. I. (2011). Articulatory–acoustic kinematics: The production of American English /s/. Journal of the Acoustical Society of America, 129(2), 944–54.Google Scholar
Israel, A., Proctor, M., Goldstein, L., Iskarous, K. & Narayanan, S. S. (2012). Emphatic segments and emphasis spread in Lebanese Arabic: a Real-time Magnetic Resonance Imaging Study. In Proc. Int’l Conf. on Speech Communication and Technology, Portland, OR, pp. 2178–81.Google Scholar
Jespersen, O. (1889). The Articulations of Speech Sounds Represented by Means of Analphabetic Symbols. Marburg in Hessen: NG Elwert.Google Scholar
Johnson, K. (2011). Acoustic and Auditory Phonetics, 3rd ed. Malden, MA: Wiley-Blackwell.Google Scholar
Johnson, K. & Mullennix, J. W. (1997). Speech perception without speaker normalization: AN exemplar model. In Johnson, K. & Mullennix, J. W., eds., Talker Variability in Speech Processing. San Diego, CA: Academic Press, pp. 145–66.Google Scholar
Kang, Y. (2014). Voice Onset Time merger and development of tonal contrast in Seoul Korean stops: A corpus study. Journal of Phonetics, 45, 7690.Google Scholar
Katsamanis, A., Black, M., Georgiou, P., Goldstein, L. & Narayanan, S. (2011). SailAlign: Robust long speech-text alignment. In Proc. Workshop on New Tools and Methods for Very-Large Scale Phonetics Research. Philadelphia: University of Pennsylvania, pp. 44–7.Google Scholar
Kelso, J. S., Tuller, B. & Harris, K. S. (1983). A ‘dynamic pattern’ perspective on the control and coordination of movement. In MacNeilage, P. F., ed., The Production of Speech. New York: Springer-Verlag, pp. 137–73.Google Scholar
Kemp, J. A. (2006). Phonetic transcription: History. In Brown, K., ed., Encyclopedia of Language & Linguistics, 2nd ed. Oxford: Elsevier, pp. 396410.Google Scholar
Khan, S., Esposito, C. M. & Hurst, A. (2007). Breathy nasals and /Nh/ clusters in Bengali, Hindi, and Marathi. Indian Linguistics, 68, 275.Google Scholar
Kim, C.-W. (1965). On the autonomy of the tensity feature in stop classification (with special reference to Korean stops). Word, 21(3), 339–59.Google Scholar
Kim, H., Honda, K. & Maeda, S. (2005). Stroboscopic-cine MRI study of the phasing between the tongue and the larynx in the Korean three-way phonation contrast. Journal of Phonetics, 33(1), 126.Google Scholar
Kiparsky, P. (1991). Economy and the construction of the Sivasutras. In Deshpande, M. & Bhate, S., eds., Paninian Studies. S. D. Joshi Felicitation Volume. Ann Arbor, MI: Center for South Asian Studies, University of Michigan, pp. 239–61.Google Scholar
Kirchner, R. (2000). Geminate inalterability and lenition. Language, 76(3), 509–45.Google Scholar
Krakow, R. A. (1999). Physiological organization of syllables: A review. Journal of Phonetics, 27(1), 2354.Google Scholar
Kühnert, B., Hoole, P. & Mooshammer, C. (2006). Gestural overlap and C-center in selected French consonant clusters. In Yehia, H., Demolin, D. & Laboissiere, R., eds., Proceedings of the 7th International Seminar on Speech Production (ISSP). Ubatuba. Belo Horizonte: UFMG, pp. 327–34.Google Scholar
Kuperman, V., Pluymaekers, M., Ernestus, M. & Baayen, H. (2007). Morphological predictability and acoustic duration of interfixes in Dutch compounds. Journal of the Acoustical Society of America, 121(4), 2261–71.Google Scholar
Ladefoged, P. (1968). A Phonetic Study of West African Languages. Cambridge: Cambridge University Press.Google Scholar
Ladefoged, P. (2005). Vowels and Consonants, 2nd ed. Malden, MA: Blackwell.Google Scholar
Ladefoged, P. & Johnson, K. (2014). A Course in Phonetics, 7th ed. Stamford, CT: Cengage Learning.Google Scholar
Ladefoged, P. & Maddieson, I. (1996). The Sounds of the World’s Languages. Oxford: Blackwell.Google Scholar
Ladefoged, P. & Traill, A. (1994). Clicks and their accompaniments. Journal of Phonetics, 22, 3364.Google Scholar
Ladefoged, P., Williamson, K. & Elugbe, B. U. (1976). The stops of Owerri Igbo. Studies in African Linguistics, 7, 147–63.Google Scholar
Ladefoged, P., Cochran, A. & Disner, S. (1977). Laterals and trills. Journal of the International Phonetic Association, 7(2), 4654.Google Scholar
Lammert, A., Goldstein, L., Narayanan, S. & Iskarous, K. (2013). Statistical methods for estimation of direct and differential kinematics of the vocal tract. Speech Communication, 55(1), 147–61.Google Scholar
Lancia, L., Voigt, D. & Krasovitskiy, G. (2016). Characterization of laryngealization as irregular vocal fold vibration and interaction with prosodic prominence. Journal of Phonetics, 54(Supplement C), 8097.Google Scholar
Laver, J. (1980). The Phonetic Description of Voice Quality. Cambridge: Cambridge University Press.Google Scholar
Laver, J. (1994). Principles of Phonetics. Cambridge: Cambridge University Press.Google Scholar
Laver, J. D. (1968). Voice quality and indexical information. British Journal of Disorders of Communication, 3(1), 4354.Google Scholar
Lepsius, C. R. (1863). Standard Alphabet for Reducing Unwritten Languages and Foreign Graphic Systems to a Uniform Orthography in European Letters, 2nd ed. London: Williams & Norgate.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431.Google Scholar
Lindau, M. (1984). Phonetic differences in glottalic consonants. Journal of Phonetics, 12, 147–55.Google Scholar
Lindblom, B. & Engstrand, O. (1989). In what sense is speech quantal? Journal of Phonetics, 17(1–2), 107–21.Google Scholar
Lindblom, B. & Maddieson, I. (1988). Phonetic universals in consonant systems. In Hyman, L. M. & Li., C. N., eds., Language, Speech, and Mind: Studies in Honour of Victoria A. Fromkin. London: Routledge, pp. 6278.Google Scholar
Lindblom, B. & Sussman, H. M. (2012). Dissecting coarticulation: How locus equations happen. Journal of Phonetics, 40(1), 119.Google Scholar
Lindblom, B., MacNeilage, P. & Studdert-Kennedy, M. (1983). Self-organizing processes and the explanation of phonological universals. Linguistics, 21(1), 181204.Google Scholar
Lingala, S. G., Zhu, Y., Kim, Y.-C., Toutios, A., Narayanan, S. & Nayak, K. S. (2017). A fast and flexible MRI system for the study of dynamic vocal tract shaping. Magnetic Resonance in Medicine, 77(1), 112–25.CrossRefGoogle Scholar
Lisker, L. & Abramson, A. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20, 384422.Google Scholar
Loos, E. E., Anderson, S., Day, D. H., Jordan, P. C. & Wingate, J. D. (2004). Glossary of Linguistic Terms, vol. 29. Dallas, TX: SIL International.Google Scholar
Maddieson, I. (1980). Phonological generalizations from the UCLA Phonological Segment Inventory Database (UPSID). UCLA Working Papers in Phonetics, 50, 5768.Google Scholar
Maddieson, I. (1992). UCLA Phonological Segment Inventory Database. Los Angeles: University of California, Los Angeles.Google Scholar
Maddieson, I. (2013a). Consonant inventories. In Dryer, M. S. & Haspelmath, M., eds., The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. Available online at http://wals.info/chapter/1, accessed on 11 August 2020).Google Scholar
Maddieson, I. (2013b). Glottalized consonants. In Dryer, M. S. & Haspelmath, M., eds., The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. Available online at http://wals.info/chapter/7, accessed on 11 August 2020.Google Scholar
Maddieson, I. & Emmorey, K. (1984). Is there a valid distinction between voiceless lateral approximants and fricatives? Phonetica, 41(4), 181–90.Google Scholar
Maddieson, I. & Emmorey, K. (1985). Relationship between semivowels and vowels: Cross-linguistic investigations of acoustic difference and coarticulation. Phonetica, 42(4), 163–74.Google Scholar
Marin, S. & Pouplier, M. (2010). Temporal organization of complex onsets and codas in American English: Testing the predictions of a gestural coupling model. Motor Control, 14(3), 380407.Google Scholar
Marin, S. & Pouplier, M. (2014). Articulatory synergies in the temporal organization of liquid clusters in Romanian. Journal of Phonetics, 42, 2436.Google Scholar
McDonough, J. & Wood, V. (2008). The stop contrasts of the Athabaskan languages. Journal of Phonetics, 36(3), 427–49.Google Scholar
McGowan, R. S. (1992). Tongue-tip trills and vocal-tract wall compliance. Journal of the Acoustical Society of America, 91(5), 2903–10.Google Scholar
McGowan, R. S. & Howe, M. S. (2007). Compact green’s functions extend the acoustic theory of speech production. Journal of Phonetics, 35(2), 259–70.Google Scholar
McQueen, J. M., Cutler, A. & Norris, D. (2006). Phonological abstraction in the mental lexicon. Cognitive Science, 30(6), 1113–26.Google Scholar
Mielke, J. (2008). The Emergence of Distinctive Features. Oxford: Oxford University Press.Google Scholar
Mielke, J., Baker, A. & Archangeli, D. (2016). Individual-level contact limits phonological complexity: Evidence from bunched and retroflex /r/. Language, 92(1), 101–40.Google Scholar
Miller, A. (2010). Tongue body and tongue root shape differences in N|uu clicks correlate with phonotactic patterns. In Fuchs, S., Toda, M. & Żygis, M., eds., Turbulent sounds. An interdisciplinary guide. Berlin: de Gruyter, pp. 245–80.Google Scholar
Miller, A. L. (2011). The representation of clicks. In van Oostendorp, M., Ewen, C. J., Hume, E. & Rice, K., eds., The Blackwell Companion to Phonology, vol. 1, chap. 18. Malden, MA: Wiley-Blackwell, pp. 416–39.Google Scholar
Mohammed, M. A. (2001). Modern Swahili Grammar. Nairobi: East African Educational Publishers.Google Scholar
Moisik, S. R. & Esling, J. H. (2014). Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: A low-dimensional model of vocal–ventricular fold coupling. Journal of Speech, Language, and Hearing Research, 57(2), S687S704.Google Scholar
Moisik, S. R., Esling, J. H. & Crevier-Buchman, L. (2010). A high-speed laryngoscopic investigation of aryepiglottic trilling. Journal of the Acoustical Society of America, 127(3), 1548–58.Google Scholar
Monnot, M. & Freeman, M. (1972). A comparison of Spanish single-tap /r/ with American /t/ and /d/ in post-stress intervocalic position. In Valdman, A., ed., Papers in Linguistics and Phonetics to the Memory of Pierre Delattre. The Hague: Mouton, pp. 409–16.Google Scholar
Moran, S., McCloy, D. & Wright, R., eds. (2019). PHOIBLE Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. Available online at http://phoible.org, accessed on 11 August 2020.Google Scholar
Muller, J. S. (2002). On the theoretical implications of Cypriot Greek initial geminates. Journal of Greek Linguistics, 3(1), 115–37.Google Scholar
Munhall, K. G., Ostry, D. J. & Parush, A. (1985). Characteristics of velocity profiles of speech movements. Journal of Experimental Psychology: Human Perception and Performance, 11(4), 457.Google Scholar
Nakagawa, H. (2006). Aspects of the Phonetic and Phonological Structure of the G|ui language, PhD thesis, University of the Witwatersrand.Google Scholar
Nam, H., Goldstein, L., Browman, C., Rubin, P., Proctor, M. & Saltzman, E. (2006). TADA (TAsk Dynamics Application) Manual. Available online at https://haskinslabs.org/research/features-and-demos/tada-task-dynamic-model-inter-articulator-speech-coordination, accessed on 11 August 2020.Google Scholar
Narayanan, S., Byrd, D. & Kaun, A. (1999). Geometry, kinematics, and acoustics of Tamil liquid consonants. Journal of the Acoustical Society of America, 106(4), 19932007.Google Scholar
Narayanan, S., Toutios, A., Ramanarayanan, V., Lammert, A., Kim, J., Lee, S. et al. (2014). Real-time magnetic resonance imaging and electromagnetic articulography database for speech production research (TC). Journal of the Acoustical Society of America, 136(3), 1307–11.Google Scholar
Nash, D. (1980). Topics in Warlpiri Grammar. New York: Garland Press.Google Scholar
Nichols, T. R. & Huyghues-Despointes, C. M. J. I. (2009). Muscular stiffness. In Binder, M. D., Hirokawa, N. & Windhorst, U., eds., Encyclopedia of Neuroscience. Berlin: Springer, pp. 2515–19.Google Scholar
Niebergall, A., Zhang, S., Kunay, E., Keydana, G., Job, M., Uecker, M. et al. (2013). Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction. Magnetic Resonance in Medicine, 69(2), 477–85.Google Scholar
Nieto-Castanon, A., Guenther, F. H., Perkell, J. S. & Curtin, H. D. (2005). A modeling investigation of articulatory variability and acoustic stability during American English /r/ production. Journal of the Acoustical Society of America, 117(5), 3196–212.Google Scholar
Nolan, F., Handbook of the International Phonetic Association, et al. (1999). Introduction to the IPA. Journal of the International Phonetics Association, 25(1), 333.Google Scholar
Ohala, J. J. (1975). Phonetic explanations for nasal sound patterns. In Ferguson, C. A., Hyman, L. M. & Ohala, J. J., eds., Nasalfest: Papers from a Symposium on Nasals and Nasalization. Stanford, CA: Language Universals Project, pp. 289316.Google Scholar
Ohala, J. J. (1981). The listener as a source of sound change. In Masek, C. S., Hendrick, R. A. & Miller, M. F., eds., Papers from the Parasession on Language and Behavior, Chicago Linguistic Society, May 1–2, 1981. Chicago: Chicago Linguistic Society, pp. 178203.Google Scholar
Ohala, J. J. (1983). The origin of sound patterns in vocal tract constraints. In MacNeilage, P. F., ed., The Production of Speech, chap. 9. New York: Springer-Verlag, pp. 189216.Google Scholar
Olson, K. (2004). Acoustic Correlates of the Labial Flap. Paper presented at the 78th Annual Meeting of the Linguistic Society of America, January 2004, Boston, MA.Google Scholar
Oquendo, L. (2004). La vibrant uvular y la approximate labiodental en la lengua japreria como cultura fonológica. Opción, 20(45), 6074.Google Scholar
Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition, and contrast. In Bybee, J. L. and & Hopper, P., eds., Frequency and the Emergence of Linguistic Structure. Amsterdam: John Benjamins, pp. 137–57.Google Scholar
Pierrehumbert, J. (2002). Word-specific phonetics. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology, vol. 7. Berlin: Mouton de Gruyter, pp. 101–39.Google Scholar
Pinho, C. M., Jesus, L. M. & Barney, A. (2012). Weak voicing in fricative production. Journal of Phonetics, 40(5), 625–38.Google Scholar
Pinkerton, S. (1986). Quichean (Mayan) glottalized and nonglottalized stops: A phonetic study with implications for phonological universals. In Ohala, J. & Jaeger, J., eds., Experimental Phonology. Orlando, FL: Academic Press, pp. 125–39.Google Scholar
Podesva, R. J. & Callier, P. (2015). Voice quality and identity. Annual Review of Applied Linguistics, 35, 173–94.Google Scholar
Pouplier, M. & Beňuš, Š. (2011). On the phonetic status of syllabic consonants: Evidence from Slovak. Laboratory Phonology, 2(2), 243–73.Google Scholar
Prince, A. & Smolensky, P. (2008). Syllable structure typology: The CV theory. In McCarthy, J. J., ed., Optimality Theory in Phonology: A Reader. Chichester: John Wiley & Sons, pp. 105–18.Google Scholar
Proctor, M. & Walker, R. (2012). Articulatory bases of English liquids. In Parker, S., ed., The Sonority Controversy, vol. 18 of Studies in Generative Grammar. Berlin: De Gruyter, pp. 285312.Google Scholar
Proctor, M. I., Shadle, C. H. & Iskarous, K. (2010). Pharyngeal articulation differences in voiced and voiceless fricatives. Journal of the Acoustical Society of America, 127(3), 1507–18.Google Scholar
Proctor, M., Bresch, E., Byrd, D., Nayak, K. & Narayanan, S. (2013). Paralinguistic mechanisms of production in human ‘beatboxing’: A realtime magnetic resonance imaging study. Journal of the Acoustical Society of America, 133(2), 1043–54.Google Scholar
Proctor, M., Zhu, Y., Lammert, A., Toutios, A., Sands, B., Hummel, U. & Narayanan, S. (2016). Lingual consonant production in Khoekhoe: A real-time MRI study. In Shah, S. & Brenzinger, M., eds., Khoisan Languages and Linguistics – Proceedings of the 5th International Symposium, July 13–17, 2014, Riezlern/Kleinwalsertal. Cologne: Rüdiger Köppe Verlag, pp. 337–66.Google Scholar
Ramanarayanan, V., Parrell, B., Goldstein, L., Nagarajan, S. & Houde, J. (2016). A new model of speech motor control based on task dynamics and state feedback. In Proc. Int’l Conf. on Speech Communication and Technology, pp. 3564–8.Google Scholar
Recasens, D. (1983). Place cues for nasal consonants with special reference to Catalan. Journal of the Acoustical Society of America, 73(4), 1346–53.Google Scholar
Remez, R. E., Rubin, P. E., Pisoni, D. B. & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212(4497), 947–9.Google Scholar
Remijsen, B. & Gilley, L. (2008). Why are three-level vowel length systems rare? Insights from Dinka (Luanyjang dialect). Journal of Phonetics, 36(2), 318–44.Google Scholar
Ridouane, R. (2008). Syllables without vowels: Phonetic and phonological evidence from Tashlhiyt Berber. Phonology, 25(2), 321–59.Google Scholar
Ridouane, R. (2010). Geminates at the junction of phonetics and phonology. Laboratory Phonology, 10, 6190.Google Scholar
Roon, K., Gafos, A. I., Hoole, P. & Zeroual, C. (2007). Influence of articulator and manner on stiffness. In Proc. Int’l. Congress on Phonetic Sciences, pp. 409–12.Google Scholar
Saltzman, E. L. & Munhall, K. G. (1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1(4), 333–82.Google Scholar
Schutz, A. J. (1980). A reanalysis of the Hawaiian vowel system. Oceanic Linguistics, 20, 143.Google Scholar
Scobbie, J. M. & Pouplier, M. (2010). The role of syllable structure in external sandhi: An EPG study of vocalisation and retraction in word-final English /l/. Journal of Phonetics, 38(2), 240–59.Google Scholar
Shadle, C. H. (1990). Articulatory–acoustic relationships in fricative consonants. In Hardcastle, W. J. & Marchal, A., eds., Speech Production and Speech Modelling, vol. 55. Dordrecht: Kluwer Academic Publisher, pp. 187209.Google Scholar
Shadle, C. (1999). The aerodynamics of speech. In Hardcastle, W. J. & Laver, J., eds., The Handbook of Phonetic Sciences. Cambridge, MA: Blackwell, pp. 3364.Google Scholar
Shaw, J., Gafos, A., Hoole, P. & Zeroual, C. (2009). Temporal evidence for syllabic structure in Moroccan Arabic: Data and model. Phonology, 26(1), 187215.Google Scholar
Shosted, R. K. (2006). The Aeroacoustics of Nasalized Fricatives, Ph.D. thesis, University of California, Berkeley.Google Scholar
Simons, G. F. & Fennig, C. D., eds. (2017). Ethnologue: Languages of the World, 20th ed. Dallas: SIL International, www.ethnologue.com.Google Scholar
Smith, C. L. (1993). The Timing of Vowel and Consonant Gestures. PhD thesis, Yale University.Google Scholar
Snyman, J. W. (1975). Zhu/’hõasi fonologie & woordeboek. Cape Town: A.A. Balkema; University of Cape Town.Google Scholar
Solé, M.-J. (2002). Aerodynamic characteristics of trills and phonological patterning. Journal of Phonetics, 30(4), 655–88.Google Scholar
Son, M.-J., Kim, S.-H. & Cho, T.-H. (2011). Supralaryngeal articulatory characteristics of coronal consonants in Korean. Journal of the Korean Society of Speech Sciences, 3(4), 3343.Google Scholar
Sproat, R. & Fujimura, O. (1993). Allophonic variation in English /l/ and its implications for phonetic implementation. Journal of Phonetics, 21(3), 291311.Google Scholar
Stevens, K. N. (1971). Airflow and turbulence noise for fricative and stop consonants: Static considerations. Journal of the Acoustical Society of America, 50(4B), 1180–92.Google Scholar
Stevens, K. N. (1977). Physics of laryngeal behavior and larynx modes. Phonetica, 34(4), 264–79.Google Scholar
Stevens, K. N. (1989). On the quantal nature of speech. Journal of Phonetics, 17(1–2), 345.Google Scholar
Stevens, K. N. (1998). Acoustic Phonetics. Cambridge, MA: MIT Press.Google Scholar
Stevens, K. N. (2004). Invariance and variability in speech: Interpreting acoustic evidence. In Slifka, J., Manuel, S. & Mathies, M., eds., From Sound to Sense: 50+ Years of Discoveries in Speech Communication. Cambridge, MA: MIT Press, pp. 77B85.Google Scholar
Stevens, K. N. & Blumstein, S. E. (1978). Invariant cues for place of articulation in stop consonants. Journal of the Acoustical Society of America, 64(5), 1358–68.Google Scholar
Sussman, H. M. & Shore, J. (1996). Locus equations as phonetic descriptors of consonantal place of articulation. Attention, Perception & Psychophysics, 58(6), 936–46.Google Scholar
Sweet, H. (1877). A Handbook of Phonetics, vol. 2. Oxford: Clarendon Press.Google Scholar
Tillmann, H. (2006). Experimental and instrumental phonetics: History. In Brown, K., ed., Encyclopedia of Language & Linguistics, 2nd ed. Oxford: Elsevier, pp. 374–89.Google Scholar
Tilsen, S. & Goldstein, L. (2012). Articulatory gestures are individually selected in production. Journal of Phonetics, 40(6), 764–79.Google Scholar
Titze, I. R. & Story, B. H. (1997). Acoustic interactions of the voice source with the lower vocal tract. Journal of the Acoustical Society of America, 101(4), 2234–43.Google Scholar
Toda, M. & Honda, K. (2003). An MRI-based cross-linguistic study of sibilant fricatives. In Palethorpe, S. & Tabain, M., eds., Proceedings of the 6th International Seminar on Speech Production. Sydney: Macquarie Centre for Cognitive Science, pp. 290–5.Google Scholar
Tourville, J. A. & Guenther, F. H. (2011). The diva model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26(7), 952–81.Google Scholar
Trubetzkoy, N. S. (1969). Principles of Phonology. Berkeley, CA: University of California Press.Google Scholar
Turpin, M., Ross, A. & Staff, I. P. (2012). Kaytetye to English Dictionary. Alice Springs: IAD Press.Google Scholar
Viswanathan, N., Magnuson, J. S. & Fowler, C. A. (2014). Information for coarticulation: Static signal properties or formant dynamics? Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1228.Google Scholar
Vogt, H. (1963). Dictionnaire de la langue oubykh: avec introduction phonologique, index français-oubykh, textes oubykhs. Oslo: Universitets forlaget.Google Scholar
Volney, Constantin-Fran (1795). Simplification des langues orientales. Paris: L’imprimerie de la République.Google Scholar
Wagner, K. O. C. & Baker-Smemoe, W. (2013). An investigation of the production of ejectives by native (L1) and second (L2) language speakers of Q’eqchi’ Mayan. Journal of Phonetics, 41(6), 453–67.Google Scholar
Westbury, J. R., Hashi, M. & Lindstrom, M. J. (1998). Differences among speakers in lingual articulation for American English /r/. Speech Communication, 26(3), 203–26.Google Scholar
Wilkins, J. (1668). An Essay Towards a Real Character, and a Philosophical Language. London: Sa. Gellibrand.Google Scholar
Zawadzki, P. A. & Kuehn, D. P. (1980). A cineradiographic study of static and dynamic aspects of American English /r/. Phonetica, 37, 253–66.Google Scholar
Zhou, X., Espy-Wilson, C. Y., Boyce, S., Tiede, M., Holland, C. & Choe, A. (2008). A magnetic resonance imaging-based articulatory and acoustic study of ‘retroflex’ and ‘bunched’ American English /r/. Journal of the Acoustical Society of America, 123(6), 4466–81.Google Scholar
Zhu, Y., Kim, Y.-C., Proctor, M. I., Narayanan, S. & Nayak, K. S. (2013). Dynamic 3D visualization of vocal tract shaping during speech. IEEE Trans. Medical Imaging, 32(5), 838–48.Google Scholar
Zue, V. W. & Laferriere, M. (1979). Acoustic study of medial /t, d/ in American English. Journal of the Acoustical Society of America, 66(4), 1039–50.Google Scholar

4.6 References

Alfonso, P. J. & Baer, T. (1982). Dynamics of vowel articulation. Language and Speech, 25(2), 151–73.Google Scholar
Bell, A. (1867). Visible Speech: Universal Alphabetics or Self-Interpreting Physiological Letters for the Writing of all Languages in One Alphabet. London: Simpkin & Marschall.Google Scholar
Bell-Berti, F. & Harris, K. (1981). A temporal model of speech production. Phonetica, 38, 920.Google Scholar
Bell-Berti, F., Krakow, R. A., Gelfer, C. E. & Boyze, S. E. (1995). Anticipatory and carryover effects: Implications for models of speech production. In F. Bell-Berti & L. J. Raphael, eds., Producing Speech: Contemporary Issues (for Katherine Stafford Harris). College Park, MD: American Institute of Physics.Google Scholar
Benguerel, A. P. & Cowan, H. A. (1974). Coarticulation of upper lip protrusion in French. Phonetica, 30, 4155.Google Scholar
Bird, S. & Klein, E. (1990). Phonological events. Journal of Linguistics, 26(1), 3356.Google Scholar
Blevins, J. (1995). The syllable in phonological theory. In Goldsmith, J., ed., The Handbook of Phonological Theory. Oxford: Blackwell, pp. 206–44.Google Scholar
Bombien, L., Mooshammer, C., Hoole, P. & Kühnert, B. (2010). Prosodic and segmental effects on EPG contact patterns of word-initial German clusters. Journal of Phonetics, 38(3), 388403.Google Scholar
Bombien, L., Mooshammer, C. & Hoole, P. (2013). Articulatory coordination in word-initial clusters of German. Journal of Phonetics, 41(6), 546–61.Google Scholar
Bradlow, A. R. (2002). Confluent talker-and listener-oriented forces in clear speech production. In Gussenhoven, C. & Warner, N., eds., Laboratory Phonology 7. Berlin: Mouton.Google Scholar
Broad, D. & Clermont, F. (1987). A methodology for modelling vowel formant contours in CVC context. Journal of the Acoustical Society of America, 81, 155–65.Google Scholar
Broad, D. & Clermont, F. (2010). Target-locus scaling methods for modelling families of formant transitions. Journal of Phonetics, 38, 337–59.Google Scholar
Broad, D. & Clermont, F. (2014). A method for analyzing the coarticulated CV & VC components of vowel-formant trajectories in CVC syllables. Journal of Phonetics, 47, 4780.Google Scholar
Broad, D. & Clermont, F. (2017). Target-locus scaling for modeling formant transitions in vowel + consonant + vowel contexts. Journal of the Acoustical Society of America, 141, 192.Google Scholar
Broad, D. & Fertig, R. (1970). Formant frequency trajectories in selected CVC syllable nuclei. Journal of the Acoustical Society of America, 47, 1572–82.Google Scholar
Browman, C. P. & Goldstein, L. (1988). Some notes on syllable structure in articulatory phonology. Phonetica, 45, 140–55.Google Scholar
Browman, C. P. & Goldstein, L. (1989). Articulatory gestures as phonological units. Phonology, 6(2), 201–51.Google Scholar
Browman, C. P. &. Goldstein, L. (1991). Tiers in articulatory phonology, with some implications for casual speech. In Kingston, J. & Beckman, M. E., eds., Papers in Laboratory Phonology I: Between the Grammar and the Physics of Speech. Cambridge: Cambridge University Press, pp. 341–76.Google Scholar
Browman, C. P. & Goldstein, L. (2000). Competing constraints on intergestural coordination & self-organization of phonological structures. Les Cahiers de l’ICP, 5, 2534.Google Scholar
Brücke, E. (1856). Grundzüge der Physiologie und Systematik der Sprachlaute für Linguisten und Taubstummenlehrer. Vienna: Gerold.Google Scholar
Brunner, J., Fuchs, S. & Perrier, P. (2011). Supralaryngeal control in Korean velar stops. Journal of Phonetics, 39(2), 178–95.Google Scholar
Bybee, J. (2012). Patterns of lexical diffusion and articulatory motivation for sound change. In Solé, M.-J. & Recasens, D., eds., The Initiation of Sound Change: Perception, Production and Social Factors. Amsterdam: John Benjamins, pp. 211–34.Google Scholar
Bybee, J. & Scheibman, J. (1999). The effect of usage on degrees of constituency: The reduction of don’t in English. Linguistics, 37(4), 575–96.Google Scholar
Byrd, D. & Choi, S. (2010). At the juncture of prosody, phonology & phonetics: The interaction of phrasal & syllable structure in shaping the timing of consonant gestures. Laboratory Phonology, 10, 3159.Google Scholar
Byrd, D. & Saltzman, E. (1998). Intragestural dynamics of multiple prosodic boundaries. Journal of Phonetics, 26(2), 173–99.Google Scholar
Byrd, D. & Saltzman, E. (2003). The elastic phrase: Modeling the dynamics of boundary-adjacent lengthening. Journal of Phonetics, 31(2), 149–80.Google Scholar
Byrd, D., Kaun, A., Naranyanan, S. & Saltzman, E. (2000). Phrasal signatures in articulation. Laboratory Phonology, 5, 7087.Google Scholar
Byrd, D., Krivokapić, J. & Lee, S. (2006). How far, how long: On the temporal scope of prosodic boundary effects. Journal of the Acoustical Society of America, 120(3), 1589–99.Google Scholar
Byrd, D., Tobin, S., Bresch, E. & Narayanan, S. (2009). Timing effects of syllable structure and stress on nasals: a real-time MRI examination. Journal of Phonetics, 37(1), 97110.Google Scholar
Chen, W., Chang, Y. & Iskarous, K. (2015). Vowel coarticulation: Landmark statistics measure vowel aggression. Journal of the Acoustical Society of America, 134, 4167–89.Google Scholar
Cho, T. (2016). Prosodic boundary strengthening in the phonetics–prosody interface. Language & Linguistics Compass, 10(3), 120–41.Google Scholar
Coker, C. H. (1976). A model of articulatory dynamics and control. Proceedings of the IEEE, 64, 452–60.Google Scholar
Ernestus, M., Lahey, M., Verhees, F. & Baayen, R. H. (2006). Lexical frequency and voice assimilation. Journal of the Acoustical Society of America, 120(2), 1040–51.Google Scholar
Fougeron, C. (2001). Articulatory properties of initial segments in several prosodic constituents in French. Journal of Phonetics, 29(2), 109–35.Google Scholar
Fowler, C. A. (1980). Coarticulation and theories of extrinsic timing control. Journal of Phonetics, 8, 113–33.Google Scholar
Fowler, C. A. (1996). Listeners do hear sounds, not tongues. Journal of the Acoustical Society of America, 99(3), 1730–41.Google Scholar
Fowler, C. A. & Brown, J. M. (2000). Perceptual parsing of acoustic consequences of velum lowering from information for vowels. Attention, Perception, & Psychophysics, 62(1), 2132.Google Scholar
Fowler, C. A. & Housum, J. (1987). Talkers’ signaling of ‘new’ and ‘old’ words in speech and listeners’ perception and use of the distinction. Journal of Memory & Language, 26(5), 489504.Google Scholar
Fowler, C. A. & Saltzman, E. (1993). Coordination and coarticulation in speech production. Language and Speech, 36(2–3), 171–95.Google Scholar
Fowler, C. A. & Turvey, M. T. (1978). Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables. In Stelmach, G. E., ed., Information Processing in Motor Control and Learning. New York: Academic Press.Google Scholar
Fowler, C. A., Rubin, P., Remez, R. & Turvey, M. (1980). Implications for speech production of a general theory of action. In Butterworth, B., ed., Language Production, Vol.1: Speech and Talk. London: Academic Press, pp. 373420.Google Scholar
Fujimura, O. (1986). Relative invariance of articulatory movements: An iceberg model. In Perkell, J. S. & Klatt, D. H., eds., Invariance and Variability in Speech Processes. Hillsdale, NJ: Lawrence Erlbaum, pp. 226–42.Google Scholar
Geng, C. (2010). A Cross-Linguistic Study on the Phonetics of Dorsal Obstruents. Doctoral dissertation, Humboldt-Universität zu Berlin, Philosophische Fakultät II.Google Scholar
Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification and recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1166–83.Google Scholar
Goldsmith, J. (1990). Autosegmental and Metrical Phonology. Maldon, MA: Wiley-Blackwell.Google Scholar
Goldstein, L., Chitoran, I. & Selkirk, E. (2007). Syllabic structure as coupled oscillator modes: Evidence from Georgian vs. Tashlhiyt Berber. In Proceedings of the XVIth International Congress of Phonetic Sciences. Germany: Saarbrücken, pp. 241–4.Google Scholar
Green, J. R., Moore, C. A. & Reilly, K. J. (2002). The sequential development of jaw and lip control for speech. Journal of Speech, Language, and Hearing Research, 45, 6679.Google Scholar
Harrington, J., Fletcher, J. & Roberts, C. (1995). Coarticulation and the accented/unaccented distinction: Evidence from jaw movement data. Journal of Phonetics, 23(3), 305–22.Google Scholar
Harrington, J., Kleber, F. & Reubold, U. (2008).Compensation for coarticulation, /u/-fronting, and sound change in standard southern British: An acoustic and perceptual study. Journal of the Acoustical Society of America, 123(5), 252835.Google Scholar
Holt, L. L. & Kluender, K. R. (2000). General auditory processes contribute to perceptual accommodation of coarticulation. Phonetica, 57(2–4), 170–80.Google Scholar
Hombert, J. M., Ohala, J. J. & Ewan, W. G. (1979). Phonetic explanations for the development of tones. Language, 55, 3758.Google Scholar
Hoole, P., Munhall, K. & Mooshammer, C. (1998). Do airstream mechanisms influence tongue movement paths? Phonetica, 55(3), 131–46.Google Scholar
Houde, R. (1968). A Study of Tongue Body Motion During Selected Speech Sounds. Speech Communications Research Laboratory, Santa Barbara, CA.Google Scholar
Iskarous, K. (2016). Compatible dynamical models of environmental, perceptual, and sensory systems. Ecological Psychology, 28, 295311.Google Scholar
Iskarous, K. (2017). The relation between the continuous and the discrete: A note on the first principles of speech dynamics. Journal of Phonetics, 64, 820.Google Scholar
Iskarous, K. & Kavitskaya, D. (2018). Sound change and the structure of synchronic variability: Phonetic and phonological factors in Slavic palatalization. Language, 94(1), 4383.Google Scholar
Iskarous, K., Shadle, C. H. & Proctor, M. I. (2011). Articulatory–acoustic kinematics: The production of American English /s/. Journal of the Acoustical Society of America, 129(2), 944–54.Google Scholar
Iskarous, K., Mooshammer, C., Hoole, P., Recasens, D., Shadle, C. H., Saltzman, E. & Whalen, D. H. (2013). The Coarticulation/Invariance Scale: Mutual information as a measure of coarticulation resistance, motor synergy, and articulatory invariance. Journal of the Acoustical Society of America, 134, 1271–84.Google Scholar
Jakobson, R., Fant, G. & Halle, M. (1952). Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. Technical Report 13. Massachusetts, MA: Acoustics Laboratory, MIT.Google Scholar
Jones, D. (1932). Outline of English Phonetics. Cambridge: Cambridge University Press.Google Scholar
Katsika, A., Whalen, D. H., Tiede, M. & King, H. (2015). Articulatory measures of planned and unplanned coarticulation. In Proceedings of the International Congress of the Phonetic Sciences, Glasgow.Google Scholar
Keating, P. A. (1990). The window model of coarticulation: articulatory evidence. Papers in Laboratory Phonology I, 26, 451–70.Google Scholar
Keating, P., Cho, T., Fougeron, C. & Hsu, C. S. (2004). Domain-initial articulatory strengthening in four languages. Phonetic Interpretation: Papers in Laboratory Phonology VI, 143–61.Google Scholar
Kim, J., Erickson, D., Lee, S. & Narayanan, S. (2014). A study of invariant properties and variation patterns in the Converter/Distributor model for emotional speech. In Proceedings of INTERSPEECH, 2014, ISCA, Singapore, pp. 413–17.Google Scholar
Kühnert, B. & Nolan, F. (1999). The origin of coarticulation. In Hardcastle, W. J. and Newlett, N., eds., Coarticulation: Theory, Data and Techniques. Cambridge: Cambridge University Press, pp. 730.Google Scholar
Levelt, W. J. & Wheeldon, L. (1994). Do speakers have access to a mental syllabary?. Cognition, 50(1–3), 239269.Google Scholar
Levelt, W. J., Roelofs, A. & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 138.Google Scholar
Lindblom, B. (1990). Explaining phonetic variation: A sketch of the H&H theory. In Hardcastle, W. J. & Marchal, A., eds., Speech Production and Speech Modelling. Dordrecht: Springer, pp. 402–39.Google Scholar
Löfqvist, A. (1999). Interarticulator phasing, locus equations, and degree of coarticulation. Journal of the Acoustical Society of America, 106(4), 2022–30.Google Scholar
Lotto, A. J. & Kluender, K. R. (1998). General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification. Perception & Psychophysics, 60(4), 602–19.Google Scholar
Malécot, A. (1956). Acoustic cues for nasal consonants. Language, 32, 274–84.Google Scholar
Mattingly, I. G. (1981). Phonetic representation and speech synthesis by rule. In Myers, T., Laver, J. & Anderson, J., eds., The Cognitive Representation of Speech. Amsterdam: North Holland, pp. 415–20.Google Scholar
Menzerath, P. & de Lacerda, A. (1933). Koartikulation, Steuerung und Lautabgrenzung. Berlin u. Bonn: Fred. Dümmlers.Google Scholar
Moll, K. L. & Daniloff, R. G. (1971). Investigation of the timing of velar movements during speech. Journal of the Acoustical Society of America, 50(2B), 678–84.Google Scholar
Mooshammer, C. & Fuchs, S. (2002). Stress distinction in German: Simulating kinematic parameters of tongue-tip gestures. Journal of Phonetics, 30(3), 337–55.Google Scholar
Mooshammer, C. & Geng, C. (2008). Acoustic and articulatory manifestations of vowel reduction in German. Journal of the International Phonetic Association, 38(2), 117–36.Google Scholar
Mooshammer, C., Hoole, P. & Kühnert, B. (1995). On loops. Journal of Phonetics, 23(1–2), 321.Google Scholar
Mooshammer, C., Hoole, P. & Geumann, A. (2006). Interarticulator cohesion within coronal consonant production. Journal of the Acoustical Society of America, 120(2), 1028–39.Google Scholar
Mooshammer, C., Hoole, P. & Geumann, A. (2007). Jaw and order. Language and Speech, 50(2), 145–76.Google Scholar
Munson, B. & Solomon, N. P. (2004). The effect of phonological neighborhood density on vowel articulation. Journal of Speech, Language, and Hearing Research, 47(5), 1048–58.Google Scholar
Nam, H., Goldstein, L., Saltzman, E. & Byrd, D. (2004). TADA: An enhanced, portable Task Dynamics model in MATLAB. Journal of the Acoustical Society of America, 115(5), 2430.Google Scholar
Nam, H., Goldstein, L. & Saltzman, E. (2009). Self-organization of syllable structure: A coupled oscillator model. In Pellegrino, F., ed., Approaches to Phonological Complexity. Amsterdam: Mouton de Gruyter, pp. 299328.Google Scholar
Nittrouer, S. & Whalen, D. (1989). The perceptual effects of child-adult differences in fricative-vowel coarticulation. Journal of the Acoustical Society of America, 86(4), 1266–76.Google Scholar
Noiray, A., Ménard, L. & Iskarous, K. (2013). The development of motor synergies in children: Ultrasound and acoustic measurements. Journal of the Acoustical Society of America, 133(1), 444–52.Google Scholar
Noiray, A., Abakarova, D., Rubertus, E., Krüger, S. & Tiede, M. (2018). How do children organize their speech in the first years of life? Insight from ultrasound imaging. Journal of Speech, Language, and Hearing Research, 61(6), 1355–68.Google Scholar
Ohala, J. J. (1983). The origin of sound patterns in vocal tract constraints. In MacNeilage, P. F., ed., The Production of Speech. New York: Springer, pp. 189216.Google Scholar
Ohala, J. J. (1993). The phonetics of sound change. In Jones, C., ed., Historical Linguistics: Problems and Perspectives. London: Longman, pp. 237–78.Google Scholar
Öhman, S. E. G. (1966). Coarticulation in VCV utterances: Spectrographic measurements. Journal of the Acoustical Society of America, 39, 151–68.Google Scholar
Panconcelli-Calzia, G. (1924). Die experimentelle Phonetik in ihrer Anwendung auf die Sprachwissenschaft. Berlin: Walter de Gruyter.Google Scholar
Paul, H. (1898). Prinzipien der Sprachgeschichte, 4th ed. Halle: Niemeyer.Google Scholar
Pater, J. (2009). Weighted constraints in Generative Linguistics. Cognitive Science, 33, 9991035.Google Scholar
Perrier, P., Payan, Y., Zandipour, M. & Perkell, J. (2003). Influences of tongue biomechanics on speech movements during the production of velar stop consonants: A modeling study. Journal of the Acoustical Society of America, 114(3), 1582–99.Google Scholar
Recasens, D. (2014). Coarticulation and Sound Change. Amsterdam: John Benjamins.Google Scholar
Recasens, D. & Espinosa, A. (2009). An articulatory investigation of lingual coarticulatory resistance and aggressiveness for consonants and vowels in Catalan. Journal of the Acoustical Society of America, 125(4), 2288–98.Google Scholar
Rousselot, P.-J. (1897–1901). Principes De Phonétique Experimentale, I-II. Paris: H. Welter.Google Scholar
Rubertus, E. & Noiray, A. (2018). On the development of gestural organization: A cross-sectional study of vowel-to-vowel anticipatory coarticulation. PLOS ONE, 13(9), e0203562.Google Scholar
Saltzman, E. & Munhall, K. (1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333–82.Google Scholar
Scripture, E. (1902). The Elements of Experimental Phonetics. New York: Charles Scribners Sons.Google Scholar
Shadle, C. H. (1990). Articulatory–acoustic relationships in fricative consonants. In W. J. Hardcastle & A. Marchal, eds., Speech Production and Speech Modelling, vol. 55. Dordrecht: Springer, pp. 187209.Google Scholar
Shadle, C., Proctor, M. I. & Iskarous, K. (2008). An MRI study of the effect of vowel context on English fricatives. Journal of the Acoustical Society of America, 123(5), 3735.Google Scholar
Sievers, E. (1876). Grundzüge der Lautphysiologie zur Einführung in das Studium der Lautlehre der Indogermanischen Sprachen. Leipzig: Breitkopf & Härtel.Google Scholar
Steriade, D. (1995). Underspecification and markedness. In Goldsmith, John A., ed., The Handbook of Phonological Theory. Oxford: Blackwell, pp. 114–74.Google Scholar
Stetson, R. (1951). Motor Phonetics: A Study of Speech Movements in Action. Amsterdam: North Holland.Google Scholar
Stevens, K. N. (1989). On the quantal nature of speech. Journal of Phonetics, 17, 346.Google Scholar
Stevens, K. N. & Keyser, S. J. (1989). Primary features and their enhancement in consonants. Language, 65, 81106.Google Scholar
Stevens, K. N. & Keyser, S. J. (2010). Quantal theory, enhancement and overlap. Journal of Phonetics, 38, 1019.Google Scholar
Story, B. & Bunton, K. (2010). Relation of vocal tract shape, formant transitions, and stop consonant identification. Journal of Speech, Language, and Hearing Research, 53, 1514–28.Google Scholar
Tillmann, H.-G. (1994). Phonetics, early modern, especially instrumental work. In Asher, R., ed., The Encyclopedia of Language and Linguistics, vol. 6. Oxford: Pergamon, pp. 3082–94.Google Scholar
Varley, R., Whiteside, S., Windsor, F. & Fisher, H. (2006). Moving up from the segment: A comment on Aichert & Ziegler’s syllable frequency and syllable structure in apraxia of speech, Brain & Language, 88, 148–159, 2004. Brain & Language, 96(2), 235–9.Google Scholar
Vennemann, T. (1974). Words and syllables in natural generative grammar. In Bruck, A., Fox, R. A. & La Galy, M. W., eds., Papers from the Parasession on Natural Phonology, April 18, 1974. Chicago, IL: Chicago Linguistic Society, pp. 346–74.Google Scholar
Walsh, M., Möbius, B., Wade, T. & Schütze, H. (2010). Multilevel exemplar theory. Cognitive Science, 34(4), 537–82.Google Scholar
Weinreich, U., Labov, W. & Herzog, M. I. (1968). Empirical foundations for a theory of language change. In Lehmann, W. P. & Malkiel, Y., eds., Directions for Historical Linguistics: A Symposium. Texas: University of Texas Press, pp. 95188.Google Scholar
Whalen, D. H. 1990. Coarticulation is largely planned. Journal of Phonetics, 18, 335.Google Scholar

5.7 References

Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., Garrod, S. et al. (1991). The HCRC map task corpus. Language and Speech, 34(4), 351–66.Google Scholar
Arai, T. (1999). A case study of spontaneous speech in Japanese. In Proceedings of the International Congress of Phonetic Sciences (ICPhS). Berkeley, CA: Department of Linguistics, University of California, pp. 615–18.Google Scholar
Barry, W. & Andreeva, B. (2001). Cross-language similarities and differences in spontaneous speech patterns. Journal of the International Phonetic Association, 31, 5166.Google Scholar
Bouavichith, D. & Davidson, L. (2013). Acoustic characteristics of intervocalic stop lenition in American English. Journal of the Acoustical Society of America, 133(5), 3565.Google Scholar
Bradlow, A. R. & Bent, T. (2002). The clear speech effect for non-native listeners. Journal of the Acoustical Society of America, 112(1), 272–84.Google Scholar
Brand, S. & Ernestus, M. (2017). Listeners’ processing of a given reduced word pronunciation variant directly reflects their exposure to this variant: Evidence from native listeners and learners of French. The Quarterly Journal of Experimental Psychology, 71(5), 1240–59.Google Scholar
Brouwer, S., Mitterer, H. & Huettig, F. (2012). Speech reductions change the dynamics of competition during spoken word recognition. Language and Cognitive Processes, 27(4), 539–71.Google Scholar
Browman, C. P. & Goldstein, L. (1992). Articulatory phonology: An overview. Phonetica, 49(3–4), 155–80.Google Scholar
Bürki, A., Ernestus, M., Gendrot, C., Fougeron, C. & Frauenfelder, U. H. (2011). What affects the presence versus absence of schwa and its duration: A corpus analysis of French connected speech. Journal of the Acoustical Society of America, 130(6), 3980–91.Google Scholar
Cruttenden, A. (2014). Gimson’s Pronunciation of English. London: Routledge.Google Scholar
Crystal, T. H. & House, A. S. (1982). Segmental durations in connected speech signals: Preliminary results. Journal of the Acoustical Society of America, 72(3), 705–16.Google Scholar
Crystal, T. H. & House, A. S. (1988a). Segmental durations in connected‐speech signals: Current results. Journal of the Acoustical Society of America, 83(4), 1553–73.Google Scholar
Crystal, T. H. & House, A. S. (1988b). A note on the durations of fricatives in American English. Journal of the Acoustical Society of America, 84(5), 1932–5.Google Scholar
Davidson, L. (2011). Characteristics of stop releases in American English spontaneous speech. Speech Communication, 53(8), 1042–58.Google Scholar
Davidson, L. (2016). Variability in the implementation of voicing in American English obstruents. Journal of Phonetics, 54, 3550.Google Scholar
Davidson, L. (2018). Phonation and laryngeal specification in American English voiceless obstruents. Journal of the International Phonetic Association, 48(3), 331–56.Google Scholar
Dilley, L. C. & Pitt, M. A. (2007). A study of regressive place assimilation in spontaneous speech and its implications for spoken word recognition. Journal of the Acoustical Society of America, 122(4), 2340–53.Google Scholar
Ernestus, M. & Warner, N. (2011). An introduction to reduced pronunciation variants. Journal of Phonetics, 39(SI), 253–60.Google Scholar
Ernestus, M., Baayen, H. & Schreuder, R. (2002). The recognition of reduced word forms. Brain and Language, 81(1–3), 162–73.Google Scholar
Ernestus, M., Kouwenhoven, H. & Van Mulken, M. (2017). The direct and indirect effects of the phonotactic constraints in the listener’s native language on the comprehension of reduced and unreduced word pronunciation variants in a foreign language. Journal of Phonetics, 62, 5064.Google Scholar
Gahl, S., Yao, Y. & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. Journal of Memory and Language, 66(4), 789806.Google Scholar
Gick, B. (1999). A gesture-based account of intrusive consonants in English. Phonology, 16(1), 2954.Google Scholar
Godfrey, J. J., Holliman, E. C. & McDaniel, J. (1992). SWITCHBOARD: Telephone speech corpus for research and development. In Proceedings of ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 1, pp. 517–20).Google Scholar
Greenberg, S. (1999). Speaking in shorthand: A syllable-centric perspective for understanding pronunciation variation. Speech Communication, 29(2–4), 159–76.Google Scholar
Hanique, I., Ernestus, M. & Schuppler, B. (2013). Informal speech processes can be categorical in nature, even if they affect many different words. Journal of the Acoustical Society of America, 133(3), 1644–55.Google Scholar
Johnson, K. (2004). Massive reduction in conversational American English. In Spontaneous Speech: Data and Analysis. Proceedings of the 1st Session of the 10th International Symposium, pp. 2954.Google Scholar
Kharlamov, V. (2014). Incomplete neutralization of the voicing contrast in word-final obstruents in Russian: Phonological, lexical, and methodological influences. Journal of Phonetics, 43, 4756.Google Scholar
Kharlamov, V. (2015). Perception of incompletely neutralized voicing cues in word-final obstruents: The role of differences in production context. Laboratory Phonology, 6(2), 147–65.Google Scholar
Kiefte, M. & Nearey, T. M. (2017). Modeling consonant-context effects in a large database of spontaneous speech recordings. Journal of the Acoustical Society of America, 142(1), 434–43.Google Scholar
Koopmans-van Beinum, F. J. (1980). Vowel Contrast Reduction: An Acoustic and Perceptual Study of Dutch Vowels in Various Speech Conditions. Amsterdam: Academische Press B.V.Google Scholar
Kuo, C. & Weismer, G. (2016). Vowel reduction across tasks for male speakers of American English. Journal of the Acoustical Society of America, 140(1), 369–83.Google Scholar
Liu, Y. F., Tseng, S. C. & Jang, J. S. R. (2016). Deriving disyllabic word variants from a Chinese conversational speech corpus. Journal of the Acoustical Society of America, 140(1), 308–21.Google Scholar
Mattys, S. L. & Melhorn, J. F. (2007). Sentential, lexical, and acoustic effects on the perception of word boundaries. Journal of the Acoustical Society of America, 122(1), 554–67.Google Scholar
Mehta, G. & Cutler, A. (1988). Detection of target phonemes in spontaneous and read speech. Language and Speech, 31, 135–56.Google Scholar
Mitterer, H. & Blomert, L. (2003). Coping with phonological assimilation in speech perception: Evidence for early compensation. Perception & Psychophysics, 65(6), 956–69.Google Scholar
Mitterer, H. & Ernestus, M. (2006). Listeners recover/t/s that speakers reduce: Evidence from/t/-lenition in Dutch. Journal of Phonetics, 34(1), 73103.Google Scholar
Niebuhr, O. & Kohler, K. J. (2011). Perception of phonetic detail in the identification of highly reduced words. Journal of Phonetics, 39(3), 319–29.Google Scholar
Pitt, M. A., Johnson, K., Hume, E., Kiesling, S. & Raymond, W. (2005). The Buckeye Corpus of conversational speech: Labeling conventions and a test of transcriber reliability. Speech Communication, 45(1), 8995.Google Scholar
Pollack, I. & Pickett, J. M. (1964). Intelligibility of excerpts from fluent speech: Auditory vs. structural context. Journal of Verbal Learning and Verbal Behavior, 3(1), 7984.Google Scholar
Smiljanić, R. & Bradlow, A. R. (2005). Production and perception of clear speech in Croatian and English. Journal of the Acoustical Society of America, 118(3), 1677–88.Google Scholar
Smiljanić, R. & Bradlow, A. R. (2011). Bidirectional clear speech perception benefit for native and high-proficiency non-native talkers and listeners: Intelligibility and accentedness. Journal of the Acoustical Society of America, 130(6), 4020–31.Google Scholar
Spinelli, E., Cutler, A. & McQueen, J. M. (2002). Resolution of liaison for lexical access in French. Revue française de linguistique appliquée, 7(1), 8396.Google Scholar
Spinelli, E., McQueen, J. M. & Cutler, A. (2003). Processing resyllabified words in French. Journal of Memory and Language, 48(2), 233–54.Google Scholar
Torreira, F., Adda-Decker, M. & Ernestus, M. (2010). The Nijmegen corpus of casual French. Speech Communication, 52(3), 201–12.Google Scholar
Tuinman, A., Mitterer, H. & Cutler, A. (2011). Perception of intrusive/r/in English by native, cross-language and cross-dialect listeners. Journal of the Acoustical Society of America, 130(3), 1643–52.Google Scholar
Vasilyeva, L., Arnhold, A. & Järvikivi, J. (2016). Phonetic correlates of phonological vowel quantity in Yakut read and spontaneous speech. Journal of the Acoustical Society of America, 139(5), 2541–50.Google Scholar
Warner, N. (2011). Reduction. In van Oostendorp, M., Ewen, C., Hume, E. & Rice, K., eds., The Blackwell Companion to Phonology. Malden, MA: Wiley-Blackwell.Google Scholar
Warner, N. (2012). Methods for studying spontaneous speech. In Cohn, A., Fougeron, C. & Huffman, M., eds., The Oxford Handbook of Laboratory Phonology. Oxford: Oxford University Press, pp. 621–33.Google Scholar
Warner, N. & Tucker, B. V. (2011). Phonetic variability of stops and flaps in spontaneous and careful speech. Journal of the Acoustical Society of America, 130(3), 1606–17.Google Scholar
Warner, N., Jongman, A., Sereno, J. & Kemps, R. (2004). Incomplete neutralization and other sub-phonemic durational differences in production and perception: Evidence from Dutch. Journal of Phonetics, 32(2), 251–76.Google Scholar
Warner, N., Good, E., Jongman, A. & Sereno, J. (2006). Orthographic vs. morphological incomplete neutralization effects. Journal of Phonetics, 34(2), 285–93.Google Scholar
Zimmerer, F., Reetz, H. & Lahiri, A. (2009). Place assimilation across words in running speech: Corpus analysis and perception. Journal of the Acoustical Society of America, 125(4), 2307–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×